
Towards a Data-Driven Recommender System for
Handling Ransomware and Similar Incidents

Martin Husák
Institute of Computer Science, Masaryk University, Brno, Czech Republic

husakm@ics.muni.cz

Abstract—Effective triage is of utmost importance for cyber-
security incident response, namely in handling ransomware or
similar incidents in which the attacker may use self-propagating
worms, infected files, or email attachments to spread malware.
If a device is infected, it is vital to know which other devices
can be infected too or are immediately threatened. The number
and heterogeneity of devices in today’s network complicate
situational awareness of incident handlers, and, thus, we propose
a recommender system that uses network monitoring data to
prioritize devices in the network based on their similarity and
proximity to an already infected device. The system enumerates
devices in close proximity in terms of physical and logical
network topology and sorts them by their similarity given by
the similarity of their behavioral profile, fingerprint, or common
history. The incident handlers can use the recommendation to
promptly prevent malware from spreading or trace the attacker’s
lateral movement.

I. INTRODUCTION

The rising complexity and variety of cyberattacks compli-
cate incident response. Traditional approaches to network se-
curity based on securing and deploying intrusion detection sys-
tems on the network’s perimeter are insufficient and can be by-
passed. Cybersecurity incident response teams (CSIRT/CERT)
and security operation centers (SOC) are often flooded with
alerts and have low awareness of particular hosts and services
in the network, namely in large networks and organizations.
Effective triage and prioritization of threats and incidents are
of utmost importance, which inspires the research on alert
aggregation and correlation, automation of incident response
routines, human cognition augmentation, and decision support.

The major motivation for our work is the need to handle
ransomware attacks and similar incidents. Ransomware attacks
often use techniques of social engineering, such as phishing
emails, to deliver malware and get a foothold in the network.
The malware further spreads in the network via exploitation
of surrounding computers or sharing infected files and devices
among users. Traditional perimeter-based network defense and
network-based intrusion detection systems are bypassed, and
there is little chance of mitigating the spread of infection.
Nevertheless, the behavior of malware can be anticipated to
some extent. A typical malware uses a few exploits, focuses
on certain types of services, software, or devices, and spreads
in close proximity first. Thus, a lateral movement of an
attacker can be observed, traced, and even projected. However,
that requires detailed knowledge of the local environment
and collaboration with users and administrators, if not direct
access to the network, which is complicated in large networks,

infrastructures, and organizations. The incident handlers would
appreciate any piece of information that would guide them
through the network and pinpoint nodes that might be involved
in an ongoing attack or are immediately threatened. The key
question of an incident handler is: if this device is infected,
which others devices can be infected or threatened?

In this work, we propose a design of a recommender
system for the incident response that uses common network
monitoring and security infrastructure to combat threats like
ransomware or lateral movement of an attacker. The system
uses network traffic analysis, vulnerability assessment, and
knowledge of the local environment to profile devices in
the network and support incident handlers’ decision-making.
The profile consists of a devices’ location in physical and
logical network topology, software and service fingerprints,
vulnerabilities, and other contextual data. In case of infection
of a device in the network, the system recommends a list
of similar devices that are at major risk. The similarity is
considered in terms of devices’ proximity and similarity of
software equipment and vulnerabilities.

This paper is divided into six sections. Section II briefly
describes background and related work. In Section III, we
propose the design of the recommender system. In Section IV,
we describe the calculation behind the recommendations.
Section V illustrate the use of the system on an example.
Section VI concludes the paper and outlines future work.

