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Homeostatic model of human 
thermoregulation with bi‑stability
Veronika Hajnová1,2, Filip Zlámal2, Peter Lenárt2* & Julie Bienertova‑Vasku2*

All homoiothermic organisms are capable of maintaining a stable body temperature using various 
negative feedback mechanisms. However, current models cannot satisfactorily describe the thermal 
adaptation of homoiothermic living systems in a physiologically meaningful way. Previously, we 
introduced stress entropic load, a novel variable designed to quantify adaptation costs, i.e. the 
stress of the organism, using a thermodynamic approach. In this study, we use stress entropic load 
as a starting point for the construction of a novel dynamical model of human thermoregulation. This 
model exhibits bi-stable mechanisms, a physiologically plausible features which has thus far not been 
demonstrated using a mathematical model. This finding allows us to predict critical points at which 
a living system, in this case a human body, may proceed towards two stabilities, only one of which 
is compatible with being alive. In the future, this may allow us to quantify not only the direction but 
rather the extent of therapeutic intervention in critical care patients.

The discovery of homeostasis, the ongoing maintenance and defense of vital physiological variables such as blood 
pressure and blood sugar, is generally attributed to Walter Cannon, considered to be the primary author of this 
prominent principle underlying physiological regulation1. However, already in 1878, the French physiologist 
Claude Bernard described the processes of physiological control as the milieu interieur 2. The evolution of the 
term “homeostasis” has a fascinating history, and generally covers a large array of physiological and behavioral 
responses which are elicited in a precisely coordinated way to facilitate the maximum adaptiveness of the living 
system to the surrounding environment. Although the term homeostasis was originally used to refer to pro-
cesses within living organisms, it is currently widely used to describe autonomous control in any system and is 
generally understood as a way of maintaining the adaptiveness of any system, either a living one or a machine.

The core principle of the hypothesis of the homeostatic regulation of a biological parameter is that all 
responses act together in a highly coordinated fashion to adjust bodily parameters crucial for the survival and 
reproduction of the living system. This means that the homeostatic regulation is precise and targeted and requires 
constant fine-tuning, including multiple negative feedback mechanisms, as expressed by Walter Cannon in 19453.

Over the last decades, a large number of physiologically plausible models4,5 have attempted to conceptualize 
homeostatic mechanisms using a systemic approach based on regulated variables, their set points, errors, and 
comparative information and their proxies. This is an extremely problematic approach, as there are countless 
physiological parameters that characterize the living organism at a given moment, and these countless parameters 
can further involve countless synergies or antagonisms. One may even argue that such an approach, based on 
atomizing the environmental influences in various categories and evaluating the influences of these drivers in 
different individuals, is reductionist to the point of no longer being useful. Therefore, while many explanations 
on the interaction of living organisms with the environment have been proposed, starting with research of Hans 
Selye6,7, no completely satisfactory theory describing the interaction between organisms and the surrounding 
environment is currently available. Furthermore, no presently available methods feature a predictive function 
capable of making predictions about the thermal homeostasis of the body in given ambient temperatures with 
satisfactory precision.

In our previous study, we introduced stress entropic load (SEL), a novel variable designed to facilitate the 
objective physical measurement of the stress load of a living (human) body by monitoring energy and matter 
flows in the body using the proxy of entropy production8. Mathematically, SEL is a time-dependent function 
which may be calculated from different types of heat, temperature changes and gases exchange. In line with our 
initial definition, we further described an equation calculating approximate SEL for a short measurement interval. 
In this article, we present a novel approach to measure SEL development in humans, and we further test this 
approach on healthy male volunteers subjected to prolonged mental effort9. As the calculation itself is based on 

OPEN

1Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech 
Republic. 2RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic. *email: peter.lenart@
recetox.muni.cz; julie.dobrovolna@recetox.muni.cz

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-96280-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17327  | https://doi.org/10.1038/s41598-021-96280-0

www.nature.com/scientificreports/

commonly measured variables, e.g. volumes of inspired/expired O2/CO2 and measurements of core/surface/
ambient temperatures, the method is potentially usable in a practical setting, including under clinical conditions.

