Detailed Information on Publication Record
2021
A Short Proof of Euler–Poincaré Formula
HLINĚNÝ, PetrBasic information
Original name
A Short Proof of Euler–Poincaré Formula
Authors
HLINĚNÝ, Petr (203 Czech Republic, guarantor, belonging to the institution)
Edition
Cham, Extended Abstracts EuroComb 2021. Trends in Mathematics, p. 92-96, 5 pp. 2021
Publisher
Birkhäuser
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Switzerland
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
printed version "print"
References:
RIV identification code
RIV/00216224:14330/21:00119291
Organization unit
Faculty of Informatics
ISBN
978-3-030-83822-5
ISSN
Keywords in English
Euler–Poincaré formula; Polytopes; Discharging
Tags
Tags
International impact, Reviewed
Změněno: 28/4/2022 10:05, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
"V-E+F=2", the famous Euler’s polyhedral formula, has a natural generalization to convex polytopes in every finite dimension, also known as the Euler-Poincaré Formula. We provide another short inductive combinatorial proof of the general formula. Our proof is self-contained and it does not use shellability of polytopes.
Links
GA20-04567S, research and development project |
|