II. BACKGROUND AND RELATED WORK

Incident handling is a fundamental activity provided by a
cybersecurity team (CSIRT/CERT). For example, the CSIRT
Services Framework enumerates services related to incident
management that CSIRT teams can provide [1]. The services
are divided into five areas – information security incident
management, information security event management, vul-
nerability management, situation awareness, and knowledge
transfer. The complete list of the services is listed in RFC
2350 [2]. Recently, the incident response became a part of
third-generation SOC (Security Operations Center) as defined
by CISCO [3]. The procedures of incident handling are well
structured and formalized in the literature and adopted by
practitioners. However, each environment is different, and each
team uses a different set of tools to gather data, making
it difficult to specify local issues and technical details. The
Computer Security Incident Handling Guide [4] by NIST
divides incident handling into preparation, detection, analysis,



containment, eradication and recovery, and post-incident activ-
ities. The Incident Handler’s Handbook [5] by the SANS In-
stitute includes highly relevant entries in the incident handler’s
checklist. For example, the incident handlers are reminded to
identify the source and location of the incident and its scale.
The incident handler has to be aware of the impacted hosts
and their neighborhoods to properly plan the course of action.
Our proposed system directly addresses these needs.

Incident handlers are forced to make many prompt de-
cisions, especially during incident triage (prioritization) and
their resolution. However, according to Spring and Illari, who
reviewed human decision-making in incident response [6],
existing guidelines do not give advice on how to obtain an
overall picture of incident with incomplete data, e.g., how
to generalize hypothesis in terms of time (among distinct
events) and space (among devices in the network or possible
cyber victims). These steps are usually accomplished via the
expert knowledge of a security team. In other related work on
decision support in cybersecurity, Webb et al. [7] proposed
a model for security risk management that addresses the
deficiencies in practice and poor decision making. Happa et
al. [8] studied the impact of using visualization and decision
support tools in SOC, including the propagation of risk sensor
alerts to business processes. The study states recommendations
for future development, such as including contextual data and
enabling collaboration.

The research on decision support tools and recommender
system in cybersecurity usually focus on finding an optimal
countermeasure for ongoing or possible cyber attack out of
available response actions [9], optimal purchase of defense
tools [10], or their optimal placement [11]. Polatidis et al. [12]
were inspired by a product recommender system in designed
a system for attack prediction. Recommender systems are also
considered in vulnerability assessment and scoring [13], [14].
Identification of systems at risk via analysis of discussion
on the darkweb can be found in work by Almukaynizi, et
al. [15]. Nevertheless, network defense and incident handling
are lacking recommender systems or similar tools. Exceptions
can be found in work by Albanese et al. [16], who proposed
automated tools to improve analyst’s performance.

Although there is a lack of decision support tools and
recommender systems addressing particular tasks, there are
tools that enable achieving situational awareness and, thus,
make timely and informed decisions. Situational awareness
was extensively studied in military and aviation and gained
recognition in cybersecurity as so-called cyber situational
awareness (CSA) [17]. Following the widely-used definition,
CSA consists of three levels: the perception of the elements
in the cyber environment within a volume of time and space,
the comprehension of their meaning, and the projection of
their status in the near future [18]. Each level builds upon
the previous one; one cannot fully understand the situation
without proper perception nor project the situation without
understanding it. The recent status of research in this area was
summarized by Husák et al. [19] or Gutzwiller et al. [20].
The fundamental results were achieved, and the attention

has moved towards their application, deployment, and field
studies. Achieving CSA requires a vast range of heterogeneous
information that can be provided by a plethora of existing
tools [21]. However, it is difficult to process such data, namely
because their volume, velocity, and variety effectively make
them big data [19]. Another important issue is providing
the user with the right data at the right time and present
them in a meaningful manner to avoid information overload
and maintain sufficient performance [19]. Complex tools to
enable CSA were proposed in the past, Cauldron [22] and
CyGraph [23] being prime examples. However, such complex
tools are often too complicated to be used effectively, namely
due to the high number of required inputs that could not always
be provided in practice. More lightweight solutions are called
for, albeit those would come with a lower level of detail or
precision [24].

III. DESIGN OF A RECOMMENDER SYSTEM

To address the challenges stated in the introduction of
this paper, we propose a recommender system that would
help incident handlers in combating ransomware and similar
attacks. Herein, we first summarize the requirements for such
a system. Subsequently, we propose an architecture of a
prototype.

