Stock Market Volatility Forecasting: Do We Need
High-Frequency Data?

Abstract

The general consensus in the volatility forecasting literature is that high-frequency
volatility models outperform low-frequency volatility models. However, such a
conclusion is reached when low-frequency volatility models are estimated from
daily returns. Instead, we study this question considering daily, low-frequency
volatility estimators based on open, high low and close daily prices. Our data
sample consists of 18 stock market indices. We find that high-frequency volatil-
ity models tend to outperform low-frequency volatility models only for short-
term forecasts, but as the forecast horizon increases (up to one month), the
difference in forecast accuracy becomes statistically indistinguishable for most
market indices. To evaluate practical implications of our results, we study a sim-
ple asset allocation problem. The results reveal that asset allocation based on
high-frequency volatility model forecasts does not outperform asset allocation
based on low-frequency volatility model forecasts.
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1. Introduction

Volatility modeling and forecasting is an integral part of finance and plays a
crucial role is various financial applications, such as risk management and hedg-
ing. Historically, the first volatility models were autoregressive heteroscedastic-
ity (ARCH) and generalized autoregressive heteroscedasticity (GARCH) models
introduced in the 1980s by Engle| (1982) and Bollerslev| (1986)). GARCH models

and the various modifications are likely still the most popular volatility models

among academics and practitioners alike; see, e.g., [Klein & Walther] (2016).

Almost all GARCH models are associated with daily, close-to-close returns,
or with even lower-frequency data requirements El However, daily squared re-

turns are a noisy proxy for true volatility (Molndrl [2012). As recognized by
Parkinson| (1980) and (Garman & Klass| (1980)), the range (the difference be-

tween the highest and lowest price of the day) leads to more precise volatility
estimates and should thus lead to more precise volatility models. However, it
took a relatively long time for range-based volatility estimators to become incor-
porated into volatility models (Gallant et al.,|1999; |Alizadeh et al.l 2002; Chou,
[2005; Brandt & Jones, [2006; |(Chou & Liu) 2010]). These estimators are currently

used both in the creation of new volatility models (Fiszeder & Faldziriski, [2019;
[Fiszeder et al., 2019) and in applications (Kim et al., [2019).

Once high-frequency data became available, researchers recognized that these
data are even more informative regarding volatility, and the concept of realized
volatility emerged (Andersen et al [2001bla; [Barndorff-Nielsen & Shephard,
. Realized volatility quickly found its way into the volatility modeling and

forecasting literature (Andersen et al., [2003) and has since become very popu-
lar not only in volatility models (Haugom et all 2014} [Wang et all 2016}
let all 2017 [Lydcsa & Molndrl 2018} [Aalborg et all, 2019} [Degiannakis et al.l
120205 [Luo et al., 2019; Lyécsa & Todorova, 2020), but also in price forecasting

1Exceptions are GARCH models that also use additional information source, such as re-
alized volatility estimated from high-frequency data (Hansen et al) |2012) or high-low range

(Molnd 2016).




(Degiannakis & Filis| [2018)).

There is a general consensus in the literature that volatility models based
on high-frequency data perform better in forecasting than models based solely
on daily returns (Martens| 2001; |/Andersen et al., [2003; Koopman et al., 2005;
|Chortareas et al., [2011; [Weil [2012; [Horpestad et al.|2019). Martens| (2001]) find

that in forecasting daily volatility, GARCH models based on intraday returns
outperform daily GARCH models. |Andersen et al.| (2003) show that realized

volatility models outperform standard GARCH models. The same conclusion is

reached by Horpestad et al|(2019). |Chortareas et al.| (2011)) conclude that us-

ing high-frequency data enhances the performance of volatility forecasts relative
to volatility models based on daily returns (GARCH and stochastic volatility
models). Similarly, Koopman et al.| (2005 and [Wei| (2012)) find that realized

