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Abstract

We study how the day-ahead stock price volatility of 15 firms that are S&P 500 con-

stituents in the Oil & Gas Exploration & Production sub-industry is driven through

six volatility factors represented by realized volatilities, namely, i) firms’ own volatility,

ii) industry market volatility, iii) local (U.S.) market volatility, iv) world equity market

volatility, v) oil price volatility, and vi) natural gas price volatility. Existing studies have

reported results based on analysis of one or few volatility components, but given the

high dependence among volatility factors, this might bias (overestimate) the true impor-

tance of each of the volatility factors on the price fluctuation of stocks in the Oil & Gas

Exploration & Production sub-industry. To take into account this inter-relatedness of

volatility factors, we study all volatility factors together. Using augmented heterogeneous

autoregressive (HAR) models and dynamic model averaging, our analysis shows that mar-

ket volatility is most influential, followed by a stock’s own volatility and industry level

volatility. The role of the volatility of the oil market is of lesser importance, while the

volatility of the world equity market does not appear to contain incremental information

useful for predicting the volatility of firms in the Oil & Gas Exploration & Production

sub-industry. The role of the natural gas market is specific. An in-sample analysis sug-

gests a negative relationship between firm-level volatility and volatility on the natural

gas market. However, in an out-of-sample framework, the volatility of the natural gas

market appears to be unrelated to firm-level volatility. Dynamic model averaging further

suggests that the market and industry factors are time-varying. These findings have im-

plications for financial risk management, as we show that in an out-of-sample framework,
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HAR models augmented with volatility factors outperform the plain HAR model by up

to a 3.88% increase in volatility forecast accuracy.

Keywords: Oil & Gas sub-industry, Volatility forecasting, Volatility factors, HAR,

Dynamic Model Averaging

JEL Classification: C5, C53, G17



1. Introduction

During 2010s, the United States oil and gas industry was undergoing an energy

production boom, enabled by hydraulic fracturing to extract oil and gas out of shale. As

a result, the United States became a net exporter of natural gas in 2017, became the

world’s biggest oil producer and was running at full speed to build infrastructure to meet

domestic and foreign demand for shale oil and gas (Egan, 2018a; Egan, 2018b). However,

in the United Nations Paris Climate Agreement signed in 2015, 195 members of the United

Nations Framework Convention on Climate Change agreed to hold global warming to no

more than 2 degrees above pre-industrial levels, which implies that to avoid excessive

carbon emissions and meet this ambitious objective, a large portion of fossil fuel reserves

must remain unburnable. Even though the U.S. withdrew from participation in the Paris

Agreement in 2017 (and rejoined in 2021) and the U.S. energy industry exhibits no signs

of being squeezed by the rise of electric cars and the increasing popularity of renewable

energy, it is foreseeable that climate change and environmental regulations will have a

significant impact on the industry in the medium to long term (Fox, 2018). Under this

scenario, oil and gas producers will face prolonged low commodity prices, a tightening of

climate policy with a tough budgeting of cumulative carbon emissions, and technological

innovation to produce cheap substitutes for coal, oil and gas (van der Ploeg, 2016). In

response to these foreseeable developments, significant academic and industry attention

has been dedicated to investor implications of divesting from fossil fuels and hedging

against climate risk.

Against the backdrop of these vibrant developments preceded by volatile periods

driven by jobs, costs and capital spending restrictions, as well as plummeting oil prices

in 2014-2015 (The Economist, 2016), and after the COVID-19 pandemic, there is an

imperative for individual and institutional investors who trade with U.S. oil and gas shares

to develop a strong understanding of the volatility dynamics of individual companies. This

study undertakes an extensive high-frequency data-based analysis at the firm level. To

the best of our knowledge, we are the first to shed light on the following questions: Is the

volatility of individual oil and gas stocks impacted by the volatility of energy prices and

common factors at the industry, U.S. market or global equity market levels? Can this

information transmission be translated into significantly enhanced forecasting power for

short-term volatility?

The analysis at hand is motivated by an extensive strand of research on the de-
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terminants of U.S. and international oil and gas company stock returns, which confirms

the significant impact of energy prices and market factors.2 Kavussanos and Marcoulis

(1997) establish that the returns on the S&P 500 have a large impact on the share prices of

U.S. refineries. Tjaaland et al. (2016) find that U.S. exploration and production company

sub-industries have the highest exposure to both oil and gas price fluctuations. Sadorsky

(2001) looks at Canadian oil and gas industry stock prices at the index level and docu-

ments that crude oil prices have large and significant impacts on stock price returns in the

Canadian oil and gas industry. In a later study using firm-level data on Canadian energy

companies, Boyer and Filion (2007) confirm that energy company returns are positively

associated with the Canadian stock market return and with appreciations of crude oil

and natural gas prices. El-Sharif et al. (2005) document a positive and highly significant

relationship between the price of crude oil and equity values in the oil and gas sector using

data for the United Kingdom. Li et al. (2017) study the impact of oil price shocks on

the stock returns of China’s listed companies in the oil industrial chain and conclude that

the returns of the listed companies in the whole oil industrial chain benefit from oil price

appreciation. Using firm-level monthly data from 70 countries, Gupta (2016) finds that

firms located in high oil-producing countries are more sensitive to global uncertainty and

oil price shocks. Nandha and Faff (2008) analyze 35 Datastream global industry indices

and document that oil price increases have a negative impact on equity returns for all

sectors except mining and oil and gas industries. Based on oil and gas industry data in

34 countries, Ramos and Veiga (2011) find evidence that the oil price is a globally priced

factor for the oil industry, with oil and gas sectors in developed countries responding more

strongly to oil price changes than those in emerging markets.