A. Requirements and Architecture

The major requirement on the recommender system is that
it should receive an identifier of a host in the network as input
and put a sorted list of similar hosts on the output. The list
should contain hosts similar to the one on the input sorted
by the risk of their exploitation by an attacker or malware
controlling the host on the input. If possible, the outputs shall
be accompanied by the key pieces of information or data
elements on the recommended hosts, namely those causing
the similarity.

The proposed system is heavily data-centric, and, thus, there
is a need to gather and store the data as follows:

• The system should collect or be able to access the data
on the network and hosts in it. The required data items
include a list of network segments, the location of a host
in logical and physical network topology, hosts’ services,
software, and vulnerabilities, and contacts on primary
administrators.

• The data shall hold as much information as possible under
given circumstances. It is often unfeasible, laborious, or
too expensive to have all the data available, and, thus,
they do not need to be complete nor exact; the system
shall work even with incomplete or slightly misleading
data. Nevertheless, the best effort to data collection is
expected.

• The data shall be stored in a way that allows for the
interconnection of heterogeneous data from different do-
mains. The data should be accessible at any time and
continuously updated. The exact update interval depends
on particular data; the data collected on the same or
previous day should be sufficient.



We designed a prototype of a recommender system based on
our previous work on cyber situational awareness and enabling
technologies [24]–[27]. The system consists of three parts;
data collection system, database, and recommender system.
Our previous work covered the aspects of data collection and
storage and is only briefly commented on in the following
subsections. The recommendation subsystem is described here
from the design perspective and integration with the rest of
the system. The details on the recommendation algorithm are
presented in the following section.

B. Data Collection

Our proposed system uses the data collection toolset pro-
posed in our previous work [25]. The toolset continuously
collects the data on the network so that they are instantly
accessible when needed. The toolset mostly uses active and
passive network monitoring, namely NetFlow technology [28]
and Nmap tool [29], to map the network, enumerate active
devices and services, and fingerprint operating systems and
software running on the hosts. The collection of such data is
fully automated and provides a sufficient amount of informa-
tion and level of details for incident triage. Nevertheless, there
is also the need to process data, such as network segmentation,
logical topology, and contacts on primary users and adminis-
trators that can typically not be extracted automatically and
have to be provided manually or connected to a local system.

The data to collect can be categorized into network-related
and host-related. For the whole network, the system collects
the following:

• List of the active hosts in the network (via NetFlow or
Nmap).

• Network topology obtained via Nmap’s traceroute feature
from several observation points.

• List of network segments, preferably as a list of IP ad-
dress ranges. Each segment shall include a brief descrip-
tion defining its location (e.g., physical location, depart-
ment of the organization, hosting of virtual machines),
purpose (e.g., a segment of workstations or servers, IP
pool of VPN), and a responsible contact person (e.g.,
local IT administrator).

• History of security incidents, each with a list of devices
involved in the incident (typically available via RTIR1 or
similar system used for incident management).

For each host in the network, the following pieces of infor-
mation are collected:

• Fingerprint of the operating system (via NetFlow [26] or
Nmap).

• List of open ports and network services, including the
name and version of the underlying software (via Net-
Flow and NBAR2 signatures [30] or Nmap).

• If the host is a web server, then also the name and version
of Content Management System (via WhatWeb tool2).

1https://bestpractical.com/rtir
2https://github.com/urbanadventurer/WhatWeb

• If the host provides services encrypted via TLS (e.g.,
HTTPS), then also the validity of the certificate.

• Name and version of a web browser used on the system
(via NetFlow-based analysis of HTTP User-Agent or TLS
fingerpring [31]).

• Name of the antivirus software running on the system and
timestamp of its latest update (via NetFlow traffic analysis
and detection of the communication with a vendor’s
update server).

• List of vulnerabilities (either obtained via dedicated vul-
nerability scanner or estimated from fingerprints [27]).

• If the situation allows (e.g., the network is not too large
or the organization conducts asset management), then
the location, purpose, and contacts on administrators and
users can be provided on the host level.

