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Abstract

The general consensus in the volatility forecasting literature is that high-frequency

volatility models outperform low-frequency volatility models. However, such a

conclusion is reached when low-frequency volatility models are estimated from

daily returns. Instead, we study this question considering daily, low-frequency

volatility estimators based on open, high low and close daily prices. Our data

sample consists of 18 stock market indices. We find that high-frequency volatil-

ity models tend to outperform low-frequency volatility models only for short-

term forecasts, but as the forecast horizon increases (up to one month), the

difference in forecast accuracy becomes statistically indistinguishable for most

market indices. To evaluate practical implications of our results, we study a sim-

ple asset allocation problem. The results reveal that asset allocation based on

high-frequency volatility model forecasts does not outperform asset allocation

based on low-frequency volatility model forecasts.
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1. Introduction

Volatility modeling and forecasting is an integral part of finance and plays a

crucial role is various financial applications, such as risk management and hedg-

ing. Historically, the first volatility models were autoregressive heteroscedastic-

ity (ARCH) and generalized autoregressive heteroscedasticity (GARCH) models

introduced in the 1980s by Engle (1982) and Bollerslev (1986). GARCH models

and the various modifications are likely still the most popular volatility models

among academics and practitioners alike; see, e.g., Klein & Walther (2016).

Almost all GARCH models are associated with daily, close-to-close returns,

or with even lower-frequency data requirements 1. However, daily squared re-

turns are a noisy proxy for true volatility (Molnár, 2012). As recognized by

Parkinson (1980) and Garman & Klass (1980), the range (the difference be-

tween the highest and lowest price of the day) leads to more precise volatility

estimates and should thus lead to more precise volatility models. However, it

took a relatively long time for range-based volatility estimators to become incor-

porated into volatility models (Gallant et al., 1999; Alizadeh et al., 2002; Chou,

2005; Brandt & Jones, 2006; Chou & Liu, 2010). These estimators are currently

used both in the creation of new volatility models (Fiszeder & Fa ldziński, 2019;

Fiszeder et al., 2019) and in applications (Kim et al., 2019).

Once high-frequency data became available, researchers recognized that these

data are even more informative regarding volatility, and the concept of realized

volatility emerged (Andersen et al., 2001b,a; Barndorff-Nielsen & Shephard,

2002). Realized volatility quickly found its way into the volatility modeling and

forecasting literature (Andersen et al., 2003) and has since become very popu-

lar not only in volatility models (Haugom et al., 2014; Wang et al., 2016; Ma

et al., 2017; Lyócsa & Molnár, 2018; Aalborg et al., 2019; Degiannakis et al.,

2020; Luo et al., 2019; Lyócsa & Todorova, 2020), but also in price forecasting

1Exceptions are GARCH models that also use additional information source, such as re-
alized volatility estimated from high-frequency data (Hansen et al., 2012) or high-low range
(Molnár, 2016).
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(Degiannakis & Filis, 2018).

There is a general consensus in the literature that volatility models based

on high-frequency data perform better in forecasting than models based solely

on daily returns (Martens, 2001; Andersen et al., 2003; Koopman et al., 2005;

Chortareas et al., 2011; Wei, 2012; Horpestad et al., 2019). Martens (2001) find

that in forecasting daily volatility, GARCH models based on intraday returns

outperform daily GARCH models. Andersen et al. (2003) show that realized

volatility models outperform standard GARCH models. The same conclusion is

reached by Horpestad et al. (2019). Chortareas et al. (2011) conclude that us-

ing high-frequency data enhances the performance of volatility forecasts relative

to volatility models based on daily returns (GARCH and stochastic volatility

models). Similarly, Koopman et al. (2005) and Wei (2012) find that realized

volatility models outperform stochastic volatility and GARCH class models. Ma

et al. (2018) study whether day-ahead volatility forecasts of the Shanghai Stock

Exchange Composite Index and S&P 500 Index can be improved by combining

low- and high-frequency volatility models. Indeed, low-frequency volatility mod-

els might still be useful, as suggested by the results of Ma et al. (2018), who

showed that forecasts from low-frequency volatility models can be combined

with forecasts from high-frequency volatility models to improve the forecasting

accuracy. A similar conclusion is reached by Zhang et al. (2019) who find that

both GARCH models and realized volatility models are outperformed by a smart

combination of these models: a model that simply selects among the forecasts

from these models the one with a relatively good past performance. In regard

to evaluation of volatility forecasts, Bailey & Steeley (2019) show that squared

returns are a poor proxy for forecast evaluation, and that realized volatility or

the Parkinson (1980) estimator should be used instead.

However, most of the comparisons between high-frequency volatility mod-

els and low-frequency volatility models consider only low-frequency volatility

models estimated from daily returns. We, instead, consider also low-frequency

models based on range-based low-frequency volatility estimators and re-evaluate

this question. Our study is related to Clements & Preve (2019) who shed light
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on what estimation techniques, volatility transformations and specifications are

most useful when one- to twenty-two day-ahead stock market volatility predic-

tions are of interest. They also consider heterogenous autoregressive (HAR)

models where instead of the realized variation, range-based estimators are em-

ployed. This is similar to our approach. We differ in five aspects: i) we consider

broader class of models (apart from HAR models, also long-memory and realized

GARCH models), ii) given possible model choice uncertainty, we also use simple

combination forecasts, iii) in order to be able to draw a stronger conclusion we

use 18 market indices instead of three, iv) we also combine forecasts from high-

and low-frequency volatility models in order to study, whether low-frequency

data add value if high-frequency data are available, and v) we model the whole

day price variation (including the overnight price variation)

The existing literature has reported increased forecasting accuracy of high-

frequency volatility models but primarily in a day-ahead volatility forecasting

setting. In this paper, we apply a set of low- and high-frequency volatility

models on a sample of 18 stock market indices around the world to test how

out-of-sample volatility forecasting accuracy changes with respect to an increas-

ing forecast horizon. We show that at a forecast horizon of up to 22 trading

days, the out-of-sample accuracy of low- and high-frequency models tends to

be statistically indistinguishable. Compared to inexpensive and easy-to-process

low-frequency data, high-frequency data might have a limited advantage for

multiple-day-ahead volatility forecasts.

The remainder of this paper is structured as follows. We describe the data

and volatility estimators in Section 2. Section 3 explains the volatility models,

out-of-sample forecasting procedure and forecast evaluation. Section 4 presents

the results, and Section 5 concludes.

2. Data and volatility estimators

We investigate the forecasting ability of high- and low-frequency volatility

models using data from selected 18 developed and emerging stock market in-
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dices. Our sample period covers over 20 years of data, it starts in 2000 and

ends in June 2020. We use two data sources. First, we use the Oxford-Man

Institute’s Realized Library (Heber et al., 2009)2 for data on high-frequency re-

alized volatility estimators. To observe some empirical regularities, we aimed at

studying as many market indices as possible, but at the same time, we were in-

terested in long time series. In our data source, the given 18 market indices had

a sufficiently long time series, starting in 2000 (except the Canadian GSPTSE)

and ending in June 2020. For details see the following Table 1. Second, we

use Bloomberg terminal for low-frequency daily, opening Ot, highest Ht, lowest

Lt, and closing Ct values (OHLC prices henceforth), for a given day t, of the

18 market indices. In our analysis, data are treated as is usual in the volatil-

ity literature - we ignore weekends and holidays, and treat trading days as a

continuous time series.3

<<Please insert Table 1 around here>>

In the following subsections we describe our procedures to: estimate, fil-

ter, aggregate (low-frequency estimators) and adjust volatility estimators for

overnight price variation.