While these studies provide conclusive evidence that oil and gas companies’ returns

are significantly linked to energy prices and common market factors, the area of volatility

has been studied less, except the role of the oil and aggregate equity market volatility,

which can enable statistically and economically significant in-sample and out-of-sample

forecasting improvements for equities (e.g., Feng et al., 2017; Zhang et al., 2018). The

majority of existing studies focus on volatility interrelationships between oil and aggregate

stock market returns (e.g., Arouri et al., 2011; Khalfaoui et al., 2015; Ewing and Malik,

2016; among others). Less attention has been dedicated to the oil and gas sector specifi-

2For a comprehensive review of the literature on the relationship between oil and equity markets (not
limited to companies from the energy sector), refer to Smyth and Narayan (2018).
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cally, and volatility forecasting aspects have not been addressed in detail. Using U.S. oil

industry stock indices, Hammoudeh et al. (2003) find the oil futures market’s volatility

to be strongly linked to the volatility of oil exploration and production companies. An-

tonakakis et al. (2018) provide strong evidence of volatility co-movements and spillovers

among oil prices and the stock prices of 12 of the 25 largest world oil and gas companies.

Overall, while the latter study addresses volatility interrelations at the company level,

the authors assess the implications of their findings more for diversification benefits and

hedge effectiveness and less for volatility forecasting purposes.

This study focuses on the 15 individual S&P 500 constituents of the Oil & Gas

Exploration & Production sub-industry, as this sub-industry has been identified as having

the highest exposure to oil and gas prices (Tjaaland et al., 2016). Our work contributes

to this strand of the literature in three important ways.

First, as far as we are aware, we are the first study to examine how day-ahead

volatility of firms in the Oil & Gas Exploration & Production sub-industry is driven by

six volatility factors together. Hammoudeh et al. (2003) and Antonakakis et al. (2018)

have studied the role of oil prices, while Arouri et al. (2011), Khalfaoui et al. (2015), and

Ewing and Malik (2016) have investigated the role of market returns, and Feng et al.

(2017) and Zhang et al. (2018) have studied the role of market and oil factors. We con-

tribute to this strand of the literature in that apart from firms’ own volatility, market and

oil price volatility, as additional information channels, we consider the realized volatilities

of gas prices and the equity market at the industry and global levels. Specifically, we inves-

tigate whether realized volatilities from these markets enhance the in-sample explanatory

power of the volatility model and the extent to which they improve out-of-sample fore-

casts. We use the current state-of-the-art Heterogeneous Autoregressive (HAR) model

for the realized volatility of Corsi (2009). This model has enjoyed overwhelming popular-

ity in recent literature, as it provides a simple yet powerful tool to capture and forecast

volatility dynamics at various time horizons.3 There is strong evidence that the HAR

model augmented by economically relevant variables may lead to significant forecasting

improvements in both equity (e.g., Todorova and Souček, 2014; Jayawardena et al., 2016;

3The HAR model has been extended in various ways, for example, as a continuous-jump specification
(Andersen et al., 2007), including leverage effects (Corsi and Renó, 2012), a semi-volatility decomposition
(Patton and Sheppard, 2015), or accounting for attenuation bias (Bollerslev et al., 2016). There is a
burgeoning number of papers applying a plethora of HAR model specifications to the oil market (e.g.,
Sévi, 2014; Haugom et al., 2014; Prokopczuk et al., 2016; Wen et al., 2016; Ma et al., 2017; Ma et al.,
2018). Recently, HAR model specifications were used to forecast value at risk on energy markets (e.g.,
Haugom et al., 2016).
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Peng et al., 2018) and commodity markets (e.g., Lyócsa et al., 2017; Degiannakis and

Filis, 2017). Our choice of volatility factors is strongly motivated by recent literature

at the return level, as depicted above. As is well known, volatilities across different as-

sets are highly inter-related (for recent evidence, see Bollerslev et al., 2018). Therefore,

studying each of the volatility components separately might bias (overestimate) the true

importance of each volatility factor on the price fluctuation of stock prices in the Oil &

Gas sub-industry. To take into account this inter-relatedness of volatility factors, we need

to study all volatility factors together, and this study is the first to do so.

Second, to provide a stronger empirical basis for our results, we perform in-sample

and out-of-sample analysis. By doing this, we can judge whether in-sample results mani-

fest into the improved out-of-sample forecasts of day-ahead volatility, which is of interest

to risk and investment management. We apply a filtering technique to extract the unique

risk dynamics inherent in each of the considered factors and are hence able to assess the

relative importance of the companies’ idiosyncratic volatility in an in-sample context.4

We find that the price variation of firms in the Oil & Gas sub-industry is driven mostly

by the development at the U.S. economy level (market factor), followed by idiosyncratic

and industry factors. Although the price variation on the oil market matters as well, its

magnitude is much smaller. The development on the world equity markets does not seem

to contribute to the explanation of the volatility of firms in the Oil & Gas sub-industry.