volatility models outperform stochastic volatility and GARCH class models.
study whether day-ahead volatility forecasts of the Shanghai Stock
Exchange Composite Index and S&P 500 Index can be improved by combining
low- and high-frequency volatility models. Indeed, low-frequency volatility mod-
els might still be useful, as suggested by the results of (2018)), who
showed that forecasts from low-frequency volatility models can be combined

with forecasts from high-frequency volatility models to improve the forecasting

accuracy. A similar conclusion is reached by [Zhang et al.| (2019) who find that

both GARCH models and realized volatility models are outperformed by a smart
combination of these models: a model that simply selects among the forecasts

from these models the one with a relatively good past performance. In regard

to evaluation of volatility forecasts, Bailey & Steeley] (2019) show that squared

returns are a poor proxy for forecast evaluation, and that realized volatility or

the [Parkinson| (1980) estimator should be used instead.

However, most of the comparisons between high-frequency volatility mod-
els and low-frequency volatility models consider only low-frequency volatility
models estimated from daily returns. We, instead, consider also low-frequency

models based on range-based low-frequency volatility estimators and re-evaluate

this question. Our study is related to |Clements & Preve| (2019) who shed light




on what estimation techniques, volatility transformations and specifications are
most useful when one- to twenty-two day-ahead stock market volatility predic-
tions are of interest. They also consider heterogenous autoregressive (HAR)
models where instead of the realized variation, range-based estimators are em-
ployed. This is similar to our approach. We differ in five aspects: i) we consider
broader class of models (apart from HAR models, also long-memory and realized
GARCH models), ii) given possible model choice uncertainty, we also use simple
combination forecasts, iii) in order to be able to draw a stronger conclusion we
use 18 market indices instead of three, iv) we also combine forecasts from high-
and low-frequency volatility models in order to study, whether low-frequency
data add value if high-frequency data are available, and v) we model the whole
day price variation (including the overnight price variation)

The existing literature has reported increased forecasting accuracy of high-
frequency volatility models but primarily in a day-ahead volatility forecasting
setting. In this paper, we apply a set of low- and high-frequency volatility
models on a sample of 18 stock market indices around the world to test how
out-of-sample volatility forecasting accuracy changes with respect to an increas-
ing forecast horizon. We show that at a forecast horizon of up to 22 trading
days, the out-of-sample accuracy of low- and high-frequency models tends to
be statistically indistinguishable. Compared to inexpensive and easy-to-process
low-frequency data, high-frequency data might have a limited advantage for
multiple-day-ahead volatility forecasts.

The remainder of this paper is structured as follows. We describe the data
and volatility estimators in Section 2. Section 3 explains the volatility models,
out-of-sample forecasting procedure and forecast evaluation. Section 4 presents

the results, and Section 5 concludes.

2. Data and volatility estimators

We investigate the forecasting ability of high- and low-frequency volatility

models using data from selected 18 developed and emerging stock market in-



dices. Our sample period covers over 20 years of data, it starts in 2000 and
ends in June 2020. We use two data sources. First, we use the Oxford-Man
Institute’s Realized Library (Heber et al., 2009)E| for data on high-frequency re-
alized volatility estimators. To observe some empirical regularities, we aimed at
studying as many market indices as possible, but at the same time, we were in-
terested in long time series. In our data source, the given 18 market indices had
a sufficiently long time series, starting in 2000 (except the Canadian GSPTSE)
and ending in June 2020. For details see the following Table 1. Second, we
use Bloomberg terminal for low-frequency daily, opening O, highest H;, lowest
Ly, and closing C; values (OHLC prices henceforth), for a given day ¢, of the
18 market indices. In our analysis, data are treated as is usual in the volatil-
ity literature - we ignore weekends and holidays, and treat trading days as a

continuous time series[]
<< Please insert Table 1 around here>>

In the following subsections we describe our procedures to: estimate, fil-
ter, aggregate (low-frequency estimators) and adjust volatility estimators for

overnight price variation.