Our current goal is to link the concept of SEL with a model of human thermoregulation. Previous studies 
proposed several models which can be used to study mammal thermoregulation 4,10–12. However, while simple 
phenomenological models4 do not include all of the necessary variables for computing SEL, and thus cannot be 
used to model stress response during thermoregulation, complex simulation models 10–12 do include all of the 
necessary variables for computing SEL, but their analysis is limited by their complexity.

This study aims to i) demonstrate the utility of the stress entropic load for evaluating the adaptation strain on 
the organism; ii) use dynamical systems theory for estimating core/surface body temperature in a given ambient 
temperature; iii) describe a mechanism which facilitates the evaluation of stability in the homeostatic equilibrium 
in a wider range of ambient air temperatures.

Methods
In this article, we use dynamical modeling to describe human thermoregulation and compute SEL for each 
model’s possible trajectories. This approach enables us to simulate stress load during temperature changes in the 
human body. We propose a novel simple dynamical model describing the thermoregulation process. We perform 
standard equilibrium and bifurcation analysis of the dynamical model, specifically detecting a fold bifurcation13. 
A fold bifurcation may be associated with the hysteresis principle typical of living systems14,15. The analysis ena-
bles us to locate a homeostatic region4 and an allostatic verge8,16 in a dynamical system. A homeostatic region is a 
region defined by both parameters and initial conditions for state variables in which the homeostatic equilibrium 
is stable. An allostatic verge is a manifold at which a system enters or leaves a homeostatic region. We associate 
an allostatic verge with the hysteresis principle or, more generally, with catastrophe theory14,15.

In this article, we cannot use the universal Golubitsky’s and Stewart’s theory17 to analyze homeostatic equi-
libria in a dynamical system as a departure point because, in this theory, homeostasis is simplified. Instead of 
a process during which “some output variable remains approximately constant as an input parameter varies”17, 
it presumes that the output variable remains constant. However, such a simplification does not work outside of 
idealized scenarios. In reality, no physiological variable is truly constant; there is always at least a small deviation 
from the optimal value. Therefore, we choose not use this simplification to study the efficiency of the homeostatic 
mechanism.

Results and conclusion
Model definition.  A model of mammal thermoregulation is a typical example of a homeostatic system. A 
simple model of thermoregulation with heating saturation was proposed by Nijhout et al. 20144. Their model 
centers on a basic assumption, i.e. that core body temperature TC remains approximately constant in a wide 
range of air temperatures TA

18. Our model further develops this idea by assuming that core body temperature 
TC is affected by air temperature TA , mostly through an additional layer of skin. Hence, both air temperature 
TA , and core temperature TC affect skin temperature TS in our model. Skin temperature is thus a key variable for 
the thermodynamic modeling of entropy production9,16. In our model, the only direct heat transfer between the 
body core and the ambient air takes places through breathing. It is proportional to the volume of inhaled air, and, 
consequently, the volume of oxygen uptake VO2 . The volume of oxygen uptake VO2 is not homeostatically regu-
lated, meaning no known sensor in the body is capable of directly measuring it5. In our conceptualization of the 
model, we use the volume of oxygen uptake as a parameter, as i) there is no direct sensor of oxygen uptake and 
ii) the mechanisms involved in the regulation of oxygen uptake seem to be too complex to analyze using current 
methods. Our mathematical model of mammal thermoregulation may thus be presented as follows:

where Tables 1, 2 denote time-dependent state variables and parameters, and fs(TC) is a saturating function. 
Generally, when no heat loss occurs during the heat transfer between body core and skin, rate k2 is equal to rate k3.

Heat transfer rates k1 , k4VO2 describe the interaction of the body and environment through skin temperature 
TS and core body temperature TC . Similarly, heat transfer rates k2 , k3 describe the interaction between core body 
and skin temperature. We assume that the rate k4VO2 is significantly lower than the other rates, i.e. k4VO2 ≪ k1 , 
k2 , k3 . Saturating function fS describes the inner mechanism of the body thermoregulation regardless of the 
external environment. The term saturating function was introduced by Nijhout et al. 20144. Heat transfer rates 
are illustrative and their estimation constitutes a task for future studies.