2.1. Low-frequency volatility estimator

Let ct = ln(Ct) − ln(Ot), ht = ln(Ht) − ln(Ot), lt = ln(Lt) − ln(Ot) and

jt = ln(Ot) − ln(Ct−1). A simple estimator of intraday volatility is c2t . How-

ever, range-based estimators offer higher efficiency (Molnár, 2012) and therefore

if OHLC prices are available, one should resort to the following range-based es-

2https://realized.oxford-man.ox.ac.uk/data
3Using a similar sample of market indices, Lyócsa & Molnár (2017) show that explicitly

modeling weekends in HAR models leads to systematic, but small forecast improvements;
1.42% on average across multiple market indices and for the QLIKE loss function. However,
Lyócsa & Molnár (2017) find these improvements for day-ahead forecasts. For multiple-day-
ahead scenarios, such improvements (if present) are likely even much smaller. We therefore
follow the most common approach, which is to simply consider trading days only and treat
these trading days as one time series.
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timators. Specifically, the Parkinson (1980) estimator is:

PKt =
(ht − lt)2

4ln2
(1)

the Garman & Klass (1980) estimator is:

GKt = 0.511 (ht − lt)2 − 0.019 (ct(ht + lt)− 2htlt)− 0.383c2t (2)

and the Rogers & Satchell (1991) estimator is:

RSt = ht(ht − ct) + lt(lt − ct) (3)

2.2. High-frequency volatility estimator

The high-frequency volatility estimator in this study is based on the standard

realized volatility:

RV ∗t =

N∑
i=1

r2
t,i (4)

where rt,i is the ith intraday return on day t. Intraday returns are calculated

using a calendar sampling scheme with a 5-minute frequency. Our motivation

for using this particular estimator is twofold. First, our sample consists of stock

market indices that are constructed from data of individual stocks. At the in-

dividual stock level, microstructure noise effects are pronounced and possibly

require the use of other estimators, e.g., the bipower estimator of Barndorff-

Nielsen & Shephard (2004) or the median realized volatility estimator of An-

dersen et al. (2012). At the stock market index level, the microstructure noise

effects are likely mitigated. Second, Liu et al. (2015) suggest that a 5-minute

sampling frequency is often a good choice in forecasting studies across different

asset classes. We therefore opt for the simplest approach of using the standard

realized volatility
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2.3. Overnight price variation

For most practical purposes (e.g., multiple-day-ahead asset allocation), one

needs to account not only for the intraday price variation, as given by estimators

above, but also for price changes during the overnight, nontrading time period.

Prices for the nontrading period are usually not available.4 Given the opening

price, Ot, and the closing price, Ct−1, from the previous trading session, the

overnight price variation is given by:

j2
t = (ln(Ot)− ln(Ct−1))

2
(5)

The adjustment of price variation to include the overnight component follows

only after data are filtered and low-frequency estimators are aggregated.

2.4. Filtering volatility estimates

The high- and low-frequency volatility estimators as well as the overnight

price variation were occasionally subject to rare extreme observations. Such

market conditions are of interest to market participants. Yet, such extreme

market conditions (9/11, flash crash in 2010) tend be difficult if not impossible

to predict using time-series models, while one or just a few of such trading

days have the potential to influence the ranking of volatility models. Moreover,

estimation of volatility models might also be influenced by such outliers in a

detrimental way.

To make our analysis less dependent on such events, volatility estimators5

were subject to the rolling window filtering procedure, where values above the

99.5 percentile were replaced by the 99.5 percentile value (i.e., winsorization).

The size of the rolling window was set to 1000. This filtering procedure can be

used in an out-of-sample exercise. However, as in all filtering procedures, it is

somewhat arbitrary6, and the description of the effect it has on the resulting

4Some equity market indices are traded almost continuously, see Lyócsa & Todorova (2020)
5Including semivolatilities that are defined later.
6The choice of the quantile.
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series is therefore warranted.

With respect to the low-frequency estimators, substitutions were made in

0.64% of cases on average7 and in 0.92% of cases at most (GPTSE, Canada).

At the same time, the first-order autocorrelation coefficient increased after the

filtering by 20.84% on average and by 96.2% in one case (KSE, Pakistan), where

the procedure picked up significant outliers that had a detrimental effect on the

otherwise large autocorrelation structure of the time series. The effect on the

realized volatility (overnight price variation) was very similar with substitution

in 0.69% (0.63%) of cases on average and an increase in the autocorrelation

by 19.82% (11.35%) on average. Given our assumption that the most extreme

market volatility is virtually unpredictable, we consider the filtering procedure

to be successful as it led to a substantial increase in the persistence of the series,

while substituting a small portion of the data.

2.5. Combination of low-frequency volatility estimators

After filtering, the three low-frequency estimators are combined via a simple

average:

RB∗t = 3−1 (PKt +GKt +RSt) (6)

The averaging approach is motivated by Patton & Sheppard (2009), who argue

that the true data-generating process is unknown and might even change over

time; thus, the optimal estimator is also unknown. Therefore, a suitable strategy

might be to combine different estimators and in doing so, to diversify against

estimator choice uncertainty. Using the simple average realistically assumes,

that no prior information about the relative accuracy of the estimators exists.

2.6. Whole day price variation adjustment

As we are interested in multi-day-ahead forecasts (up to 22 days), it is nec-

essary to account for overnight price variation, j2
t (defined in Eq.5). We follow

the procedure of Hansen & Lunde (2005) that captures the total variation by

7Across the three estimators and all 18 market indices.
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calculating a weighted average of the intraday and overnight price variation com-

ponents, where the optimal weights ω̂1 and ω̂2 account both for the covariance

between the two components, as well as their unequal size.8

The obtained adjusted price variation used in the subsequent volatility mod-

els is denoted as RVt (high-frequency estimator) and RBt (low-frequency esti-

mator).9

To calculate RVt for t ≥ 1000, we use the Hansen & Lunde (2005) procedure

within a window of 1000 observations ending at t, (i.e., t−999, t−998, . . . , t) to

obtain the optimal weights for the overnight price variation (ω̂t1) and intraday

price variation (ω̂t2). The adjusted price variation for a given day t is then

calculated as:

RVt = ω̂t1j
2
t + ω̂t2RV

∗
t (7)

For t < 1000, constant optimal weights obtained from the first window of full

1000 observations are used. The same approach is used to calculate RBt.

3. Methodology

3.1. Forecasting models

We use six forecasting models for both low- and high-frequency data. The

models belong to the class of HAR models, autoregressive fractionally integrated

moving average (ARFIMA) models, and GARCH models.