2.1. Low-frequency volatility estimator

Let ¢, = In(Cy) — In(Oy), he = In(Hy) — In(Oy), Iy = In(Ly) — In(Oy) and
ji = In(Oy) — In(Cy_1). A simple estimator of intraday volatility is ¢Z. How-
ever, range-based estimators offer higher efficiency (Molndr}, [2012)) and therefore

if OHLC prices are available, one should resort to the following range-based es-

2https:/ /realized.oxford-man.ox.ac.uk/data

3Using a similar sample of market indices, |Lyécsa & Molnar| (2017) show that explicitly
modeling weekends in HAR models leads to systematic, but small forecast improvements;
1.42% on average across multiple market indices and for the QLIKE loss function. However,
Lyo6csa & Molnar| (2017) find these improvements for day-ahead forecasts. For multiple-day-
ahead scenarios, such improvements (if present) are likely even much smaller. We therefore
follow the most common approach, which is to simply consider trading days only and treat
these trading days as one time series.



timators. Specifically, the [Parkinson| (1980) estimator is:

(he = 1)?

Py =~ (1)

the |Garman & Klass| (1980) estimator is:

GKy = 0.511 (hy — 1) — 0.019 (cy (he + 1) — 2hyly) — 0.383¢7 (2)

and the [Rogers & Satchell| (1991)) estimator is:

RSy = hy(hy —¢) + (I — 1) (3)

2.2. High-frequency volatility estimator

The high-frequency volatility estimator in this study is based on the standard

realized volatility:

N
RV = er,i (4)
i=1

where 7, ; is the i'" intraday return on day ¢. Intraday returns are calculated
using a calendar sampling scheme with a 5-minute frequency. Our motivation
for using this particular estimator is twofold. First, our sample consists of stock
market indices that are constructed from data of individual stocks. At the in-
dividual stock level, microstructure noise effects are pronounced and possibly
require the use of other estimators, e.g., the bipower estimator of
[Nielsen & Shephard| (2004) or the median realized volatility estimator of

ldersen et al| (2012)). At the stock market index level, the microstructure noise

effects are likely mitigated. Second, (2015) suggest that a 5-minute

sampling frequency is often a good choice in forecasting studies across different

asset classes. We therefore opt for the simplest approach of using the standard

realized volatility



2.8. Qvernight price variation

For most practical purposes (e.g., multiple-day-ahead asset allocation), one
needs to account not only for the intraday price variation, as given by estimators
above, but also for price changes during the overnight, nontrading time period.
Prices for the nontrading period are usually not availableﬁ Given the opening
price, Oy, and the closing price, C;_1, from the previous trading session, the

overnight price variation is given by:
Ji = (In(0y) = In(Cy1))” (5)

The adjustment of price variation to include the overnight component follows

only after data are filtered and low-frequency estimators are aggregated.

2.4. Filtering volatility estimates

The high- and low-frequency volatility estimators as well as the overnight
price variation were occasionally subject to rare extreme observations. Such
market conditions are of interest to market participants. Yet, such extreme
market conditions (9/11, flash crash in 2010) tend be difficult if not impossible
to predict using time-series models, while one or just a few of such trading
days have the potential to influence the ranking of volatility models. Moreover,
estimation of volatility models might also be influenced by such outliers in a
detrimental way.

To make our analysis less dependent on such events, volatility estimatorsﬂ
were subject to the rolling window filtering procedure, where values above the
99.5 percentile were replaced by the 99.5 percentile value (i.e., winsorization).
The size of the rolling window was set to 1000. This filtering procedure can be
used in an out-of-sample exercise. However, as in all filtering procedures, it is

somewhat arbitraryf’] and the description of the effect it has on the resulting

4Some equity market indices are traded almost continuously, see|Lydcsa & Todoroval (2020)
5Including semivolatilities that are defined later.
6The choice of the quantile.



series is therefore warranted.

