J 2021

Observed and estimated consequences of climate change for the fire weather regime in the moist-temperate climate of the Czech Republic

TRNKA, Miroslav, Martin MOŽNÝ, František JUREČKA, Jan BALEK, Daniela SEMERÁDOVÁ et. al.

Basic information

Original name

Observed and estimated consequences of climate change for the fire weather regime in the moist-temperate climate of the Czech Republic

Authors

TRNKA, Miroslav (guarantor), Martin MOŽNÝ, František JUREČKA, Jan BALEK, Daniela SEMERÁDOVÁ, Petr HLAVINKA, Petr ŠTĚPÁNEK, Aleš FARDA, Petr SKALÁK, Emil CIENCIALA, Petr ČERMÁK, Filip CHUCHMA, Pavel ZAHRADNÍČEK, Dalibor JANOUŠ, Milan FISCHER, Zdeněk ŽALUD and Rudolf BRÁZDIL (203 Czech Republic, belonging to the institution)

Edition

Agricultural and Forest Meteorology, Elsevier, 2021, 0168-1923

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10510 Climatic research

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 6.424

RIV identification code

RIV/00216224:14310/21:00119273

Organization unit

Faculty of Science

UT WoS

000698753900002

Keywords in English

Wildfire; Fire weather index; Global warming; Fuel aridity; Fire weather trends

Tags

Tags

International impact, Reviewed
Změněno: 15/10/2021 10:35, Mgr. Marie Šípková, DiS.

Abstract

V originále

The occurrence of major wildfires in countries such as Portugal, Italy and Spain (2017) and Sweden (2018) indicated that wildfires pose a risk across Europe. While Central Europe has not been at the center of such events, observed climate data and climate projections suggest a tendency toward more years with wet and warm winters and dry and hot summers as well as fuel accumulation, leading to more hazardous conditions. Although some existing studies analyzed the differences in wildfire occurrence in this territory based on terrain, soil or vegetation characteristics, the effects of climate change have not been properly appraised. To fill this knowledge gap, we used and tested an ensemble of nine fuel aridity metrics, including three dedicated fire danger rating indices, and evaluated their level of agreement with actual fire occurrence, their ability to explain the interannual variability in wildfire frequency, and their temporal trends. The analysis covered the entire territory of the Czech Republic at 500 m spatial resolution. Two periods were included based on observed (1956-2015) and projected (2020-2100) meteorological data using ensembles of five regional climate models (RCMs) and five global circulation models (GCMs) based on Euro-CORDEX and CMIP5 datasets. For the future, we considered Representative Concentration Pathway (RCP) 4.5. Our results showed that since 1956, most of the Czech territory has exhibited an increasing frequency of fire weather days (i.e., days with highly conducive wildfire conditions) and an increasing area affected by weather conducive to wildfire occurrence, with the trends accelerating after 2000. The annual variation in the fuel aridity levels (derived solely from meteorological data) explained more than 2/3 of the reported wildfire variability during 1991-2015 over the Czech Republic. The future projections based on the RCM or GCM ensembles indicated a significant increase in fuel aridity and an increase in the area under fire-conducive conditions. Recommendations derived from such robust results are provided for stakeholders seeking to implement adaptation measures.

Links

GA17-10026S, research and development project
Name: Epizody sucha v České republice a jejich příčinná podmíněnost
Investor: Czech Science Foundation