Readers interested in design consideration and technical
details are kindly referred to our previous work on the data
collection system [25]. It is worth noting that passive net-
work monitoring in a typical setting updates the data every
five minutes, including the list of active hosts and their
fingerprints [26]. Active scanning takes up to 16 hours in
experimental deployment in a /16 network. Passive network
monitoring has a broader coverage and provides less detailed
and exact information on almost all the devices in the network,
while active scanning provides more detailed data, although on
approximately four or five times fewer devices [25]. Dedicated
vulnerability scanners might be too expensive when used in a
large environment and, thus, can be to some extent replaced
by mapping fingerprints to vulnerability descriptions via the
CPE3 strings [27].

C. Data Representation and Storage

The collected data are stored in a Neo4j, a technologically
mature implementation of a graph database. Graph databases
are becoming popular in cybersecurity data processing as they
allow for intuitive and extensible data modeling and straight-
forward and comprehensible visualization of the data [32]. In
this work, we use the CRUSOE data model [24] that aims
at structuring heterogeneous data on the network for cyber
situational awareness. The model is inspired by CyGraph [23],
a graph-based data model and tool by MITRE. However,
contrary to CyGraph, CRUSOE is more lightweight and favors
simplicity and usability over completeness and exactness that
are difficult to achieve in an operational setting. A sample
database structured using the CRUSOE data model and a set
of illustrations can be found at a GitHub repository 4.

D. Recommendation Subsystem

The recommendation subsystem is designed as a service that
receives an identifier of a device in the network on the input
and returns a sorted list of similar devices in close proximity
as the output. Typically identifier on the input is an IP address
or a domain name. The subsystem connects to the database

3https://cpe.mitre.org/
4https://github.com/CSIRT-MU/CRUSOE-Data-Model



and looks up the host to assess its profile. Subsequently, it
looks up devices in proximity of that host and retrieves their
profiles. A graph traversal in network topology representation
is leveraged, and a threshold of maximal distance is set in
order to include only devices in close proximity, not all devices
in the network, which might slow down the calculation and
can be counterproductive in large networks. The list of the
hosts is prioritized by their similarity and proximity to the host
on the input, each host is identified by IP address or domain
name, and its score is provided. A detailed explanation of the
calculation is provided in the following section.

IV. CALCULATIONS BEHIND RECOMMENDATIONS

The recommendations are based on the proximity and
similarity of the hosts in the network to the host on the
input. The recommendation prioritizes similar hosts in close
proximity. The hosts in close proximity to an exploited host
are at risk. The proximity is understood in several aspects;
two hosts can be close to each other in physical and logical
network topology, e.g., in the same room or in the same IP
range. Alternatively, the two machines can be close to each
other if they are controlled by the same users or administrators.
The similarity is based on the similarity in software equipment,
role, profile, or shared history of the two hosts. Nevertheless,
the similarity in software equipment is a prevalent feature due
to the fact that the attackers typically exploit certain services
or pieces of software.

Formally, we sort the hosts by their risk score. The risk
score (R) is calculated as a quotient of the similarity score
(S) and distance (D) of the two hosts. Similarity score and
distance are further calculated from a number of features that
are explained in the following subsections. The formula is:

R =
S

D
=

s1 ∗ s2 ∗ ...sn
min{d1, d2, ..., dn}

(1)

In practice, it would be advantageous to assign weights to
similarity score, distance, or their elements. Such weights
could be extracted from real-world scenarios and further tuned
in operations. However, that is a task for future work.

A. Distance Calculation

As mentioned in Eq. 1, the distance between the two hosts
is calculated as the minimal value of distance features. Various
distance features allow for calculating the distance in different
attack scenarios using different attack vectors. For example,
worms and other malware spreading over the network will
typically spread in the local network or subnet or to similar IP
addresses. On the contrary, if the malware spreads via infected
files in email attachments or flash drives, then it will typically
spread first to machines used by the same users or in the same
office or organization’s department.