3.1.1. RV-HAR, RB-HAR models

The standard HAR model of Corsi (2009) is specified as:

RVt,H = β0 + β1RV
D
t−1 + β2RV

W
t−1 + β3RV

M
t−1 + zt, (8)

8The trading period is shorter than the overnight period – consequently, the trading period
variation tends to be smaller than the overnight price variation.

9We denote the nonadjusted estimators of intraday price variation as RV ∗
t and RB∗

t .
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where:

RVt,H = H−1
H∑
k=1

RVt+k−1 (9)

is the average multiple day-ahead price variation, where we consider one- to

twenty-two day-ahead volatility forecasts; thus, H = 1, 2, ..., , 22. The daily,

weekly and monthly volatility components are:

RV Dt−1 = RVt−1 ; RVWt−1 = 5−1
5∑
k=1

RVt−k ; RVMt−1 = 22−1
22∑
k=1

RVt−k (10)

The model is popular due to its simplicity, yet if coupled with high-frequency

data, the forecasting ability tends to be much better than that of standard

GARCH models (Horpestad et al., 2019). The high-frequency version of the

model is denoted as RB-HAR. Using RBt instead of RVt leads to the RB-HAR

model, which uses only low-frequency data.

3.1.2. RV-HAR-L, RB-HAR-L models

The RV-HAR-L model exploits the asymmetric volatility effect, i.e., which

posits that volatility tends to be higher when the market falls. The adjusted

HAR model includes two terms that capture the sign of volatility effects and also

the size effect (Horpestad et al., 2019). Specifically, let Rt = ln(Ct)− ln(Ct−1);

the RV-HAR-L is specified as:

RVt,H = β0 + β1RV
D
t−1 + β2RV

W
t−1 + β3RV

M
t−1+

γ1|Rt−1|+ γ2|Rt−1| × I(Rt−1 < 0) + zt
(11)

where I(Rt < 0) is a signaling function that returns 1 if the condition is true and

0 otherwise. The asymmetric effect is captured by the γ2|Rt−1| × I(Rt−1 < 0)

term. However, it is likely that when market volatility RVt−1 is higher, the

absolute return |Rt−1| also is, which in turn might lead to a significant γ2 not

only because of the existence of the asymmetric effect, but also because of the

dependence between |Rt−1| and RVt−1. We therefore include the size effect
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γ1 × |Rt−1|.10 Substituting RBt leads to the RB-HAR-L model.

3.1.3. RV-HAR-SV model, RB-HAR-ASY

The RV-HAR-SV model described above aims to exploit the asymmetric

volatility effect in different ways than the RV-HAR-L model. Patton & Sheppard

(2015) show that the decomposition of the realized volatility into positive and

negative return components might improve a model’s forecasting accuracy. The

positive and negative semivolatilities are:

PSt =
N∑
i=1

r2
t,i × I(rt,i > 0) ; NSt =

N∑
i=1

r2
t,i × I(rt,i ≤ 0) (12)

where I(rt,i > 0) is a signaling function. The RV-HAR-SV model is specified

as:

RVt,H = β0 + β1PSt−1 + β2NSt−1 + β3RV
W
t−1 + β4RV

M
t−1 + zt (13)

As shown by Patton & Sheppard (2015), the volatility asymmetric effect is

exploited by higher persistence of NSt−1 as opposed to PSt−1.

The same principle cannot be directly applied for a range-based HAR model.

Instead, we use the following specification:

RBt,H = β0+β1RBt−1+β2RBt−1×I(Rt−1 < 0)+β3RB
W
t−1+β4RV

M
t−1+zt (14)

If β2 > 0, volatility tends to be higher after the market declines.

All HAR models are estimated using weighted least squares (WLS) with the

goal of making the parameter estimates less sensitive to extreme volatility levels.

In particular, we use the following weighting scheme: wt = RV −1
t,H .11

10An absolute value of return can be considered as an alternative volatility measure, as
returns high in absolute value are likely associated with high volatility. In other words,
significant γ2 also captures the impact of past volatility. The asymmetric effect is captured
by the γ2|Rt−1| × I(Rt−1 < 0) term, as this term captures how the impact of |Rt−1| differs
between positive and negative returns.

11Clements & Preve (2019) discuss several alternative estimation techniques: OLS, LAD,
and four WLS techniques of the form wt = x−1

t . The xt are either: i) conditional volatilities
of OLS residuals, ii) OLS fitted values (as in Patton & Sheppard (2015)), iii) square root of
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HAR model forecasts are performed using the direct method, i.e. the givenH

day-ahead realized (range-based) volatility estimate is directly modeled within

a given estimation sample. Using the estimated coefficients and the last-known

right-hand side values a next H period-ahead volatility is predicted.

3.1.4. ARFIMA-class models

As volatility exhibits long-memory properties, a natural candidate to model

volatility is to use an ARFIMA-class model, see, e.g., Granger & Joyeux (1980),

Hosking (1981) and Baillie (1996). We use the following specification:

RVt = µ0 + zt; (1− φL)(1− L)dzt = (1 + θL)εt (15)

where L is the lag operator and 0 < d < 1 is the fractional integration parameter.

The ARFIMA model is given by:

fεt = σtηt; ηt ∼ iid(0, 1) (16)

where ηt follows the Johnson (1949a,b) distribution, which is flexible to account

for the asymmetries and heavy tails often observed with equity returns (Choi

& Nam, 2008). The volatility of the error term, σt, changes over time. For

modeling the volatility of realized volatility, we consider the standard GARCH

model of Bollerslev (1986) and the resulting model is denoted as RV-ARFIMA-

GARCH:

σ2
t = ω + αε2t−1 + βσ2

t−1 (17)

Modeling RBt in the mean equation leads to the RB-ARFIMA-GARCH model.

Alternatively, we use the EGARCH model of Nelson (1991) in the volatility

realized quarticity that down weights observations when measurement error is large, or iv)
simply the RVt, which is our method of choice. In fact, given several market indices and
multiple forecast horizons, Clements & Preve, 2019 find that wt = RV −1

t,H leads to the most

accurate forecasts. We therefore follow their approach.
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equation, in which case:

ln(σ2
t ) = ω + ζRVt−1 + αst−1 + γ (|st−1| − E|st−1|) + βln(σ2

t−1) (18)

where st represents standardized innovations. The resulting model is denoted

as RV-ARFIMA-EGARCH or when range-based estimators are used, the model

is denoted as RB-ARFIMA-EGARCH.

Following Baillie et al. (2012), let

π(L) = 1−
∞∑
j=1

πjL
j ≡ (1− φL)(1− L)d(1 + θL)−1 (19)

ψ(L) = 1 +

∞∑
j=1

ψjL
j ≡ (1 + θL)(1− φL)−1(1− L)−d (20)

A stationary long-memory ARFIMA process with |d| < 0.5 may be alternatively

expressed as an infinite AR or MA process as

π(L)zt = εt, zt = ψ(L)εt (21)

A predictor for a single step (H = 1) at time t may be obtained as

zt,H =

∞∑
j=0

π1+jyt−j (22)

Following (Eq.15), the volatility forecast is calculated as RVt,H = µ0 +zt,H . For

other forecast horizons, rolling forecasts based on (Eq.22) are calculated (see

section 3.3).