In general, saturating function fS should have the following properties: 

(1)
dTS

dt
= k1(TA − TS)+ k2(TC − TS)

(2)
dTC

dt
= k3(TS − TC)+ fS(TC)+ k4VO2(TA − TC),

Table 1.   State variables for model (1), (2).

State variable Description

TC Core body temperature [K]

TS Skin temperature [K]
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1.	 fS is smooth in TC.
2.	 There is no saturation at core temperature set point TSet

C  : fS
(

TSet
C

)

= 0.

3.	 When the core temperature is lower than set point TSet
C  , saturation increases the core temperature: 

TC < TSet
C ⇒ fS(TC) > 0 ; when the core temperature is higher than set point TSet

C  , saturation reduces the 
core temperature: TC > TSet

C ⇒ fS(TC) < 0.
4.	 The saturation function is almost zero for a core temperature far away from the set point: fS(TC) → 0 as 

TC → ±∞ . Moreover, core temperature thresholds Tθ1
C  , Tθ2

C  exist, so that if TC < Tθ1
C  or TC > Tθ2

C  , then 
fS(TC) ≈ 0.

5.	 Function fS has only one maximum for TC = TMAX
C  , Tθ1

C < TMAX
C < TSet

C  ; and one minimum for TC = TMIN
C  , 

Tθ2
C > TMIN

C > TSet
C .

An example of saturating function fs follows:

The proposed saturating function is similar to functions used in4; for computational reasons, we proposed a 
different formula to ensure fs is sufficiently smooth. The mechanism described by fS allows the body to bring the 
temperature back to a set-point TSet

C
4. The proposed saturating function is symmetric with respect to TSet

C  , but we 
do not require any symmetries in general. Parameters of function fS are denoted by Table 3.

To compare saturating functions fS of different shapes, we define the area below the saturation curve 
ES
[

K2min−1
]

 as

Therefore, the saturation functions of different shapes with the same area below the saturation curve exist. Fig-
ure 1 shows two different saturation functions with the same area below the saturation curve ( ES = 4 K2min−1 ). 
Example 1 shows a saturation curve of a higher variability ( v = 0.1 ) and smaller peak ( p = 0.4 ) in comparison 
to Example 2 ( v = 0.5 , p = 2 ). Example 2 enables core temperature TC to stabilize closer to the set point TSet

C  
than Example 1.

We can reduce the number of parameters of model (1), (2) using the following transformation τ = k1t , 
a = k2

k1
 , b = k3

k1
 , c = p

k1
 , d =

k4VO2
k1

:

The total number of parameters is thus reduced from nine to seven. In section Model analysis, the results are 
presented using the original parameters, i.e. before the transformation. The transformation aims to ensure that 
we only study relevant parameter dependencies.

(3)fS(TC) = p
(

TSet
C − TC

)

e−v
(

TSet
C −TC

)2

.

ES =

∫ T
θ2
C

T
θ1
C

|fS(TC)|dTC .

dTS

dτ
= (TA − TS)+ a(TC − TS)

dTC

dτ
= b(TS − TC)+ c

(

TSet
C − TC

)

e−v
(

TSet
C −TC

)2

+ d(TA − TC).

Table 2.   Parameters for model (1), (2).

Parameter Description Default value

k1 Rate of heat transfer between skin and ambient air 
[

min−1
]

0.2

k2 Rate of heat transfer between skin and core 
[

min−1
]

0.2

k3 Rate of heat transfer between core and skin 
[

min−1
]

0.2

k4 Rate of heat transfer between core and ambient air through breathing 
[

l−1
]

0.06

TA Ambient air temperature [K] 300

VO2 Oxygen consumption in 
[

l min−1
]

0.3

Table 3.   Parameters for saturating function fs (3).

Parameter Description Default value

p Shape (peak) of saturating function fS 
[

min−1
]

2

v Shape (reciprocal of variability) of saturating function fS 
[

K−2
]

0.5

TSet
C Core body temperature set-point [K] 310.15
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Model analysis.  The formal mathematical analysis of the model follows.
First, we analyze the equilibria of system (1), (2) for general sufficiently smooth function fS . By setting the 

right-hand sides of equations (1), (2) equal to zero and by then simplifying the resulting two equations, we obtain 
an equation for core body temperature equilibria T∗

C.