In order to avoid iterating all the hosts in the network, a
breadth-first graph traversal can be used to find hosts with
minimal distance in any of the distance metrics. The distance
in logical network topology is calculated as the length of the
path in the graph between two distinct IP nodes through the

Subnet and Organization Unit nodes. For example, two IP
addresses in the same subnet have a distance of 2; two nodes in
the same organization unit but different subnets have a distance
of 4. A similar distance measure can be calculated using the
Subnet and Contact, which represents the similarity based on
the fact that the same administrator oversees the subnets in
which the IP addresses are located. Other similar metrics can
be defined if additional data are available.

Our proposal is limited to the data available via our im-
plementation of the data collection system [25]. Nevertheless,
other distance features can be defined with additional data
available. For example, the physical distance of the two
hosts, location in the same room or department, or similarity
of their IP addresses. The similarity of the IP addresses
can be calculated with their 32-bit integer representation as
d = min{IP1, IP2}/max{IP1, IP2}. As mentioned earlier,
weights can be assigned to particular distance features, namely
to allow comparing discrete values based on distance in graph
to continuous values like the similarity of IP addresses or
physical distance.

B. Similarity Calculation

The similarity is based on partial similarities in selected
features of the hosts in the network and is calculated as a
product of partial similarities s1 ∗ s2 ∗ ...sn as displayed in
Eq. 1. Each partial similarity is a value in the range < 0, 1 >.

The similarity of the two hosts in their software equipment
and open network-facing services are the prevalent features.
The malware often uses exploits of specific software or ser-
vices. For example, if malware uses SSH brute-force password
attacks, then Linux machines with SSH servers are at risk.
Often we do not know the exact software equipment or user
preferences, and, thus, we may only assume similarities. For
example, if the malware exploits a vulnerability of the Outlook
email client, we shall look up Windows machines, even though
we do not know if they have Outlook installed or if it is used.

CPE strings are a solid choice for a representation of a
piece of software running on a host. A CPE string contains the
software’s vendor, name, version, and other details in a struc-
tured form. In practice, it is important that CPE strings can
be constructed by OS and service fingerprinting software such
as Nmap, which makes their retrieval fully automated [25].
Although common metrics (Levenshtein distance, Hamming
distance) can be applied, it is more advantageous to design
a CPE-specific similarity measure that would consider the
similarity between particular elements of CPE and frequent
use of wildcards (*) in CPE. Another issue is that there are
several CPE strings for each host, such as one for the host’s
OS and one for each of its services. There is a need to match
OS CPEs to each other and, then, increase the similarity for
each similar service CPE on the same network port and the
number of open services.

The calculation of similarity between the two CPE strings
could be approached as follows. The CPE string is considered
as an array of strings, i.e., each data element (vendor, product,
version, etc.) is considered separately. Each element has a



value that is decreasing from left to right. Let’s assign 0.5 to
the vendor, 0.25 to the product, 0.125 to the version, and so on
to other elements; the sum of all the values is 1. The elements
are processed from left to right, i.e., from the most significant
to the least significant, starting with the vendor. The initial
value of similarity is 0. If the two elements are the same, the
element’s value is added to the similarity value. If a wildcard
(*) or ANY value are encountered in one or both elements,
then they are considered the same. If the values are different,
the calculation stops, and the similarity value is returned.

Our proposed approach to calculating the similarity of two
hosts by their CPE strings can produce one or more features
(partial similarities). It might be advantageous to split CPE
strings into groups and calculate the similarity of the OS,
network services, client software, and other groups separately.
In the case of comparing OS fingerprints and their CPE
representation, only two strings are compared; both strings
shall be available, namely if passive OS fingerprinting is
used due to its coverage [26]. The same approach can be
used in a situation in which there is only one CPE string
available for each host, or only one can be selected (e.g.,
the most recent or the most frequent one); such comparisons
can be performed with web browsers, email clients, antivirus
software, and similar categories, in which the users typically
use one piece of software on a regular basis.

The situation is complicated with network service; each host
may provide a different number of services. If there are no
services available on both hosts, then their default similarity
is 1. Let’s consider the two services the same if they are
running on the same TCP or UDP port. Then, if the service
is provided by one host and not by the other, this service
can either be ignored or a predefined value of, for example,
0.8 can be used to indicate similarity. If both hosts provide
a service on the same port, then their CPE strings (obtained
via fingerprinting) are compared. The final similarity is then
calculated as a multiple of all the factors.