3.1.5. RV-GARCH, RB-GARCH models

Hansen et al. (2012) proposes a framework that relates the conditional

volatility to the given realized (or other) measures of price variation. Given

the ARMA mean equation for returns

ri,t = µ0 + zt; (1− φL)zt = (1 + θL)εt (23)
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where L is the lag operator, the RV-GARCH model is defined by the volatility

equation:

σ2
t = ω + βσ2

t−1 + γRVt−1 (24)

and the measurement equation:

RVt = ξ + ϕσ2
t + τ(εt) + ut; ut ∼ N(0, λ), (25)

where τ(εt) ≡ τ1εt + τ2(ε2t − 1) accounts for possible asymmetric shocks.

For forecasting, we follow Hansen et al. (2012), and note that by combining

the last two equations, it is possible to obtain a VARMA(1,1) structure

 σ2
t

RVt

 =

 β γ

ϕβ ϕγ

 σ2
t−1

RVt−1

 +

 ω

ξ + ϕω

 +

 0

τ(εt) + ut

 (26)

which (e.g., for H = 1) may be used for forecasting

 σ2
t+H

RVt+H

 =

 β γ

ϕβ ϕγ

H  σ2
t

RVt


+

H−1∑
j=0

 β γ

ϕβ ϕγ

j
 ω

ξ + ϕω

 +

 0

τ(εt+H−j) + ut+H−j


(27)

Substituting RBt for RVt leads to the RB-GARCH model. As in ARFIMA-

class models, for other forecast horizons, rolling forecasts are calculated (see

section 3.3).12

3.2. Forecast combination

The idea behind employing forecast combinations is to mitigate model choice

uncertainty (Timmermann, 2006). In our setting, one could argue that the com-

bination of low-frequency volatility forecasts could lead to forecast that are more

accurate than those given by individual, high-frequency, volatility forecasting

12GARCH class models are estimated using the Ghalanos (2020) rugarch package in R.
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models. Therefore, ignoring forecast combinations could result in underestimat-

ing the accuracy of low-frequency volatility models. However, similar arguments

hold for high-frequency volatility models. We therefore employ combination

forecasts for both low- and high-frequency volatility model forecasts. Further-

more, the recent study of Ma et al. (2018) shows that, in a day-ahead volatility

forecasting setting, combining low- and high-frequency forecasts leads to im-

proved forecasting accuracy. We therefore study, whether this holds also for

multiple market indices and more importantly for longer forecast horizons. In

order to do so, we also combine forecasts from individual high- and low-frequency

volatility models.

We use three combination forecasts. Let FV
(m)
t,H denote the value of the

forecasted volatility from individual model m = 1, 2, ...,M , with M = 6 (six

low- and six high-frequency volatility models), where (m) indicates that the

forecasted values are ordered from the lowest to highest forecasts. First, the

trimmed mean forecast of size p = 1 is given by:

FV trimt,H =
1

(M − 2)

M−1∑
m=2

FV
(m)
t,H (28)

which is a simple average after removing the highest and the lowest prediction.

Next, we use a weighted average across forecasting models, where each model

receives a higher weight if it resulted in lower forecast errors in the past (cali-

bration sample):

FV δt,H =

M∑
m=1

FV
(m)
t,H w

∗(m)
t,H (29)

w
∗(m)
t,H =

(wmt,H)−1∑M
m=1(wmt,H)−1

, wmt,H =
1

CS

t−1∑
j=t−CS

δj−t+2Lmj,H (30)

where δ is the discount factor (Stock & Watson, 2004; Ma et al., 2018), Lmj,H is

the value of the loss function and CS is the size of the calibration sample, set to

CS = 200. We use δ = 0.95, which gives higher weight to recent forecast errors
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in the calibration sample.13

Finally, given the weights in Eq.(30), we use the forecasts from the models

(lowest weighted forecast errors) that performed the best over the past CS

observations. This is the recent best approach. Our main results are reported

under the QLIKE loss function (to be defined later).

3.3. Forecasting procedure and predictions

We employ a rolling window forecasting algorithm. The size of the estimation

window is E = 1000 observations, which is similar to the value found in other

volatility forecasting studies, e.g., Patton & Sheppard (2015). The rolling drift

parameter is set to 1, meaning that all the model parameters are updated daily

using the last 1000 known observations. Note that the first evaluated forecast

starts with the 1201st observation, as 200 observations are used in the calibration

sample to calculate combination forecasts.

3.4. Forecast evaluation

To evaluate the forecasts14, we use the asymmetric QLIKE loss function,

which provides consistent model ranking even in the presence of a noisy proxy

(Patton, 2011) of the following form (Christoffersen, 2011):

Lt,H(m) = RVt,H/FVt,H − ln(RVt,H/FVt,H)− 1 (31)

Our main results are based on the QLIKE loss function, but mean square fore-

cast error (MSFE) is a viable alternative as well (Patton, 2011). We make a

13Note that weights sum to 1 and forecast error realized 150 observations before t received
a weight of just 0.001 when δ = 0.95. However, if the calibration sample contains a period of
larger forecast errors (crisis period) such forecast errors still influence model rankings.

14Given 18 market indices, 21 models and 22 forecast horizons, occasionally, forecasts lead to
implausibly large or small forecasts. Such issues are not uncommon in the volatility forecasting
literature. We follow Bollerslev et al. (2016) and use an ’insanity filter’ that makes our analysis
more realistic. All negative volatility forecasts are replaced by the minimum of the target
variable (either RVt or RBt) found over the estimation window. Forecasts that are higher
than the 99.9 percentile of the target variable over the estimation window are replaced by
that given quantile.
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short discussion of our findings under the MSFE loss function in a separate

subsection.

An important aspect of our study is that the volatility proxy is the realized

volatility, thus putting the low-frequency volatility forecasts at a disadvantage

and strengthening our argument that low- and high-frequency volatility model

forecasts are similar for longer forecast horizons.

To summarize, we compare the average loss function for each of the 18 stock

market indices, for 1- to 22-day-ahead forecast horizons and across 21 models:

6 individual and 3 combinations of either only low- or high-frequency volatility

models and 3 combinations of all individual low- and high-frequency volatility

models (2× (6 + 3) + 3). The statistical evaluation of the forecasting accuracy

is performed via the model confidence set of Hansen et al. (2011), which sequen-

tially evaluates all forecasts until only models with equal forecasting accuracy

remain. We use the Tmax statistic from Hansen et al. (2011), where the critical

values are bootstrapped (stationary bootstrap with random block lengths) using

2000 samples and α = 0.15. We apply the test on a set of 21 models, for each

market index and for each forecasting horizon separately.