The stability of solutions can be determined using the Jacobi matrix J of system (1), (2). Using stability condi-
tions det J > 0 and trace J < 0 , we obtain stability condition

For arbitrary TA , equation (4) has at least one solution with respect to T∗
C . Moreover, if T0

C exists so that

it is then possible to establish TA for which equation (4) has three solutions with respect to T∗
C . The solutions 

are either 

(a)	 s o l u t i o n  1 :  T∗
C < Tinf1  ,  s o l u t i o n  2 :  Tinf1 < T∗

C < Tsup1  ,  a n d  s o l u t i o n  3 : 
Tsup1 < T∗

C < TSet
C   ;  f o r  Tinf1 = infR

{

T0
C : T0

C < TSet
C and condition (6) holds

}

  ,  a n d 
Tsup1 = sup

R

{

T0
C : T0

C < TSet
C and condition (6) holds

}

 or

(4)TA = T∗
C −

k1 + k2

k1k3 + k4VO2(k1 + k2)
fS
(

T∗
C

)

.

(5)
dfS(TC)

dTC

∣

∣

∣

∣

TC=T∗
C

<
k1k3

k1 + k2
+ k4VO2 .

(6)
dfS(TC)

dTC

∣

∣

∣

∣

TC=T0
C

>
k1k3

k1 + k2
+ k4VO2 ,

Figure 1.   Different saturating functions with area below curve ES = 4 K
2min−1 for parameters v = 0.1 , 

p = 0.4 (Example 1) and v = 0.5 , p = 2 (Example 2).
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(b)	 s o l u t i o n  1 :  T
∗
C
> Tsup2

 ,  s o l u t i o n  2 :  Tsup2 > T
∗
C
> Tinf2  ,  a n d  s o l u t i o n  3 : 

Tinf2 > T∗
C > TSet

C   ;  f o r  Tinf2 = infR
{

T0
C : T0

C > TSet
C and condition (6) holds

}

  ,  a n d 
Tsup2 = sup

R

{

T0
C : T0

C > TSet
C and condition (6) holds

}

.

The condition (5) indicates that solutions 1 and 3 are stable. Depending on TA , typically, one of the following criti-
cal cases occurs: either solutions 1 and 2 collide, forming a saddle-node equilibrium T∗

C = Tinf1 , or T∗
C = Tsup2 , 

or solutions 2 and 3 collide, forming a saddle-node equilibrium T∗
C = Tsup1 , or T∗

C = Tinf2.
The following paragraphs describe the consequences of this theorem, and present the results for fS as defined 

by equation (3). We analyzed system (1), (2), (3) with parameters from Tables 2 and 3 using equilibria and 
bifurcation detection and continuation methods in Matcont software19,20, and using the DETools package in 
Maple software21. The goal of the analysis is to locate allostatic verges depending on parameters from 2 and 3. In 
different settings, allostatic verges can also depend on other quantities.

Depending on system parameters, two possible stable equilibria of system (1), (2), (3) exist. We can distinguish 
between them using core temperature TC at the equilibrium point. Core temperature TC at the first equilibrium 
point is close to the core temperature set-point TSet

C  . We thus call the equilibrium homeostatic. Core temperature 
TC at the second equilibrium point is close to ambient air temperature TA . We call this equilibrium non-home-
ostatic. We divided the entire parameter space into areas where either a homeostatic equilibrium exists and is 
stable (area 1), where a non-homeostatic equilibrium exists and is stable (area 2), or where both equilibria exist 
and are stable (area 3). By setting parameters to values from area 3, one additional saddle equilibrium exists, 
see Fig. 2. The separatrices of the saddle divide phase space, i.e. the space of state variables TC and TS , into two 
regions (region 1, region 2). Region 1 is a basin of attraction of the homeostatic equilibrium. Region 2 is a basin 
of attraction of the non-homeostatic equilibrium.

