MUNI C4E

Evaluating Two Approaches to Assessing Student Progress in Cybersecurity Exercises

Valdemar Švábenský, Richard Weiss, Jack Cook, Jan Vykopal, Pavel Čeleda, Jens Mache, Radoslav Chudovský, Ankur Chattopadhyay

Masaryk University (Czech Republic), Evergreen State College (USA), New York University (USA), Lewis & Clark College (USA), Northern Kentucky University (USA)

March 2022 | ACM SIGCSE Technical Symposium

Goal

Assess student practical skills in cybersecurity exercises

- Provide instructors with classroom situational awareness
- Identify students' strengths and shortcomings
- Help students learn

Summary

- Cybersecurity students need to develop **practical skills** such as using command-line tools. Hands-on exercises are recommended.
- Assessing students' mastery by modeling and visualizing student progress automatically throughout the exercise is a viable method.
- To summarize progress, we implemented **two types of graph models** and compared them using data from 46 students at two universities.
- To evaluate our models, we **surveyed computing instructors** and qualitatively analyzed their responses.
- The majority of instructors interpreted the graph models effectively and identified strengths, weaknesses, and assessment use cases.

Contributions

- We demonstrate how **multiple institutions can collaborate** to share approaches to modeling student progress in hands-on exercises.
- Our **modeling techniques generalize** to data from different environments to support student assessment, even outside the cybersecurity domain.
- We **share the acquired data and open-source software** so that others can use the models in their classes or research.
 - https://zenodo.org/record/5752288

KYPO CRP and EDURange – Two Testbeds for Cybersecurity

- Platforms that allow instructors to create hands-on cybersecurity exercises
- A collection of exercises
- Tools for visualizing student command history
 - Primary goal: simplify many lines of commands into visual form that enables the instructor to judge easily if the student needs help.
- See more at:
 - https://crp.kypo.muni.cz/
 - http://www.edurange.org/

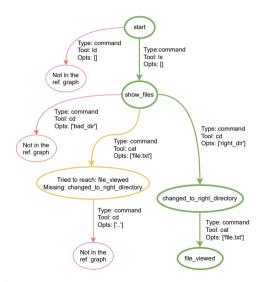
Modeling Student Progress in Command-Line exercises

We examined **two approaches** to modeling student progress on our platforms:

- **1**. Trainee Graphs
 - Authors manually and iteratively create a reference graph that represents an example solution.
 - Student activity is then automatically mapped against this example, and visualized.

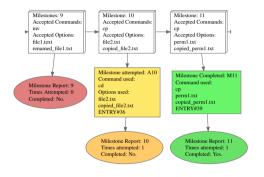
2. Milestone Graphs

- Exercises are broken into discrete tasks, called milestones, with each having a uniquely identifiable regular expression.
- Each line of students' bash history is then checked against these milestones to find matches.

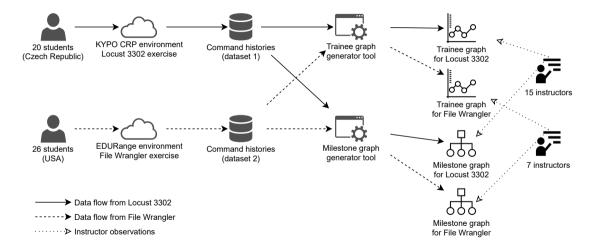

Benefits of the Modeling Approaches

- Quickly and accurately identify high or low-performing students in the class
- Identify successes and struggles of a specific student and across the class
- Give each student their own graph to reflect on their approach and self-evaluate their learning process

Both KYPO CRP and EDURange produce these models fully **automatically**.


Since both platforms analyze bash history, modeling techniques are **interchangeable**.

Example Trainee Graph


- Green: successful steps mapped to the reference graph.
- Red: actions that were likely erroneous or unnecessary.
- Yellow: actions with missing prerequisites, possible new solutions.

Example Milestone Graph

- Milestone boxes (white) are created from left-to-right at the top of the graph
- Descending rectangular nodes correspond to student activity, ellipses contain summary data
- Descending nodes are colored:
 - Red: Unattempted
 - Yellow: Partial Attempt
 - Green: Success

Research Methods

Survey Results

- Most instructors interpreted each graph effectively, and were able to identify strengths, weaknesses, and use cases for each graph.
- **Trainee graphs** were better for in-depth information about the student.
- **Milestone graphs** were better for a quick overview of how the student did and how far they got.
- We received specific comments that we can use to improve the graphs' readability.

Limitations and Future Work

- Creating new exercises requires designers to define new reference graphs or milestones
- Real-time evaluation as opposed to retrospective
- Machine learning methods to cluster students and provide automated assistance

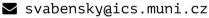
Publicly Available Contributions

Full paper and slides:

https://muni.cz/en/research/publications/1797699

Supplementary materials:

https://zenodo.org/record/5752288


Richard Weiss

☑ weissr@evergreen.edu

EDURange

http://www.edurange.org/

Valdemar Švábenský

Cybersecurity Laboratory

Acknowledgments

- National Science Foundation (grants 1723705 and 1723714)
- ERDF project "CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence" (No. CZ.02.1.01/0.0/0.0/16_019/0000822)
- Special thanks to:
 - Stacy Watson for developing the File Wrangler exercise (in EDURange)
 - Aubrey Birdwell for generating Milestone graphs

MUNI C4E

EUROPEAN UNION

European Structural and Investment Funds Operational Programme Research, Development and Education

C 4 E . C Z