4. Results

4.1. Estimates of annualized realized volatility across stock markets

The statistical characteristics of the annualized realized volatilities in Table

2 show that volatilities are subject to well-known stylized facts, e.g., excess

volatility and persistence. For example, the distribution of volatilities is skewed

to the right and shows a high level of kurtosis, which is consistent with the

occurrence of days of excess volatilities. Next, volatilities show considerable

persistence that declines slowly with time. Our estimates are in line with these

observations, as the average 1st-order autocorrelation (across both estimators

and market indices) is 0.67 (see Table 2), while at the 5nd, 22nd, and 100th

lag, the persistence is still at 0.53, 0.31, and 0.14, respectively, suggesting that
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volatility has long memory.15

A comparison of volatility levels across stock markets shows that the highest

levels of volatility are found for emerging stock markets in India and China

and for the technology index NASDAQ. Lower levels are found for developed

markets in Australia, Canada, and Switzerland. Among the emerging markets,

lower volatility is observed for Pakistan and Mexico. The differences in the

volatility levels can be considerable. Broader stock market indices and those

with higher market capitalization are likely to show lower levels of volatility

than market indices in emerging markets.

<<Please insert Table 2 around here>>

4.2. Realized and range-based volatility: An empirical comparison

As range-based estimators are unbiased, we would expect small differences

in the averages (across time) between realized volatility and range-based estima-

tors. This indeed appears to be the case, as realized volatilities are on average

1.34% higher than range-based estimators16, which is not much given that for

5 market indices, the range-based estimator is in fact higher than the realized

volatility estimator. At the same time, given that realized volatility is more

efficient, range-based estimators should be noisier; thus, empirically, we would

expect range-based estimators to have larger volatility. The results in Table 2

(column SD) confirm this intuition. Sudden spikes of range-based estimators

are visible also in Figure 1. Of 18 market indices, 18 show that range-based

estimators a have higher standard deviation. Moreover, range-based estimators

have also led to much higher skewness and kurtosis.

<<Please insert Figure 1 around here>>

The volatility series tend to be persistent, a feature exploited by autoregres-

sive models. Given that realized volatilities are less noisy estimates, we would

15Persistence at higher than the 1st order is not reported in Table 2.
16Calculated from the mean volatility in Table 2
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expect them to show larger persistence than range-based estimators. The results

in Table 2 largely confirm this intuition, as the persistence of the range-based

estimators is always lower, with the relative difference increasing for higher lag

orders. Specifically, the persistence of realized volatility is 24.6%, 30.2%, 38.4%,

and 55.6% higher as opposed to the persistence of range-based estimators.

Given these observations, we would therefore expect that the realized volatil-

ity models would perform better for market indices where the differences in the

magnitude of the volatility estimates and persistence are larger. Having es-

tablished baseline volatility characteristics, we now turn our attention to the

empirical part, an out-of-sample study. In the next section, we compare fore-

casts generated by models using either realized volatility (RV) or range-based

volatility (RB) estimates, i.e., RV-models and RB-models.

4.3. Out-of-sample forecasts

The results from the out-of-sample study are presented in Tables 3 - 5. Table

3 presents the results for 1-day-ahead forecasts, Table 4 for 5-day-ahead forecasts

and Table 5 for 22-day-ahead forecasts. The values in the tables are the losses

(QLIKE) averaged across time: lower values suggest more accurate forecasts.

The columns correspond to the stock market indices. The † symbol indicates

that the given forecast belongs to the set of superior forecasting models (Hansen

et al., 2011), where all models in the given column are statistically compared.

Each table is divided into five panels. The first two correspond to individual

forecasting models. Panel A is the results from model that utilize high-frequency

data, i.e., realized volatility, and Panel B, the low-frequency data, i.e., range-

based volatility. The third to fifth panel present the results from combination

forecasts. Panel C corresponds to three combination forecasts derived from

individual high-frequency models, Panel D uses combinations from individual

low-frequency models and finally, Panel E presents results from forecasts, that

combine results from all individual (high- and low-frequency models) forecasting

models. A visual comparison of the accuracy of the selected RV- and RB-models

is presented in Figure 2.
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Among all the individual forecasting models, the best performing model is

the RV-ARFIMA-EGARCH model (see the results in Tables 3 - 5), that consis-

tently leads to low forecast errors across both stock market indices and forecast

horizons. Interestingly, RV-ARFIMA-GARCH is not performing that well, par-

ticularly for longer forecast horizons, meaning that allowing for asymmetry in

the volatility of volatility improves forecast accuracy. Among low-frequency

models it was again RV-ARFIMA-EGARCH that performed the best. Irre-

spective of whether we employed realized or range-based measures, the realized

GARCH models performed poorly.

Combination forecasts, specifically the weighted average approach, almost

never surpass the best performing individual model (RV-ARFIMA-EGARCH).

However, in an out-of-sample setting, where one is unsure about the best indi-

vidual forecasting model, combination forecasts are a good option. Specifically,

the combinations from realized volatility models (weighted average) almost al-

ways belong to the set of superior models. This holds across market indices and

forecast horizons. Moreover, even if for some market index and forecast horizon,

the RV-ARFIMA-EGARCH model does not perform well, the weighted aver-

age of individual high-frequency model forecasts leads to competitive forecasts.

Our results therefore present further empirical evidence that in real-life scenar-

ios, combination forecasts tend to be very useful; these results are in accordance

with Lyócsa et al. (2017).

Our key observation is that the benefits of using high-frequency data di-

minish with an increasing forecasting horizon. For day-ahead forecasts, the set

of superior models almost always includes only models with realized volatility.

This result is surprisingly consistent across stock markets, with individual excep-

tions17 found only for market indices in Mexico, Japan and the Indian (NSEI).

For five-day-ahead volatility forecasts, at least one range-based low-frequency

volatility forecast model belongs to the set of superior models in 8 of 18 stock

market indices. For the 22-day-ahead forecast, this value improves to 17 of 18

17Notably the RB-ARFIMA-EGARCH model.
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stock market indices (Netherlands’s market index being the sole exception), i.e.,

we almost always find at least one low-frequency volatility model that performs

competitively with the high-frequency volatility model(s).

That said, it is also evident that the superior set of models includes mostly

realized volatility models, which suggests that an analysis is subject to less model

choice uncertainty when high-frequency data models are used. However, our

results show that for multiple-day-ahead volatility forecasts, the combination

forecasts created from range-based forecasting models are a safe bet for analysts.

Specifically, the weighted average with discount factor δ = 0.95 performs very

competitively, the trimmed mean much less so, while the recent best shows very

inconsistent results across market indices and forecast horizons; it is therefore

also not recommended.

<<Please insert Table 3 around here>>

We have established that for day-ahead volatility forecasts, realized volatility

models are superior to range-based models: the question is, to what extent. For

each stock market index, we calculated the average loss across realized volatil-

ity models and compared the result with the average loss across range-based

models. Across all stock market indices, the range-based models led to forecast

errors that are 78.6% higher than the forecast errors from realized volatility

models. Comparing the realized and range-based versions of weighted average

combinations forecasts, shows that the range-based model leads to 26.2% higher

forecast errors on average. We can therefore conclude that high-frequency data

are needed for short forecasting horizons.

We perform the same analysis for 5- and 22-day-ahead volatility forecasts. A

comparison of the average forecast errors shows that individual realized volatil-

ity models had approximately 15.9% lower forecast errors. This result illustrates

a clear drop in the ’value’ of high-frequency data at longer forecasting horizons.