The existence of bi-stability in area 3 is closely connected to a one-parameter dependent hysteresis phenom-
enon. Since in this model, hysteresis is a mechanism through which our system leaves or enters a homeostatic 
region, we analyze hysteresis to study allostatic verges. We identified the hysteresis phenomenon for air tempera-
tures TA smaller than the core temperature set point TSet

C  . Similarly, it can be described for air temperatures TA 
larger than the core temperature set point TSet

C  . To identify the hysteresis phenomenon from either the trajectories 
of the dynamical system or the measured time series, we focus on two model scenarios of parameter change: (i) 
increasing and (ii) decreasing ambient air temperature TA . In the first scenario we start at a stable non-homeo-
static equilibrium for TA below 307 K. We slowly increase TA . System (1), (2), (3) stabilizes on a non-homeostatic 
equilibrium until TA reaches an allostatic verge of 307 K. After crossing this allostatic verge, system (1), (2), (3) 
subsequently stabilizes on a homeostatic equilibrium until TA reaches the next allostatic verge at 321 K. In the 
second scenario we start at a homeostatic equilibrium for TA between 299 K and 321 K. We slowly decrease TA . 
System (1), (2), (3) stabilize on a homeostatic equilibrium until TA reaches an allostatic verge of 299 K. After 
crossing this allostatic verge, system (1), (2), (3) subsequently stabilizes on a non-homeostatic equilibrium. 
Allostatic verges are different for increasing and decreasing ambient air temperature scenarios (307 K and 299 K).

Moreover, allostatic verges are also dependent on other parameters of system (1), (2), (3). To describe the 
dependencies of allostatic verges on parameters, we studied several two-parameter sections of the parameter 
space. We provide the analysis in the following paragraphs.

We studied the equilibria of system (1), (2), (3) depending on ambient air temperature TA and oxygen con-
sumption VO2 . For smaller VO2 area 3 gets wider, the change does not affect the size of area 1, see Fig. 3 and Table 4.

Figure 2.   Phase portrait for area 3 for parameter values given by Tables 2 and 3.
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Table 4.   Estimated allostatic verges of ambient air temperature TA[K] on the borders of areas 1, 2 and 3 for 
selected values of VO2

.

Allostatic verges of TA[K] on borders of areas

VO2
Area 2–3 Area 3–1 Area 1–3 Area 3–2

0.1 298 307 313.5 322.5

0.4 299.5 307 313.5 320.5

0.7 301 307 313.5 319.5

Figure 3.   Transversal section through areas of stability of equilibria for parameter values given by Tables 2 and 
3 and free parameters TA and VO2

.

Table 5.   Estimated allostatic verges of the ambient air temperature TA[K] on borders of areas 1, 2 and 3 
depending on the shape of the saturation curve (described by some values of parameters p, v) for the area 
below the saturation curve ES = 4K

2min−1.

Shape Allostatic verges of TA[K] on borders of areas

v p Area 2–3 Area 3–1 Area 1–3 Area 3–2

1 4 295 307.5 312.5 325

0.9 3.6 296 307.5 312.5 324.5

0.8 3.2 296.5 307.5 313 323.5

0.7 2.8 297.5 307.5 313 323

0.6 2.4 298 307 313 322

0.5 2 299 307 313.5 321

0.4 1.6 300 306.5 314 320

0.3 1.2 301 306 314 319

0.2 0.8 302 305.5 315 318

0.1 0.4 303.5 304 316.5 317

Table 6.   Homeostatic regions for mammal thermoregulation model (1) and (2). For areas see Fig. 3 and 
Tables 4 and 5. For regions see Fig. 2.

Parameters State-variables

Homeostatic region 1 Area 1 Arbitrary TC , TS

Homeostatic region 2 Area 3 Region 1
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In addition to TA and VO2 , the areas of stability differ depending on the shape of saturation function fS . We 
study the dependence of ambient air temperature TA and the shape of fS . For the same area below the satura-
tion curve, the higher peak p and the smaller variability 1v enlarge area 3 and narrow area 1. Table 5 presents an 
example of such a dependency with the area below the saturation curve ES = 4K2min−1.

The following Table 6 summarizes obtained results in terms of the homeostatic region. The necessity to char-
acterize this homeostatic region by state-variables comes from the bi-stability between two possible equilibria for 
parameter area 3. The bi-stable mechanism enables the body to remain in a homeostatic equilibrium for more 
extreme temperatures during air temperature increase or decrease. On the other hand, the mechanism causes 
the destabilization of homeostatic equilibrium through even small perturbations.