Finally, the effect of the natural gas market is opposite that of other markets, i.e., periods

of higher volatility in the natural gas market are associated with lower firm-level volatility

on the next day. This result is in line with the well-known fact that the natural gas market

is unique in that it is highly volatile and exhibits specific seasonal dynamics. The out-of-

sample forecasting evaluation confirmed that it is difficult to utilize information from the

natural gas market to explain short-term firm-level volatility. Still, in the out-of-sample

study, the benchmark HAR model was outperformed by models that utilized information

from remaining markets, including the global equity market. Our results are consistent

across firms and confirm that not only do market and oil volatility factors matter (as

found in the literature before), but also industry factors, while even the world market

volatility factor plays an important role in forecasting the day-ahead volatility of U.S. Oil

4By definition, idiosyncratic risk is independent of the common movement of the market (Fu, 2009).
The deployed filtering technique used to obtain idiosyncratic volatility accounts not only the equity
market (as captured by volatility estimates of the industry, US and the world markets) but also for risk
inherent in energy price series.
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& Gas sub-industry firms.

Third, we not only study the overall importance of each of the volatility factors but

also show how it changes over time, using the dynamic model averaging approach. Thus,

we shed light on the persistence of the role of each of the volatility factors. The results

suggest that the relative importance of volatility factors can vary considerably over time.

The market volatility factor appears to show the highest instability over time, while the

role of the stock’s own volatility is the most heterogeneous across firms.

The remainder of the paper is structured as follows. Sections 2 presents the data

and methodology, respectively, Section 3 reports our empirical results, while Section 4

provides concluding remarks.

2. Data and methodology

2.1. Data source and filtering

We study which systematic market factors drive the price volatility of 15 S&P 500

companies5 of the sub-industry ’Oil & Gas Exploration & Production’ as of December

2017. We consider six systematic market volatility factors to drive the price variation of

individual firms. The first is at the individual firm level, the second at the industry level,

the third at the local level (U.S. market level, represented by S&P Mini index futures),

the fourth at the world equity market level (MSCI world market index), and the fifth and

sixth at the oil (WTI futures contracts) and natural gas (Henry Hub futures contracts)

levels.

For all six factors, we estimate realized volatility based on high-frequency data ob-

tained from the Thomson Reuters Tick History database available through the Securities

Industries Research Centre of Asia Pacific (Sirca). The sample period is January 2007

to December 2017. For the futures contracts, the nearest-month contract is rolled to the

next most liquid month when the daily volume of the current contract is exceeded.

We acquired data at the 1 minute calendar sampling frequency, and although the

data are of high quality, prior to their use, several sanity filters were applied (see Bollerslev

et al., 2018):

5Apache Corporation (APA), Anadarko Petroleum Corporation (APC), Chesapeake Energy Corpo-
ration (CHK), Cabot Oil & Gas Corporation (COG), ConocoPhillips (COP), Concho Resources Inc.
(CXO), Devon Energy Corporation (DVN), EOG Resources Inc. (EOG), EQT Corporation (EQT), Hess
Corporation (HES), Marathon Oil Corporation (MRO), Noble Energy, Inc. (NBL), Newfield Exploration
Company (NFX), Pioneer Natural Resources Company (PXD), Range Resources Corporation (RRC)
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• We use price data associated with least one trade.

• We use price data where the bid-ask spread was less than 1% of the bid price.

• We check if price data are (erroneously) less than zero.

• We use price data where the ask price is above the bid price.

• We use a price reversal filter that eliminates extreme price swings (for details, see

Bollerslev et al., 2018, p. 2767).

Because shares of individual firms are traded at a specific time period during the day,

the high-frequency data cover only that period of time (09:30 to 16:00 EST). However,

for the S&P Mini index, MSCI world market index, and Oil and Natural gas data, we use

the full 24-hour time period, beginning at 00:01 EST and ending at 23:59 EST.

2.2. Volatility factor estimates

2.2.1. Realized volatility

The existing literature uses various approaches to volatility estimation based on

either calendar or business sampling schemes with various sampling frequencies and spe-

cific volatility estimators (e.g., the TSRV of Zhang et al., 2005; MSRV of Zhang, 2006;

bi-power variation of Barndorff-Nielsen and Shephard, 2004; range-based estimators of

Christensen and Podolskij, 2007; realized kernel estimators of Barndorff-Nielsen, et. al.

2008; and the MedRV and MinRV of Andersen et al., 2012). Liu et al. (2015) run a

horse-race of different estimators across different assets and conclude that it is difficult

to beat a 5-minute calendar sampling scheme realized volatility estimator for forecasting

purposes. Given a trading day t, the realized volatility is defined as

RV 2
t,5m =

Nt,5m∑
j=1

r2t,j,5m, (1)

where r2t,j,5m is the continuous returns within a 5-minute sampling frequency and Nt,5m

is the number of returns, given the 5-minute sampling frequency. However, Patton and

Sheppard (2009) argue that because of the uncertainty related to the ‘correct’ estimator,

a viable estimation strategy is to combine (e.g., average) several estimators into one. Mo-

tivated by these results, we use an averaging approach of four realized volatility estimates
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at the 5, 10, 15, and 30 minute sampling frequencies:6

RV 2,∗
t = (RV 2

t,5m +RV 2
t,10m +RV 2

t,15m +RV 2
t,30m)/4. (2)

2.2.2. Overnight stock price variation

As noted before, at the firm level, high-frequency data are available only during

open market times of the NYSE (9:30-16:00 EST). However, for most practical purposes

(option and futures contract pricing, VaR, risk management), one is interested in the

overall price variation of the asset. To calculate the overall daily volatility of a stock, we

add the overnight price variation OV 2
t = (100(Ot − Ct−1)/Ct−1)2 (e.g., Molnár, 2012) to

the estimate of the open market time realized volatility (RV 2,∗
t ).7 For the U.S. market

and MSCI world indices, as well as for the oil and natural gas futures prices, we have

24-hour data available, and therefore, no overnight price variation adjustment is needed.