Finally, for the 22-day-ahead forecasts, individual realized volatility models had

approximately 10.1% (still in favor of the realized volatility models) lower fore-
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cast errors on average.18 These results let us conclude that for volatility forecast-

ing purposes, the importance of high-frequency data diminishes with increasing

forecasting horizon. Indeed, as noted above, for 22-day-ahead volatility fore-

casts, the differences between most of the realized and range-based volatility

models are not statistically significant (see the model confidence set results).

<<Please insert Table 4 around here>>

<<Please insert Table 5 around here>>

4.3.1. Is there an added value in low-frequency volatility forecasts?

We have established that high-frequency models are useful for short-term

forecasts. In a day-ahead setting, Ma et al. (2018) shows that low-frequency

volatility models might still be useful, if their forecasts are combined with high-

frequency volatility models. In Panel E of Tables 3 – 5 we perform such an

analysis but move it into multiple-day-ahead horizons as well.

For longer forecast horizons, combinations from high- and low-frequency

volatility forecasts tend to be in the set of superior models, while average losses

are not lower as those achieved by high-frequency volatility forecasts. In the

short term, one should resort only to high-frequency volatility forecasts, as

adding low-frequency volatility forecasts to combinations might make the re-

sulting forecasts even worse.19 It follows, that there is very little benefit of

using low-frequency forecasts, if high-frequency forecasts are available.

Finally, we complement our analysis with Figure 2, which shows how the

forecast errors change with respect to the forecast horizon. For comparison pur-

poses, we selected the weighted average combination forecast that discounts past

forecast errors with a discount factor δ = 0.95. The model leads to competitive

forecasts for most market indices and forecast horizons for both high- (black

line) and low-frequency (blue line) models. A dot on the line indicates that the

18When calculating the 10.1% the average loss for the low-frequency model excluded the
RB−ARFIMA−GARCH models for BSENS, GPTSE, HSE, MXX and N225 as the average
losses were clear outliers.

19Our results are therefore slightly different from those of Ma et al. (2018).
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given model belongs to the superior set of models, i.e., the model leads to an

accuracy that is statistically similar to that of the other best performing models

in the set.

The differences in forecast accuracy tend to be large for short forecast hori-

zons and then decline with increasing horizon, i.e., high-frequency data are

most important for short forecast horizons. With increasing forecast horizon,

the differences tend to diminish, and in many instances, the forecasts converge.

Usually, the red line, namely, the combination from all individual forecasts,

lies in between the high- and low-frequency volatility forecasts suggesting that

combining forecasts from both approaches does not lead in increased forecast

accuracy.20

<<Please insert Figure 2 around here>>

4.4. Results under squared forecast errors

In many practical instances, using the QLIKE is advantageous as it assigns

more weight for volatility underestimation. Alternatively, the means squared

forecast error (SFE),

(RVt,H − FVt,H)
2

(32)

is a symmetric loss function that penalizes extreme under/overestimations more

severely, while in the presence of a noisy proxy, it also leads to consistent model

rankings (Patton, 2011).

In this section we present results for the MSFE. In order to do that, we only

need to re-estimate combination forecasts, where past forecast errors are now

weighted according to the SFE instead of the QLIKE. The resulting forecasts are

evaluated using the SFE. Figure 3 presents our main results, where we compare

the weighted combination forecasts (similarly as in Figures 2).21

20Our conclusions here are drawn only with respect to our simple combination methods.
More sophisticated methods might lead to different conclusions.

21Detailed tabulated results for h = 1, 5, 22 are part of the electronic supplementary mate-
rial.
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<<Please insert Figure 3 around here>>

Similarly as before, the results show that with increasing forecast horizons,

low- and high-frequency volatility models lead to similar forecast errors. Even

though for short-term forecasts, high-frequency volatility models tend to lead to

lower forecast errors, for most market indices, these differences are statistically

insignificant. Therefore, our general conclusion that a low-frequency volatility

model forecast still matters appears to be even stronger than under the MSE

loss function.

A closer inspection revealed that almost all indices suffer from periods of

large forecast errors associated with periods of high market volatility. During

such periods, no model performs well, and the SFE from these periods are highly

influential when the forecasting accuracy is evaluated across the whole sample.

Consequently, it is difficult to statistically distinguish between forecast errors,

i.e. high- and low-frequency volatility forecasts provide statistically comparable

accuracy.

4.5. Asset allocation study

In this subsection, we present a portfolio study as an empirical application,

where we compare the Sharpe ratios of two asset allocation strategies. In the

original mean-variance portfolio theory, the utility function of a risk-averse in-

vestor is shown to be an increasing function of expected return, and a decreasing

function of return volatility, which is interpreted as a measure of risk. In the

first strategy, portfolio weights are managed using a high-frequency volatility

forecast model. In the second strategy, portfolio weights are managed using a

low-frequency volatility forecast model.

4.5.1. Portfolio construction

As our objective is the comparison of the consequences of using different

volatility forecasts, we opt for a rather simple portfolio model, where the allo-

cation is restricted to only two assets – the stock market index and a risk-free

asset , similarly to Wang et al. (2016), Luo et al. (2019) and Lyócsa & Todorova
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(2020). Our approach follows a U.S. investor with risk-free rates approximated

via the 3-month US T-bill and perfectly hedged foreign currency positions. This

investor can always hold only two assets: risk-free asset and a particular stock

market index.

The portfolio choice problem reduces to the calculation of weights wi,t max-

imizing the utility function

E [wi,t(Ri,H,t −RFH,t) +RFH,t]−
γ

2
D [wi,t(Ri,H,t −RFH,t) +RFH,t] (33)

Here, i = 1, 2, . . . , 18 refers to the stock market index, Ri,H,t is its H-period

index return at time t, and RFH,t is the return for holding the T-bill between

t−H + 1 and t. We allow for borrowing, but not short sales of the stock index

by imposing 0 ≤ wi,t ≤ 1.5. In regard to the risk-aversion parameter, we allow

for γ = 3, which represents low and γ = 6 which is high risk aversion.22 The

E[.] and D[.] are the usual expectation and dispersion operators.

To calculate the optimal weights, we take (conditional) expectations on the

ex ante value R∗i,H,t and volatility FVi,H,t of the index returns. Following its

performance reported in Welch & Goyal (2007), we consider the simple h-period

average return within the estimation window of W = 1000 days as the estimate

R∗i,H,t. For the volatility, we directly use the forecasted FVi,H,t.
23 As we treat

the 3-month T-bill as a risk-free asset, its expected return (RF ∗H,t) is calcu-

lated as the yield at t −H + 1, scaled for the period of H days, matching the

forecast horizon. Accordingly, the covariance of the stock market index and

the risk-free asset is assumed to be zero over the investment horizon. Under

these assumptions, the stock market index optimal portfolio weight w∗i,t may be

directly calculated as

w∗i,t =
R∗i,H,t −RF ∗H,t

γFVi,H,t
(34)

22Results for γ = 1, 9 lead to qualitatively similar results and are available upon request.
23Note that we forecast the price variation directly. We therefore do not use the ’2’ super-

script for FVi,H,t.
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The weight for the risk-free asset is then simply 1− w∗i,t. Weights are updated

after each trading day using the past 1000 observations.