Finally, having studied a dynamical system of mammal thermoregulation (1), (2), (3), we proceed to link 
our results to the stress entropic load concept. Assuming we are studying a short term event, we can use system 
(1), (2), (3) and the simplified formula published by Zlámal et al. 20189 to compute the immediate change of the 
stress entropic load �sSEL ; see Supporting information for the formula. Our model describes a dynamic of core 
temperature TC and skin temperature TS depending on several parameters, including ambient air temperature TA 
and oxygen consumption VO2 . In the �sSEL formula, the only free variable left is the CO2 liberation rate. As CO2 
is the only free variable in the formula, the human body can thus optimize its stress entropic load by changing 
the CO2 liberation rate. The mechanism of regulating CO2 can therefore ensure that the following holds true 
in the homeostatic equilibrium: dSEL(t)dt = 0 . Therefore, SEL production is zero at the homeostatic equilibrium, 
which is in perfect agreement with the underlying theory that SEL is directly related to stress levels recorded at 
a given point in time.

Discussion
In this paper, we propose a novel model of human thermoregulation using the concept of stress entropic load 
as a departure point. In doing so, we propose changes to the usual model of human thermoregulation in order 
to i) include all necessary variables for SEL computation into the model, such as core temperature TC , skin tem-
perature TS , ambient temperature TA , oxygen consumption VO2 , and ii) model different adaptation strategies. 
Our results suggest that humans may use two types of adaptation strategies with respect to thermoregulation. 
The first adaptation strategy type takes into account adaptation costs measured by the area below the saturation 
curve fS while the second is based on CO2 production.

As for the first strategy: We studied the bi-stable area in system (1), (2) depending on the shape of the 
saturating function fS and oxygen consumption VO2 . The bi-stable mechanism enables the body to remain in a 
homeostatic equilibrium state for more extreme temperatures, but it leads to the possible destabilization of the 
homeostatic equilibrium through even small perturbations. With the decrease of oxygen consumption VO2 , the 
area of bi-stability (area 3) increases, but the homeostatic equilibrium area of stability remains approximately 
the same, see Fig. 3. Therefore, as oxygen consumption decreases, body can remain in homeostasis for more 
extreme temperatures. Similarly, depending on the shape of saturation sizes of both area 1 and area 3 changes. 
For the same area below the saturation curve, the saturating function with high peaks and small variability 
enlarges area 3 and narrows area 1; see Table 5. Therefore, body can remain in the homeostatic equilibrium for 
more extreme temperatures; however, the local stability is more fragile due to the limited resources needed to 
maintain homeostasis.

The thermoregulation mechanism described in our paper differs from classical chair-like relationships4,17. 
Golubitsky and Stewart17 assumed that the derivative of the variable exhibiting homeostasis with respect to the 
parameter vanishes at homeostatic equilibrium. For the chair-like relationship, they assumed two additional 
conditions17. In our example of system (1), (2) with (3) the derivative of core temperature with respect to ambient 
temperature T∗

C(TA) does not vanish for any saturating function shape (defined by parameters p and v). However, 
the implicit derivative of T∗

C(TA) in the homeostatic equilibrium tends to zero as p tends to infinity. The theory 
is therefore not sufficient to describe this type of homeostatic system.

As for the second adaptation strategy which builds on CO2 production, we can use the dynamical systems of 
mammal thermoregulation to compute the change in stress entropic load (SEL) for short-term events 9. Interest-
ingly, our results show that the body can attain zero change in SEL at homeostatic equilibrium by manipulating 
the CO2 liberation rate. This is supportive of the notion that changes in SEL are representative of the current 
adaptation costs of the organism. In the light of our results, it is essential to mention that respiratory control in 
humans is primarily maintained via the partial pressure of CO2 in peripheral blood. The complete adaptation 
process consists of balancing both costs of adaptation, represented in the model by saturating function fS , and 
stress entropic load (SEL) through the CO2 liberation rate. Our findings may thus be interpreted to signify 
that manipulation with CO2 levels could reduce adaptation costs for thermoregulation, which may result in an 
increase of energy reserves for other purposes such as healing and regeneration.
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