We follow an approach that is common in literature and convert all volatility estimates

using the natural logarithm and we will denote the resulting volatility estimate as RVt in

the subsequent text. For example, for a given firm, the estimator is defined as

RVt = ln(RV 2
t +OV 2

t ). (3)

This transformation is known to significantly reduce excessive levels of volatility often

observed at the firm level. It also makes the resulting volatility measure more suitable for

modeling purposes in an autoregressive model, which tend to be highly sensitive to the

presence of extreme values.

Similar to the daily estimates of volatility, the weekly and monthly estimates needed

for the estimation of HAR models (as explained below) are obtained as

RV W
t =

1

5

4∑
i=0

RVt−i, and RV M
t =

1

22

21∑
i=0

RVt−i. (4)

6The ∗ denotes that the realized volatility is calculated for open market times, i.e. for stocks from 09:30
- 16:00 EST, for remaining indices it is a 24 hour window. See next sub-section for further discussion.

7The handling of the overnight price variation might give rise to concerns regarding the proper syn-
chronization of the data. In the subsequent analysis, we model firm-level volatility on day t + 1, which
also includes the overnight price variation for which we use the closing price on day t. To explain the
volatility on day t+1 we will (among others) use data for the S&P Mini, MSCI index, WTI and Natural
Gas index for the whole day t; thus, some of the data (after 16:00 until the end of day 23:59) are realized
after the closing price at day t and used to calculate the overall firm-level volatility for the next day
t+1. Therefore, it appears that the information sets of the explained and explanatory variables overlap.
However, we argue that this does not lead to look-ahead bias, as the overnight price variation is not
known until the opening price on day t+ 1 is observed.
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The approach above is applied not only to data on individual stocks but also to data

on the S&P Mini index and the MSCI world market index, as well as the price data from

the oil and natural gas markets. It remains to define volatility at the industry level, which

is simply the cross-sectional average across the 15 stocks of the Oil & Gas sub-industry.8

The descriptive statistics of volatility factors and daily returns are reported in Table

1. All series are subject to two stylized facts about volatility: The distribution of daily

returns shows a high level of kurtosis (i.e., heavy tails), while the volatility series show a

high level of persistence. Even at the 22 lag, the persistence is 0.61 for the industry factor

and still 0.15 for the natural gas factor.

Please insert Table 1 around here

2.3. In-sample analysis

2.3.1. Filtration of volatility factors

The resulting series of prices and volatility factors are depicted in Figure 1. Obvi-

ously, the U.S. market and world markets seem to be correlated, and the same can be

said about the prices of industry, oil and natural gas factors. Additionally, when looking

at volatility, all volatility series appear to display a similar pattern. Simple calculation

revealed that the average correlation among the five factors (10 correlations) is 0.54 and

is always positive (exact values available upon request). While this phenomenon may

be of little importance in an out-of-sample study, in the in-sample study, it may distort

the true importance of each of the factors. Our in-sample analysis therefore uses filtered

volatility factors.

Please insert Figure 1 around here

Let us denote a vector of endogenous realized volatilities as

yit = (RV i
t , IRVt,MRVt,WRVt, ORVt, GRVt)

T .

8We also considered factor models such as extracting the first principal component or from the ap-
proximate dynamic factor model as in Bai and Ng (2002), but because the results were similar, while the
complexity of the calculations increased considerably, we opted for this simpler approach.
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The components are the realized volatilities of the i-th firm, industry, U.S. market, world

market, oil market and natural gas market volatility, respectively. Next, the vector

xi = (RV i,W
t , IRV W

t ,MRV W
t ,WRV W

t , ORV W
t , GRV W

t , RV i,M
t ,

IRV M
t ,MRV M

t ,WRV M
t , ORV M

t , GRV M
t )T

has elements with weakly and monthly volatility estimates. For i-th firm, the filtering

equation is a VARX(p, s) model of the form

yit = ∆ +

p∑
j=1

Φjy
i
t−j +

s∑
j=1

Θjx
i
t−j + εit, (5)

where the number of lags p was set according to the Bayesian information criterion

(Schwarz, 1978) with maximum of p = 4. The number of lags s was set to 1. The

VARX(p, s) model is estimated for each company, and in the subsequent analysis, we

use the residuals ε̂t standardized by each series’s standard deviation as independent vari-

ables of the HAR-DMA model described in the next section.9 For example, if we de-

note the elements of ε̂it = (ε̂i,Ft , ε̂i,It , ε̂
i,M
t , ε̂i,Wt , ε̂i,Ot , ε̂i,Gt )T , we define the filtered daily stan-

dardized volatility factors as RV S,i,D
t = ε̂i,Ft /σi,Fε̂ (firm), IRV S,i,D

t = ε̂i,It /σ
i,I
ε̂ (industry),

MRV S,i,D
t = ε̂i,Mt /σi,Mε̂ (market), WRV S,i,D

t = ε̂i,Wt /σi,Wε̂ (world), ORV S,i,D
t = ε̂i,Ot /σi,Oε̂

(oil), and GRV S,i,D
t = ε̂i,Gt /σi,Gε̂ (natural gas).10 Note that daily standardized factors of the

individual stock volatilities can be interpreted as the companies’ idiosyncratic volatilities

because equity and energy market common factors are filtered out of these series.