4.5.2. Portfolio performance evaluation

Let T o designate the set of time indices, excluding the subsample necessary

for the calculation of volatility forecasts and expected returns defined in the

previous subsection (i.e., the estimation window). The number of out-of-sample

periods is given by the cardinality |T o|. Additionally, let Ri,H,t and RFH,t

represent the H-period out-of-sample returns and yields at t ∈ T o. We define

the portfolio return and excess portfolio return at t ∈ T o as

ri,H,t = w∗i,tRi,H,t + (1− w∗i,t)RFH,t (35)

rei,H,t = w∗i,tRi,H,t + (1− w∗i,t)RFH,t −RFH,t (36)

The average out-of-sample return and excess return is given by

µi,h =
1

|T o|
∑
t∈T o

ri,H,t, µei,h =
1

|T o|
∑
t∈T o

rei,H,t (37)

Regarding the portfolio return volatility (σ2
i,H), we opt for the long-run volatility

estimator based on the approach of Andrews (1991), with the quadratic spectral

weighing scheme and automatic bandwidth parameter selection by Newey &

West (1994), in order to account for the possible autocorrelation introduced by

using the moving windows in portfolio construction.

We compare the performance of the portfolios by Sharpe ratios, defined as

SRi,H =
µei,H
σi,H

(38)

To formally evaluate the performance measured by Sharpe ratios for selected

strategies, we test for the null hypothesis of their equality using the robust sta-

tistical test of Ledoit & Wolf (2008) based on studentized circular bootstrap of

Politis & Romano (1994) and heteroscedasticity and autocorrelation consistent

standard errors; for details see Section 3.1 in Ledoit & Wolf (2008).
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4.5.3. Evaluation of the asset allocation study

We compare asset allocation along two strategies. In the first, FV HFi,H,t is pre-

dicted using the weighted average combination forecasts from high-frequency in-

dividual model forecasts. In the second, FV LFi,H,t is predicted using the weighted

average combination forecasts from low-frequency individual model forecasts.

Annualized24 Sharpe ratios across market indices and forecast horizons are re-

ported in Tables 6 - 7.

<<Please insert Table 6 around here>>

<<Please insert Table 7 around here>>

Note that in many instances, Sharpe ratios are negative. However, the pur-

pose of this study is not to find the most profitable strategy, but instead to

compare economic merit of the two strategies. There are two key observations

from the portfolio study. First, regardless of whether the analyst uses high-

or low-frequency volatility models, Sharpe ratios are very similar across mar-

ket indices and forecast horizons. As indicated by the Ledoit & Wolf (2008)

test, statistically significant differences are almost nonexistent. Second, larger

differences tend to systematically appear for short-term forecast horizons: how-

ever, they are almost never significant. These results suggest that in an asset

allocation framework, low-frequency volatility model forecasts are as useful as

high-frequency volatility model forecasts.

4.6. Implications for future studies

In our study, the proxy for the unobserved integrated variance is the 5-

minute realized volatility adjusted via the Hansen & Lunde (2005) procedure.

This also includes microstructure noise, most notably variations due to intra-

day price discontinuities. One might consider modeling jump robust alternatives

(e.g. bipower variation of Barndorff-Nielsen & Shephard, 2004, or median real-

ized volatility of Andersen et al., 2012). However, a straightforward comparison

24To annualized Sharpe ratios, we follow the non-iid approach of Lo (2002).
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of jump robust volatility estimators with range-based daily estimators is prob-

lematic as the formed excludes intraday jumps, while in the latter case the theo-

retical relationship between intraday price discontinuities and daily range-based

estimators is as yet unknown. In our study, we are interested in predictions of

the overall price variation over multiple days, using daily range-based estima-

tors. We are therefore constrained to compare the daily range-based estimator

with high-frequency estimator that also covers the whole price variation.

We have opted for an equal number of individual high- and low-frequency

volatility models. However, availability of intraday price variations leads to a

richer set of high-frequency HAR class volatility models than low-frequency

HAR class models. In our study, we use the benchmark HAR model, the

semivolatility HAR model, and the asymmetric volatility (leverage) HAR model.

Popular alternatives include the signed jump model of Patton & Sheppard

(2015), the continuous and jump component model of Andersen et al. (2007),

or the measurement error model of Bollerslev et al. (2016). Another possibility

is to use more advanced estimation techniques, (see Clements & Preve, 2019)

that allow for nonconstant HAR model coefficients (e.g. Wang et al., 2016; Luo

et al., 2019). The existing literature does not provide a clear guidance into what

models tend to systematically outperform the rest 25. We therefore opted for

simpler models and combination forecasts that appear to perform adequately

across different asset classes (e.g., Wang et al., 2016; Lyócsa & Molnár, 2018).

The models used in this study only rely on price information from the given

market index. Several studies argue that accuracy of forecasting models can be

improved when data from other markets or sources are explored. For example,

Degiannakis & Filis (2017) exploits variables from stock, foreign exchange, com-

modity markets and the macro-environment, Lyócsa & Molnár (2018) exploit

information from related assets, Bollerslev et al. (2018) from common volatility

25In a recent study on commodity market volatility, Degiannakis et al. (2020) show that
it is difficult to select specific model specification that would outperform other specifications.
Similar results for the nonferrous futures markets or oil and natural gas are found in Lyócsa
et al. (2017) and Lyócsa & Molnár (2018).
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components Lyócsa & Todorova (2020), and from intraday and overnight price

variations in market indices. However, by using relevant exogenous variables, we

would not be able to compare the usefulness of high- and low-frequency volatil-

ity estimators directly, which is the main purpose of this study. We expect that

relevant exogenous variables are likely to decrease the gap between high- and

low-frequency models. Our analysis might therefore be considered as a first step

that establishes that all is not lost with low-frequency volatility models.

5. Conclusion

The concept of realized volatility was introduced after the emergence of high-

frequency data, leading to more precise volatility estimates. With improved

computation speeds and memory management, volatility models employing re-

alized volatility measures have gained in popularity. Existing studies have shown

that high-frequency volatility models outperform low-frequency models (Ander-

sen et al., 2003; Koopman et al., 2005; Wei, 2012; Horpestad et al., 2019).

However, in the existing evidence, low-frequency volatility models are mod-

els estimated from daily returns, such as GARCH models. Since the highest

and lowest prices of the day contain additional information about volatility,

we consider low-frequency volatility models based on open, high, low and close

daily prices. Using a sample of 18 stock market indices, we compare these low-

frequency volatility models with high-frequency volatility models. The results

reveal that high-frequency volatility models tend to outperform low-frequency

volatility models in a one- to five-day-ahead out-of-sample forecasting setting.

However, at longer forecasting horizons, the differences in forecasting accuracy

tend to diminish and become statistically indistinguishable.

The intuition behind these results is that volatility has a long memory and

changes only gradually from day to day. Therefore, a precise estimate of the

current day’s volatility is very useful in predicting the volatility of the follow-

ing day. However, when we are interested in volatility levels weeks ahead, a

precise estimate of the current day’s volatility is not that important. Since
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for longer forecast horizons, the benefits of working with high-frequency data

might be limited, and high-frequency data are seldom freely available, in some

applications, low-frequency data might be sufficient.