Other features considered for similarity calculation are cu-
mulative, the examples are the number of vulnerabilities on a
host or a number of incidents in which a host was involved. In
such case, the score is calculated as a quotient of the number of
observations to the total number of observations. For example,
let V be the number of unique CVEs observed in the network.
Host h1 was found to be vulnerable to v1 CVEs, while host
h2 is vulnerable to v2 CVEs. Then, the score of this feature
(s) is calculated as v/V , i.e., sh1 = v1/V and sh2 = v2/V .
The similarity of the two hosts in this metric is calculated as
s = min{sh1

, sh2
}/max{sh1

, sh2
}.

V. EXAMPLE OF USING THE SYSTEM

Let’s illustrate the use of the system on a simple example
inspired by incident handling practice. The incident handler
receives a report from a user that their device is infected
with ransomware. At the moment, it is not known how the
ransomware infected the device. Before inspecting the infected
machine, there is a need to identify devices threatened by the
ransomware, warn their users and administrators, and check

belongs to belongs to

Department

uses uses

Person Y

part of

Subnet B

on

Host #4

CPE #3

on

part of

Host #3

on

part of

Host #2

CPE #2

part of

Subnet A

on

Host #1

CPE #1

uses

Person X

uses

Person Z

Fig. 1. A simple scenario illustrating the use of the system.

TABLE I
CPE STRINGS IN THE EXAMPLE SCENARIO.

CPE format cpe:part:vendor:product:version:update:edition:language
Weights 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.03125
CPE #1 cpe:2.3:o:microsoft:windows 7:-:sp2:*:*
CPE #2 cpe:2.3:o:microsoft:windows 7:-:sp1:*:*
CPE #3 cpe:2.3:o:microsoft:windows 10:-:*:*:*

for possible backdoors and other traces of lateral movement
of an attacker.

The recommender system is used to create such a list. The
system looks up the device in the database by its IP address
and performs graph traversal to enumerate devices in close
proximity. In a simple scenario presented in Figure 1, the IP
address is found as Host #2. Two machines are found in close
proximity, one in the same subnet (Host #1) and one under
the administration of the same person (Host #3). The maximal
distance is set to 3 and, thus, the device in the organization
unit but in the different subnet (Host #4) is not included in
the list due to exceeding the maximal distance.

Subsequently, the similarity of the infected devices and
each of the hosts in the list is calculated. For simplicity, let’s
consider the situation in which only the OS fingerprints are
available. See Table I for the details. The infected Host #2
and Host #1 have the same vendor, product, and version but
differ in the remainder of the string. Thus, their similarity is
calculated as 0.5 + 0.25 + 0.125 = 0.875. The infected Host
#2 and Host #3 have the same vendor but differ in the product,
and, thus, their similarity is 0.5.

The two hosts are sorted by their score, i.e., 0.875/2 =
0.4375 for Host #1 and 0.5/2 = 0.25 for Host #3. The list of
hosts sorted in descending order by their score is returned to
the incident handler, who then knows which hosts to focus on
when mitigating the ransomware incident.

VI. CONCLUSION

We proposed a design of a recommended system for the
needs of incident handling in computer networks. The system
uses existing network scanning and traffic monitoring tools
and knowledge of the local environment to find similar hosts
in the network in close proximity. Thus, the system can, in



case of compromise of one of the hosts, immediately provide
a prioritized list of other hosts in the network that are at risk
or could be compromised, too. The system considers various
ways of attack propagation or lateral movement, including
self-propagating worms and the spread of malware via email
and infected devices. This is especially important in handling
incidents like ransomware, the major motivation for our work.

