D 2021

On 13-Crossing-Critical Graphs with Arbitrarily Large Degrees

HLINĚNÝ, Petr and Michal KORBELA

Basic information

Original name

On 13-Crossing-Critical Graphs with Arbitrarily Large Degrees

Authors

HLINĚNÝ, Petr (203 Czech Republic, guarantor, belonging to the institution) and Michal KORBELA (703 Slovakia, belonging to the institution)

Edition

Cham, Extended Abstracts EuroComb 2021. Trends in Mathematics, p. 50-56, 7 pp. 2021

Publisher

Birkhäuser

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

References:

RIV identification code

RIV/00216224:14330/21:00119292

Organization unit

Faculty of Informatics

ISBN

978-3-030-83822-5

ISSN

Keywords in English

Graph; Crossing number; Crossing-critical families

Tags

International impact, Reviewed
Změněno: 28/4/2022 10:05, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

A surprising result of Bokal et al. proved that the exact minimum value of c such that c-crossing-critical graphs do not have bounded maximum degree is c=13. The key to the result is an inductive construction of a family of 13-crossing-critical graphs with many vertices of arbitrarily high degrees. While the inductive part of the construction is rather easy, it all relies on the fact that a certain 17-vertex base graph has the crossing number 13, which was originally verified only by a machine-readable computer proof. We now provide a relatively short self-contained computer-free proof.

Links

GA20-04567S, research and development project
Name: Struktura efektivně řešitelných případů těžkých algoritmických problémů na grafech
Investor: Czech Science Foundation
MUNI/A/1108/2020, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace X. (Acronym: SV-FI MAV X.)
Investor: Masaryk University