We complement our main analysis with an asset allocation study. We show

that an asset allocation strategy that uses high-frequency volatility model fore-

casts does not outperform (in terms of Sharpe ratios) an asset allocation strategy

that uses low-frequency volatility model forecasts. This result holds across mar-

ket indices and forecast horizons. These results imply that in order to assess

the merit of a new high-frequency volatility model, it should be tested in a

multiple-day-ahead setting, benchmarked also against low-frequency volatility

models and validated in an economic application.
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Figure 1: Realized and range-based volatility

Note: The lines correspond to raw (not annualized) series of realized and range-based
volatility estimates.
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Table 1: Overview of market indices
Index Country Country code Starting date # End date # of forecasts
AEX Netherlands NL 02.02.2000 25.06.2020 5195
AORD Australia AU 04.02.2000 25.06.2020 5149
BSESN India IN 03.02.2000 25.06.2020 5035
FCHI Fance FR 02.02.2000 25.06.2020 5199
FTSE United Kingdom GB 03.02.2000 25.06.2020 5142
GDAXI Germany DE 02.02.2000 25.06.2020 5168
GSPTSE Canada CA 04.06.2002 24.06.2020 4515
HSI Hong Kong HK 02.02.2000 23.06.2020 4994
IBEX Spain ES 03.02.2000 25.06.2020 5164
IXIC United States US 03.02.2000 24.06.2020 5112
KS11 South Korea KR 03.02.2000 25.06.2020 5017
KSE Pakistan PK 09.02.2000 25.06.2020 4955
MXX Mexico MX 02.02.2000 25.06.2020 5113
N225 Japan JP 06.03.2000 23.06.2020 4958
NSEI India IN 03.02.2000 25.06.2020 5031
SPX United States US 03.02.2000 23.06.2020 5113
SSEC China CN 17.02.2000 23.06.2020 4921
SSMI Switzerland CH 03.02.2000 25.06.2020 5106

Notes: Country codes refer to ISO 3166-1 α-2 abbreviations.
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Figure 2: Forecast comparison of QLIKE and MCS results across forecasting horizons

Note: The y-axis is the average loss achieved by a weighted average combination
forecast. The black line corresponds to the weighted average combination forecast
given by high-frequency volatility models. The blue line corresponds to the weighted
average combination forecast given by low-frequency volatility models. The red line
corresponds to the weighted average combination forecast given by both high- and
low-frequency volatility models. A dot on the line means that the given forecast was
in the superior set of models. If dots are present for a given horizon in two or more
lines, the two forecasts are statistically indistinguishable.
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Figure 3: Forecast comparison of MSE and MCS results across forecasting horizons

Note: The y-axis is the average loss achieved by a weighted average combination
forecast. The black line corresponds to the weighted average combination forecast
given by high-frequency volatility models. The blue line corresponds to the weighted
average combination forecast given by low-frequency volatility models. The red line
corresponds to the weighted average combination forecast given by both high- and
low-frequency volatility models. A dot on the line means that the given forecast was
in the superior set of models. If dots are present for a given horizon in two or more
lines, the two forecasts are statistically indistinguishable.
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Lyócsa, Š., & Todorova, N. (2020). Trading and non-trading period realized

market volatility: Does it matter for forecasting the volatility of us stocks?

International Journal of Forecasting , 36 , 628–645.

Ma, F., Li, Y., Liu, L., & Zhang, Y. (2018). Are low-frequency data really

uninformative? A forecasting combination perspective. The North American

Journal of Economics and Finance, 44 , 92–108.

Ma, F., Wahab, M., Huang, D., & Xu, W. (2017). Forecasting the realized

volatility of the oil futures market: A regime switching approach. Energy

Economics, 67 , 136–145.

Martens, M. (2001). Forecasting daily exchange rate volatility using intraday

returns. Journal of International Money and Finance, 20 , 1–23.

Molnár, P. (2012). Properties of range-based volatility estimators. International

Review of Financial Analysis, 23 , 20–29.

Molnár, P. (2016). High-low range in garch models of stock return volatility.

Applied Economics, 48 , 4977–4991.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new

approach. Econometrica: Journal of the Econometric Society , 59 , 347–370.

Newey, W. K., & West, K. D. (1994). Automatic Lag Selection in Covariance

Matrix Estimation. The Review of Economic Studies, 61 , 631–653.

46



Parkinson, M. (1980). The extreme value method for estimating the variance of

the rate of return. Journal of Business, 53 , 61–65.

Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility

proxies. Journal of Econometrics, 160 , 246–256.

Patton, A. J., & Sheppard, K. (2009). Optimal combinations of realised volatil-

ity estimators. International Journal of Forecasting , 25 , 218–238.

Patton, A. J., & Sheppard, K. (2015). Good volatility, bad volatility: Signed

jumps and the persistence of volatility. Review of Economics and Statistics,

97 , 683–697.

Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of

the American Statistical association, 89 , 1303–1313.

Rogers, L. C. G., & Satchell, S. E. (1991). Estimating variance from high, low

and closing prices. The Annals of Applied Probability , 1 , 504–512.

Stock, J. H., & Watson, M. W. (2004). Combination forecasts of output growth

in a seven-country data set. Journal of Forecasting , 23 , 405–430.

Timmermann, A. (2006). Forecast combinations. Handbook of economic fore-

casting , 1 , 135–196.

Wang, Y., Ma, F., Wei, Y., & Wu, C. (2016). Forecasting realized volatility in

a changing world: A dynamic model averaging approach. Journal of Banking

& Finance, 64 , 136–149.

Wei, Y. (2012). Forecasting volatility of fuel oil futures in China: GARCH-type,

SV or realized volatility models? Physica A: Statistical Mechanics and its

Applications, 391 , 5546–5556.

Welch, I., & Goyal, A. (2007). A Comprehensive Look at The Empirical Per-

formance of Equity Premium Prediction. The Review of Financial Studies,

21 , 1455–1508.

47



Zhang, Y., Ma, F., Wang, T., & Liu, L. (2019). Out-of-sample volatility predic-

tion: A new mixed-frequency approach. Journal of Forecasting , 38 , 669–680.

48


	Introduction
	Data and volatility estimators
	Low-frequency volatility estimator
	High-frequency volatility estimator
	Overnight price variation
	Filtering volatility estimates
	Combination of low-frequency volatility estimators
	Whole day price variation adjustment

	Methodology
	Forecasting models
	RV-HAR, RB-HAR models
	RV-HAR-L, RB-HAR-L models
	RV-HAR-SV model, RB-HAR-ASY
	ARFIMA-class models
	RV-GARCH, RB-GARCH models

	Forecast combination
	Forecasting procedure and predictions
	Forecast evaluation

	Results
	Estimates of annualized realized volatility across stock markets
	Realized and range-based volatility: An empirical comparison
	Out-of-sample forecasts
	Is there an added value in low-frequency volatility forecasts?

	Results under squared forecast errors
	Asset allocation study
	Portfolio construction
	Portfolio performance evaluation
	Evaluation of the asset allocation study

	Implications for future studies

	Conclusion