2.3.2. Volatility factor HAR-DMA: In-sample models

In the case of all volatility factors, the model to estimate is of the following form

(we suppress the firm-level index i):

RVt+1 = β0,t + β1,tRV
W
t + β2,tRV

M
t + β3,tRV

S,D
t + β4,tIRV

S,D
t + β5,tMRV S,D

t +

β6,tWRV S,D
t + β7,tORV

S,D
t + β8,tGRV

S,D
t + υt, υt ∼ N(0, Ht). (6)

9Estimation was performed using the package R, Pfaff (2008).
10It is possible to standardize weekly and monthly volatility components as well. However, these

components are not disaggregated and therefore they serve as control variables that control for potential
mid- (weekly) and long-term (monthly) volatility levels. Also, by not standardizing these components,
the coefficients for monthly and weekly components can be compared with the levels obtained in other
studies. For example in a study of 105 individual U.S. stocks, Patton and Sheppard (2015, Table 2B)
estimate the fixed effect of the weekly and monthly components to be 0.315 and 0.172, suggesting that
for our sample and period of energy stocks, volatility was more persistent.
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The weekly (RV W
t ) and monthly (RV M

t ) volatility estimates are included following the

popular heterogeneous autoregressive (HAR) model of Corsi (2009), where the lag struc-

ture captures the long-memory property of the volatility. The remaining standardized

(daily) lagged volatility factors are of interest to this research.11 The sign and the magni-

tude of the coefficients allow us to assess the importance of each of the volatility factors

for the next day’s volatility of firms in the Oil & Gas sub-industry. However, due to the

’model’ and ’parameter’ uncertainty, not only the exact specification but also the value

of coefficients at each time t are unknown. We therefore estimate the model by using

the Dynamic Model Averaging (DMA) approach (e.g., Koop and Korobilis, 2012; Catania

and Nonejad, 2016) that addresses both sources of uncertainty. We now provide a short

description of the DMA model specification that follows the implementation described in

Catania and Nonejad (2016).

Given a column vector Fm,t of possible combinations of variables as defined above

and a corresponding column vector βm,t, the m-th model is given as

RVt+1 = F T
m,tβm,t + υm,t, υm,t ∼ N(0, Ht)

βm,t = βm,t−1 + ηm,t, ηm,t ∼ N(0,Qm,t). (7)

The observation error νm,t and the evolution error ηm,t are mutually independent variables.

For all t and s (s 6= t), νt and νs are independent, ηt and ηs are independent, and νt and

ηs are also independent (West and Harrison, 2006). In case of Qm,t = 0, this specification

leads to a time-invariant regression coefficient; otherwise, the regression coefficient(s) are

allowed to change over time. The parameters are estimated within the Kalman filter

estimation framework. The initial prior distribution for the observational variance is

V0|D0 ∼ IG(1
2
, Ĥ0

2
) and for the coefficient vector β0|D0 ∼ N(0, 100I), where I is the

identity matrix and D0 is the information set available at time 0.

The magnitude of the random shocks that impact βt is controlled by 0 < δ ≤ 1.

Let Rt denote the prediction variance of βt, Ct the estimated variance-covariance matrix

11Note that we are using filtered daily components only, not weekly and monthly. Our motivation
for this simplified specification is as follows. First, for day-ahead volatility forecasts, the most relevant
information is likely incorporated in the most recent price observations. Moreover, applying a filtration
to weekly and monthly volatility components (see Section 2.3.1) would lead to a VARX(p, s) model where
the number of parameters would increase considerably. Second, in an out-of-sample part of the study, the
number of parameters would be very costly for the non-trivial estimation of the DMA, while employing a
shrinkage estimator (e.g. LASSO) would not lead to time-varying parameters and would also not account
for model choice uncertainty. We therefore opt for a simplified specification that is also considered in
other day-ahead volatility forecasting studies (e.g. Patton and Sheppard, 2015; Bollerslev et al., 2016).
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of parameters βt and Ĥt the estimator of the observational variance. Within the Kalman

recursion, the following holds Rt = Ct−1 +Qt = Ct−1 + Ct−1(1−δ)
δ

= δ−1Ct−1. Therefore,

as δ lowers, the unpredictability of βt and the time variation of the coefficients increase.

In the context of linear autoregressive volatility models, Bollerslev et al. (2016) argue

that when volatility is estimated with higher precision, the autoregressive coefficient(s)

should be higher, and vice versa. In our setting, it might be that during turbulent time

periods, a model with lower δ will be preferred to models with higher δ. The dynamics

of Ht are also controlled by another forgetting factor 0 < γ ≤ 1, such that the estimate

of Ht is given by Ĥt = (1 − γ)
∑t−1

s=0(Ĥt − s − qeSt−s), where eSt−s is the standardized

prediction error. Catania and Nonejad (2016) suggest that δ and γ are interconnected

as both provide dynamics to the coefficients in βm,t. As a way out, one might fix one of

the parameters (we fix the γ) and vary the other (δ). Furthermore, Koop and Korobilis

(2012) advocate a more heuristic approach in which different values of δ are considered.

We therefore consider a set of values for δ ∈ (0.90, 0.92, ..., 0.99, 1.00) and fix the value of

γ = 0.96.

