D 2021

Twin-Width is Linear in the Poset Width

BALABÁN, Jakub and Petr HLINĚNÝ

Basic information

Original name

Twin-Width is Linear in the Poset Width

Authors

BALABÁN, Jakub (203 Czech Republic, belonging to the institution) and Petr HLINĚNÝ (203 Czech Republic, guarantor, belonging to the institution)

Edition

214. vyd. Dagstuhl, International Symposium on Parameterized and Exact Computation (IPEC), p. "6:1"-"6:13", 13 pp. 2021

Publisher

Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

References:

RIV identification code

RIV/00216224:14330/21:00119289

Organization unit

Faculty of Informatics

ISBN

978-3-95977-216-7

ISSN

Keywords in English

twin-width; digraph; poset; FO model checking; contraction sequence

Tags

International impact, Reviewed
Změněno: 19/4/2022 10:03, prof. RNDr. Petr Hliněný, Ph.D.

Abstract

V originále

Twin-width is a new parameter informally measuring how diverse are the neighbourhoods of the graph vertices, and it extends also to other binary relational structures, e.g. to digraphs and posets. It was introduced just very recently, in 2020 by Bonnet, Kim, Thomasse and Watrigant. One of the core results of these authors is that FO model checking on graph classes of bounded twin-width is in FPT. With that result, they also claimed that posets of bounded width have bounded twin-width, thus capturing prior result on FO model checking of posets of bounded width in FPT. However, their translation from poset width to twin-width was indirect and giving only a very loose double-exponential bound. We prove that posets of width d have twin-width at most 9d with a direct and elegant argument, and show that this bound is asymptotically tight. Specially, for posets of width 2 we prove that in the worst case their twin-width is also equal 2. These two theoretical results are complemented with straightforward algorithms to construct the respective contraction sequence for a given poset.

Links

GA20-04567S, research and development project
Name: Struktura efektivně řešitelných případů těžkých algoritmických problémů na grafech
Investor: Czech Science Foundation
MUNI/A/1108/2020, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace X. (Acronym: SV-FI MAV X.)
Investor: Masaryk University