Detailed Information on Publication Record
2022
Lower bound on the size of a quasirandom forcing set of permutations
KUREČKA, MartinBasic information
Original name
Lower bound on the size of a quasirandom forcing set of permutations
Authors
KUREČKA, Martin (203 Czech Republic, guarantor, belonging to the institution)
Edition
COMBINATORICS PROBABILITY & COMPUTING, 2022, 0963-5483
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 0.900
RIV identification code
RIV/00216224:14330/22:00125023
Organization unit
Faculty of Informatics
UT WoS
000752712800001
Keywords in English
quasirandomness; quasirandom permutations; combinatorial limits; quasirandomness forcing
Tags
International impact, Reviewed
Změněno: 27/3/2023 17:06, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
A set S of permutations is forcing if for any sequence {Pi_i} of permutations where the density d(pi, Pi_i) converges to 1/|pi|! for every permutation pi from S, it holds that {Pi_i} is quasirandom. Graham asked whether there exists an integer k such that the set of all permutations of order k is forcing; this has been shown to be true for any k>=4 . In particular, the set of all 24 permutations of order 4 is forcing. We provide the first non-trivial lower bound on the size of a forcing set of permutations: every forcing set of permutations (with arbitrary orders) contains at least four permutations.
Links
MUNI/A/1108/2020, interní kód MU |
| ||
MUNI/A/1145/2021, interní kód MU |
| ||
MUNI/A/1549/2020, interní kód MU |
| ||
MUNI/I/1677/2018, interní kód MU |
|