Let mi denote a model with a given combination of predictors, where all predictor

combinations are indexed as i = 1, 2, ...2p − 1, where K = 2p − 1 is the number of all

combinations of predictors, and δj is a given value of the forgetting factor. Initially, the

p(mi, δj|D0) is a constant that indicates that each combination of predictors and forgetting

factors is equally likely. To obtain the p(mi|Dt) at time t, new observations are used and

probabilities update in the following way:

p(mi|Dt) =
∑
j=1

p(mi, δj|Dt)p(δj|Dt), (8)

where

p(mi, δj|Dt) =
p(RVt|mi, δj, Dt−1)p(mi|δj, Dt−1)∑K
l=1 p(RVt|ml, δj, Dt−1)p(ml|δj, Dt−1)

, (9)

p(mi|δj, Dt−1) =
p(mi|δj, Dt−1)

α∑K
l=1 p(Ml|δj, Dt−1)α

, (10)

p(δj|Dt) =
p(RVt|δj, Dt−1)p(δj|Dt−1)∑
l=1 p(RVt|δj, Dt−1)p(δl|Ft−1)

, (11)
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p(δj|Dt−1) =
p(δj|Dt−1)

α∑
l=1 p(δl|Dt−1)α

. (12)

The third forgetting factor is α (0 < α ≤ 1), which is related to the given model. As

α lowers, the weight to the past performance of the model lowers. As recommended by

Raftery et al. (2010) and Koop and Korobilis (2012), we set α close to one, namely, to

0.99.

2.4. Out-of-sample models

2.4.1. Volatility factor HAR model specifications

In the out-of-sample part of our study, instead of using the filtered volatility fac-

tors, we use estimated realized volatilities directly. Our motivation is that the filtration

procedure might induce additional uncertainty around the volatility factors which might

be detrimental for forecasting purposes.12 The benchmark model is

RVt+1 = β0 + β1RV
D
t + β2RV

W
t + β3RV

M
t + υt. (13)

The HAR model of Corsi (2009) is popular because it captures the stylized facts of volatil-

ity well, it is easy to estimate and to enhance while it tends to provide more accurate

forecasts than the GARCH model13 (e.g., Horpestad et al., 2018). We first adjust the

HAR model by simply adding one volatility factor at a time, leading to the following five

models, the Industry factor HAR, IF-HAR,

RVt+1 = β0 + β1RV
D
t + β2IRV

D
t + β3RV

W
t + β4RV

M
t + υt, (14)

the Market factor HAR, MF-HAR,

RVt+1 = β0 + β1RV
D
t + β2MRV D

t + β3RV
W
t + β4RV

M
t + υt, (15)

12Indeed, we have also tried to use the filtered volatility factors directly, but as it turned out, all models
using the filtered volatility factors were less accurate than the benchmark HAR model of Corsi (2009).

13Promising approaches along the lines of GARCH models are those that mix the latent volatility factor
model with realized volatilities, as in Hansen et al. (2012), a mixture memory GARCH model of Klein
and Walther (2016) or by incorporating macroeconomics factors available at lower sampling frequencies
in a GARCH-MIDAS framework as in Nguyen and Walther (2020). Combining forecasts based on such
approaches with the forecasts obtained with HAR models is left to future research.
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the World factor HAR, WF-HAR,

RVt+1 = β0 + β1RV
D
t + β2WRV D

t + β3RV
W
t + β4RV

M
t + υt, (16)

the Oil factor HAR, OF-HAR,

RVt+1 = β0 + β1RV
D
t + β2ORV

D
t + β3RV

W
t + β4RV

M
t + υt, (17)

and the Natural gas factor HAR, GF-HAR,

RVt+1 = β0 + β1RV
D
t + β2GRV

D
t + β3RV

W
t + β4RV

M
t + υt. (18)

Finally, we estimate HAR model with all factors, the all factor HAR, AF-HAR,

RVt+1 = β0 + β1RV
D
t + β2IRV

D
t + β3MRV D

t + β4WRV D
t + β5ORV

D
t +

β6GRV
D
t + β7RV

W
t + β8RV

M
t + υt. (19)

With respect to the estimation procedure, we rely on a weighted least squares approach

in which weights are set in a way that accounts for a structural break with an unknown

date (see Pesaran et al., 2013; eq. 46 - 48).14

2.4.2. Out-of-sample algorithm

We use a rolling window estimation forecasting scheme with an estimation window

of 1000 observations. Our motivation for using a rolling-window scheme instead of the

expanding window scheme is twofold. First, a rolling window is more suited in a situation

where structural breaks in coefficients should be expected. Second, we use the model

confidence set of Hansen et al. (2011) to statistically compare the forecast accuracy of

models, and as the test requires a local stationarity of the loss series, the rolling window

approach is more suitable. The motivation to use 1000 observations in the moving window

is also twofold. First, the existing forecasting literature has often used a size of 1000

observations (e.g., Sévi, 2014; Lyócsa and Molnár, 2018). Second, as argued in Lyócsa

and Molnár (2018) and Narayan and Gupta (2015), several years are needed to mitigate

the possible effect of seasonality on the oil and natural gas market.

14For a recent application of this approach in the volatility forecasting literature, see Lyócsa and Molnár
(2018).
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2.4.3. Forecast evaluation

We evaluate forecasts using two popular loss functions, namely, the square forecast

error (SFE) and the QLIKE, which are both advocated by Patton (2011) as leading to

consistent model rankings even in the presence of a noisy proxy. While SFE is symmetric,

giving equal loss to forecast under- and over-estimations, the QLIKE penalizes forecast

under-estimations more. Let RVt denote the observed realized volatility (our proxy for

the true volatility) and RV F
t the predicted volatility. The SFE and QLIKE are defined

as

SFEt = (RVt −RV F
t )2 (20)

and

QLIKEt =
RVt
RV F

t

− ln
(
RVt
RV F

t

)
− 1, (21)

respectively. The overall model performance is evaluated using the time average of the

SFEt (denoted as MSFE) and QLIKEt. Statistical forecast evaluation is conducted using

the model confidence set of Hansen et al. (2011), where we test which models (for each

stock separately) belong to the set of superior models with an 90% confidence, a value

usually employed in the literature (e.g., Hansen et al., 2011; Wang et al., 2016; Meng

et al., 2018). We use the tmax version of the test and the routines provided by Bernardi

and Catania (2018).