This paper is merely the first step in the future research,
and, thus, in our future work, were are going to implement the
recommender system and deploy it in an operational setting
for evaluation. There will be a need to go through several
past incidents and infer weights used in the calculation from
it. Subsequently, the weights should be adjusted to ongoing
incidents and experiences. Simultaneously, the list of features
should be revisited if new or higher-quality data are available.
The proposed system should also be integrated with other
tools for incident handling, namely, to allow for visualization
and click-through from one tool to another. Our efforts shall
contribute to the orchestration and automation of security
operation centers and incident response procedures.

ACKNOWLEDGMENT

This research was supported by ERDF “CyberSecurity,
CyberCrime and Critical Information Infrastructures Center of
Excellence” (No. CZ.02.1.01/0.0/0.0/16 019/0000822).

REFERENCES

[1] “Computer Security Incident Response Team (CSIRT) Services Frame-
work,” https://www.first.org/standards/frameworks/csirts/csirt services
framework v2.1, 2019.

[2] E. Guttman and N. Brownlee, “Expectations for Computer Security
Incident Response,” RFC 2350, 6 1998.

[3] J. Muniz, G. McIntyre, and N. AlFardan, Security Operations Center.
Cisco Press, 2016.

[4] P. Cichonski, T. Millar, T. Grance, and K. Scarfone, “Computer security
incident handling guide: Recommendations of the national institute of
standards and technology,” NIST Special Publication, vol. 800, no. 61,
pp. 1–147, 2012.

[5] P. Kral, “The Incident Handler’s Handbook,” https://www.sans.org/
reading-room/whitepapers/incident/incident-handlers-handbook-33901,
2012.

[6] J. M. Spring and P. Illari, “Review of human decision-making during
computer security incident analysis,” Digital Threats: Research and
Practice, vol. 2, no. 2, 4 2021.

[7] J. Webb, A. Ahmad, S. B. Maynard, and G. Shanks, “A situation
awareness model for information security risk management,” Computers
& Security, vol. 44, pp. 1–15, 2014.

[8] J. Happa, I. Agrafiotis, M. Helmhout, T. Bashford-Rogers, M. Gold-
smith, and S. Creese, “Assessing a decision support tool for soc
analysts,” Digital Threats: Research and Practice, vol. 2, no. 3, 6 2021.

[9] S. Ossenbühl, J. Steinberger, and H. Baier, “Towards automated incident
handling: How to select an appropriate response against a network-based
attack?” in 2015 Ninth International Conference on IT Security Incident
Management & IT Forensics, 2015, pp. 51–67.

[10] A. Fielder, E. Panaousis, P. Malacaria, C. Hankin, and F. Smeraldi,
“Decision support approaches for cyber security investment,” Decision
Support Systems, vol. 86, pp. 13–23, 2016.

[11] S. Noel and S. Jajodia, “Optimal IDS Sensor Placement and Alert
Prioritization Using Attack Graphs,” Journal of Network and Systems
Management, vol. 16, no. 3, pp. 259–275, 2008.

[12] N. Polatidis, E. Pimenidis, M. Pavlidis, and H. Mouratidis, “Recom-
mender systems meeting security: From product recommendation to
cyber-attack prediction,” in Engineering Applications of Neural Net-
works, G. Boracchi, L. Iliadis, C. Jayne, and A. Likas, Eds. Cham:
Springer International Publishing, 2017, pp. 508–519.

[13] L. Karlsson, P. N. Bideh, and M. Hell, “A recommender system for user-
specific vulnerability scoring,” in Risks and Security of Internet and Sys-
tems, S. Kallel, F. Cuppens, N. Cuppens-Boulahia, and A. Hadj Kacem,
Eds. Cham: Springer International Publishing, 2020, pp. 355–364.

[14] P. Huff, K. McClanahan, T. Le, and Q. Li, “A recommender system
for tracking vulnerabilities,” in The 16th International Conference on
Availability, Reliability and Security, ser. ARES 2021. New York, NY,
USA: Association for Computing Machinery, 2021.

[15] M. Almukaynizi, E. Marin, E. Nunes, P. Shakarian, G. I. Simari,
D. Kapoor, and T. Siedlecki, “Darkmention: A deployed system to
predict enterprise-targeted external cyberattacks,” in 2018 IEEE Interna-
tional Conference on Intelligence and Security Informatics (ISI), 2018,
pp. 31–36.