3. Results

3.1. Volatility drivers: in-sample analysis

We estimate the volatility factor HAR model (see Section 2.3.2) for each stock sep-

arately. However, as results across stocks are very similar, instead of reporting individual

stock-level results, we aggregate the results by averaging coefficients first across time (for

each stock separately) and then across stocks (see Table 2). By averaging across time,

we are interested in the expected effects of each component over time, while subsequent

averaging across stocks stocks allows us to observe expected effects of components on the

next day’s volatility of Oil & Gas sub-industry stocks. Time-variation of coefficients can

be observed in Figure 2, while variation across individual stocks is presented in Table

A1 (Appendix). As the volatility factors were first filtrated using the VARX(p, s) model
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and consequently standardized to have a unit variance and zero mean, the magnitude of

coefficients is comparable across volatility factors.

Please insert Table 2 around here

We initially expected that the most important volatility driver will be the stock’s own

volatility, followed by industry, market and world factors. However, the results in Table

2 suggest that the price variation of firms in the Oil & Gas sub-industry is driven mostly

by the development at the whole economy level (market factor, 0.040) followed by stock

(0.036) and industry factors (0.031) that are similar in magnitude. Interestingly, although

the price variation on the oil (0.001) and natural gas (−0.015) markets matters as well, the

magnitude is much smaller, while in the case of the Natural gas market, the association is

negative, i.e., higher levels of volatility in the natural gas market tend to precede smaller

firm-level volatility. Finally, the results for the world factor are mixed, as for 47% of

firms, the coefficient was positive, and overall, the magnitude of the effect was small. The

importance of the market volatility is in line with existing studies (e.g., Feng et al., 2017;

Zhang et al., 2018), as well as the role of the oil price fluctuation (e.g., Hammoudeh et al.,

2003; Antonakakis et al., 2018). However, the role of the price fluctuations on the world

equity, industry and natural gas markets is new to the literature and shows that firm-

level volatility is driven not only by market and oil factors but also by industry and stock

idiosyncratic factors, while it is rather weakly linked to the development of the natural

gas and global equity markets. Moreover, our results allow us to compare the relative

importance of these factors with respect to one another.

Please insert Figure 2 around here

The HAR-DMA model allows us to observe the possible time-varying nature of

volatility drivers. In Figure 2, we plot the time-varying posterior inclusion probabilities

(PIP), which are averaged across firms. Three additional interesting observations are

made. First, the industry and, particularly, the market factor show large variation in

PIPs. Therefore, it appears that although the market factor has the strongest impact

on firm-level volatility, this influence is surely not constant over time, as the market

factor’s PIP ranges from around 0.20 to 0.75. The industry factor appears to play a more

prominent role during the financial crisis, and the stock and industry factors also appear to

drive firm-level volatility during 2015, when oil prices started to decline. Second, we find

that the oil and world factors appear to be less volatile over time, as the PIPs vary little.
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This result may be explained by the fact that we study daily levels of firm volatility, while

energy prices tend to influence firms in the Oil & Gas sub-industry only if they remain

relatively (compared to past values) high or small over a longer period of time. Due to the

variability of commodity prices, contracts made by firms may have fixed prices in advance,

reducing the variation in the future cash flows of such firms and, consequently, the stock

price variation. Third, even the natural gas factor might be of considerable importance,

suggesting that to model the volatility of firms in the Oil & Gas sub-industry, one needs

to take into account model uncertainty, as different volatility factors drive volatility over

different time periods. All these results are consistent across firms, as the variability of

PIPs across firms seems to be small (note that the shaded area shows the variability of

PIP across firms), although the idiosyncratic volatility factor clearly shows the highest

variation across firms. This finding is expected, as by definition, idiosyncratic volatility

should be more unique to each firm, while common volatility factors are not.

3.2. Volatility drivers: out-of-sample analysis

The in-sample results reported above give an indication about which volatility fac-

tors are important drivers of the price variation of Oil & Gas sub-industry firms. How-

ever, firm-level (unfiltered) realized volatilities might also subsume information from other

markets. In that case, the simple HAR model should out-perform models that also use

realized volatilities from other markets, as the need to estimate additional parameters

without adding new information usually increases the forecast error. On the other hand,

if realized volatility in the industry, economy, world, oil and natural gas markets contains

additional information, augmented HAR models might outperform the benchmark HAR

model.

Note that in contrast to those used in the in-sample study, the HAR models used

in the out-of-sample analysis include non-filtered (raw) realized volatilities (see Section

2.5.1 for details). Results from the out-of-sample analysis are aggregated across firms in

Table 3.15

Several interesting observations are made. First, regardless of the loss function

employed, except of the GS-HAR (natural gas factor) model, all models outperformed

the benchmark HAR model. This result is consistent across firms and further cements

our empirical evidence that not only the market volatility factor (Feng et al., 2017 and

15Results for each firm separately are available in Appendix 2.
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Zhang et al., 2018) but also the industry, world and oil market volatility factors matter.

Please insert Table 3 around here

Second, we find that when a statistically valid comparison is undertaken, then only

the IF-HAR, MF-HAR, and AF-HAR models tend to systematically out-perform the

benchmark HAR model. The most accurate forecasts are provided using the AF-HAR

model, i.e., when all volatility factors are used together. This result provides strong

statistical evidence in an out-of-sample framework that not only the market volatility but

also other volatility factors contain useful information with regard to a firm’s next-day

volatility.

Third, comparing the results of the MSE and QLIKE loss function, we see that

forecast improvements are higher for QLIKE losses. The average improvements ranged

from −0.52% (WF-HAR, World factor model) to −3.72% (AF-HAR, All volatility factor

model) for the MSE loss function and were even slightly better when volatility under-

estimation was of higher concern, as is the case of the QLIKE loss function, ranging

from −0.77% (WF-HAR) to −3.88% (AF-HAR). These results suggest that volatility fac-

tors are of particular interest to risk managers, as models with volatility factors improve

forecasts when it matters more, i.e., when volatility underestimation is of concern.

4. Conclusion

Market and oil prices play an important role in the development of share prices

of firms in the Oil & Gas sub-industry (e.g., Kavussanos and Marcoulis, 1997; Tjaaland

et al., 2016; Sadorsky, 2001; Boyer and Filion, 2007; Li et al., 2017; Nandha and Faff, 2008;

Ramos and Veiga, 2011). Much less is known about the role of volatility on equity and oil

markets with respect to the volatility of share prices in the Oil & Gas sub-industry (e.g.,

Hammoudeh et al., 2003; Feng et al., 2017; Zhang et al., 2018; Antonakakis et al., 2018).

We contribute to this strand in the literature by studying how the day-ahead volatility

of 15 firms that are S&P 500 constituents of the Oil & Gas sub-industry depends on six

volatility factors represented by realized volatilities, namely, i) a firm’s own volatility,

ii) industry market volatility, iii) local (U.S.) market volatility, iv) world equity market

volatility, v) oil price volatility, and vi) natural gas price volatility.

Using the augmented HAR model of Corsi (2009) and the DMA framework, we found

that with respect to a firm’s day-ahead volatility, the market volatility factor appears to

be the most important, followed by a firm’s own and industry-level volatilities. Contrary
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to previous studies, we found that the role of the fluctuations on the oil market is of

lesser importance. We further confirm that the role of the market and industry volatility

factors exhibits considerable variation over time. On the other hand, the role of the oil

price fluctuations is rather constant. Finally, we show that these results can be utilized to

improve volatility forecasts in an out-of-sample framework. A HAR model that uses all

volatility factors decreases forecast error upon a benchmark HAR model of Corsi (2009)

by up to −3.88%. Moreover, our analysis reveals that volatility factors are more useful

when volatility underestimation is of higher concern, i.e., our results have important

implications for risk and investment management practices.
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Tables and figures

Figure 1: Prices and volatility factors
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Figure 2: Posterior inclusion probabilities: Averages across firms

Note: PIP are on the y-axis, time on the x-axis. Shaded area highlight spans ±2×SD calculated from 15 coefficients across

firms.

Table 1: Summary statistics of realized volatilities and daily returns

Mean SD Skew Kurt AC1 AC5 AC22
Panel A: Realized volatility
Industry 6.88 0.86 0.88 4.03 0.80 0.73 0.61
Market 4.83 1.35 -0.07 3.50 0.59 0.52 0.36
World 4.47 1.15 0.13 3.75 0.75 0.64 0.49
Oil 6.31 1.29 -0.50 3.80 0.42 0.39 0.29
Natgas 7.01 0.99 -0.24 6.12 0.33 0.31 0.15
Panel B: Daily returns
Industry -0.0003 0.02 -0.83 12.42 -0.05 -0.03 0.03
Market 0.0002 0.01 -0.49 17.05 -0.06 0.02 -0.02
World 0.0001 0.01 -0.47 12.20 0.10 -0.05 -0.01
Oil 0.0000 0.02 0.26 9.64 -0.04 0.05 0.00
Natgas -0.0002 0.03 0.41 7.57 -0.03 0.00 -0.03

Note: SD denotes standard deviation, AC1, AC5, and AC22 the first, fifth and twenty-second autocorrelation coefficients,
respectively.

26



Table 2: Average estimated coefficients from the HAR model with (filtered) volatility factors

Coef SE T-ratio %positive
Panel A: Standard HAR model variables
Intercept 2.351 0.140 16.770 100.0%
Weekly volatility 0.448 0.015 29.860 100.0%
Monthly volatility 0.189 0.016 11.790 100.0%
Panel B: Daily lagged volatility factors (unit variance standardized variables)
Stock 0.036 0.004 9.280 100%
Industry 0.031 0.002 17.110 100%
Market 0.040 0.004 11.510 100%
World 0.000 0.001 -0.310 47%
Oil 0.001 0.002 0.480 67%
Natural gas -0.011 0.001 -12.250 0%

Note: Values in the column ‘Coef’ are two-times averages: first, for each stock, we obtained an average value of the filtered

estimate of θt,i across the time dimension (t); second, we took the averages across stocks (i). Column ‘SE’ denotes the

standard error calculated from averaged coefficients across stocks. ‘T-ratio’ is the corresponding ratio of the column ‘Coef’

and ‘SE’ ,and ‘% positive’ is the proportion of positive coefficients across stocks (after averaging for each stock across the

time dimension).
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