[16] M. Albanese, H. Cam, and S. Jajodia, Automated Cyber Situation Aware-
ness Tools and Models for Improving Analyst Performance. Cham:
Springer International Publishing, 2014, pp. 47–60.

[17] S. Jajodia, P. Liu, V. Swarup, and C. Wang, Cyber situational awareness.
Springer, 2010, vol. 14.

[18] A. Kott, N. Buchler, and K. E. Schaefer, Cyber Defense and Situational
Awareness. Springer, 2014, vol. 62.

[19] M. Husák, T. Jirsı́k, and S. J. Yang, “SoK: Contemporary Issues and
Challenges to Enable Cyber Situational Awareness for Network Secu-
rity,” in Proceedings of the 15th International Conference on Availability,
Reliability and Security. ACM, 2020.

[20] R. Gutzwiller, J. Dykstra, and B. Payne, “Gaps and opportunities in
situational awareness for cybersecurity,” Digital Threats: Research and
Practice, vol. 1, no. 3, 9 2020.

[21] A. Evesti, T. Kanstrén, T. Frantti, T. Kanstren, and T. Frantti, “Cyberse-
curity Situational Awareness Taxonomy,” in 2017 International Confer-
ence On Cyber Situational Awareness, Data Analytics And Assessment
(Cyber SA). IEEE, 6 2017.

[22] S. Jajodia, S. Noel, P. Kalapa, M. Albanese, and J. Williams, “Cauldron
Mission-centric Cyber Situational Awareness with Defense in Depth,” in
2011 – MILCOM 2011 Military Communications Conference, 11 2011,
pp. 1339–1344.

[23] S. Noel, E. Harley, K. H. Tam, M. Limiero, and M. Share, “CyGraph:
Graph-Based Analytics and Visualization for Cybersecurity,” Handbook
of Statistics, vol. 35, pp. 117–167, 2016.

[24] J. Komárková, M. Husák, M. Laštovička, and D. Tovarňák, “CRUSOE:
Data Model for Cyber Situational Awareness,” in Proceedings of the
13th International Conference on Availability, Reliability and Security.
ACM, 2018.

[25] M. Husák, M. Laštovička, and D. Tovarňák, “System for continuous
collection of contextual information for network security management
and incident handling,” in The 16th International Conference on Avail-
ability, Reliability and Security, ser. ARES 2021. New York, NY, USA:
Association for Computing Machinery, 2021.

[26] M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and D. Filakovsky,
“Passive OS fingerprinting methods in the jungle of wireless networks,”
in 2018 IEEE/IFIP Network Operations and Management Symposium,
2018.

[27] M. Laštovička, M. Husák, and L. Sadlek, “Network Monitoring and
Enumerating Vulnerabilities in Large Heterogeneous Networks,” in 2020
IEEE/IFIP Network Operations and Management Symposium, 2020.

[28] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to
Data Analysis with NetFlow and IPFIX,” Communications Surveys &
Tutorials, IEEE, vol. 16, no. 4, pp. 2037–2064, Fourthquarter 2014.

[29] G. F. Lyon, Nmap network scanning: The official Nmap project guide
to network discovery and security scanning. Insecure. Com LLC (US),
2008.

[30] Cisco, “QoS: NBAR Configuration Guide, Cisco IOS XE
Release 3S - Classifying Network Traffic Using NBAR,”
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/qos nbar/
configuration/xe-3s/qos-nbar-xe-3s-book/clsfy-traffic-nbar.html, 2018.

[31] M. Laštovička, S. Špaček, P. Velan, and P. Čeleda, “Using TLS Finger-
prints for OS Identification in Encrypted Traffic,” in 2020 IEEE/IFIP
Network Operations and Management Symposium, 2020.

[32] S. Lagraa and R. State, “What database do you choose for heteroge-
neous security log events analysis?” in 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM), 2021, pp. 812–
817.