With respect to the low-frequency estimators, substitutions were made in
0.64% of cases on averagd’] and in 0.92% of cases at most (GPTSE, Canada).
At the same time, the first-order autocorrelation coefficient increased after the
filtering by 20.84% on average and by 96.2% in one case (KSE, Pakistan), where
the procedure picked up significant outliers that had a detrimental effect on the
otherwise large autocorrelation structure of the time series. The effect on the
realized volatility (overnight price variation) was very similar with substitution
in 0.69% (0.63%) of cases on average and an increase in the autocorrelation
by 19.82% (11.35%) on average. Given our assumption that the most extreme
market volatility is virtually unpredictable, we consider the filtering procedure
to be successful as it led to a substantial increase in the persistence of the series,

while substituting a small portion of the data.

2.5. Combination of low-frequency volatility estimators

After filtering, the three low-frequency estimators are combined via a simple

average:

RB} =37' (PK; + GK; + RS;) (6)

The averaging approach is motivated by [Patton & Sheppard| (2009)), who argue
that the true data-generating process is unknown and might even change over
time; thus, the optimal estimator is also unknown. Therefore, a suitable strategy
might be to combine different estimators and in doing so, to diversify against
estimator choice uncertainty. Using the simple average realistically assumes,

that no prior information about the relative accuracy of the estimators exists.

2.6. Whole day price variation adjustment

As we are interested in multi-day-ahead forecasts (up to 22 days), it is nec-
essary to account for overnight price variation, j2 (defined in Eq. We follow
the procedure of Hansen & Lunde| (2005) that captures the total variation by

7Across the three estimators and all 18 market indices.



calculating a weighted average of the intraday and overnight price variation com-
ponents, where the optimal weights w; and ws account both for the covariance
between the two components, as well as their unequal sizeE|

The obtained adjusted price variation used in the subsequent volatility mod-
els is denoted as RV; (high-frequency estimator) and RB; (low-frequency esti-
mator)ﬂ

To calculate RV, for ¢ > 1000, we use the Hansen & Lunde| (2005) procedure
within a window of 1000 observations ending at ¢, (i.e., t —999,t—998,...,t) to
obtain the optimal weights for the overnight price variation (&%) and intraday
price variation (&%). The adjusted price variation for a given day ¢ is then
calculated as:

RV, = &j; + 05 RV (7)
For t < 1000, constant optimal weights obtained from the first window of full
1000 observations are used. The same approach is used to calculate RBj;.
3. Methodology

3.1. Forecasting models

We use six forecasting models for both low- and high-frequency data. The
models belong to the class of HAR models, autoregressive fractionally integrated

moving average (ARFIMA) models, and GARCH models.

8.1.1. RV-HAR, RB-HAR models
The standard HAR model of |Corsi| (2009) is specified as:

RVig = Bo+ FLRV2 | + BoRVY, + BsRVM, + 2, (8)

8The trading period is shorter than the overnight period — consequently, the trading period
variation tends to be smaller than the overnight price variation.
9We denote the nonadjusted estimators of intraday price variation as RV} and RBy.



where:

H
RVig=H"! Z RViypa (9)
k=1

is the average multiple day-ahead price variation, where we consider one- to
twenty-two day-ahead volatility forecasts; thus, H = 1,2,...,,22. The daily,

weekly and monthly volatility components are:

5 22
RV;?, =RV,_1; RVY, =57") RV, ; RVM, =227' Y "RV, (10)
k=1 k=1

The model is popular due to its simplicity, yet if coupled with high-frequency
data, the forecasting ability tends to be much better than that of standard
GARCH models (Horpestad et al., |2019). The high-frequency version of the
model is denoted as RB-HAR. Using RB; instead of RV; leads to the RB-HAR

model, which uses only low-frequency data.

8.1.2. RV-HAR-L, RB-HAR-L models

The RV-HAR-L model exploits the asymmetric volatility effect, i.e., which
posits that volatility tends to be higher when the market falls. The adjusted
HAR model includes two terms that capture the sign of volatility effects and also
the size effect (Horpestad et all, [2019)). Specifically, let R; = In(C}) — In(Ci—1);
the RV-HAR-L is specified as:

RV: g = Bo + B1RV,2, + BoRV,Y, + B3 RVM, +
’71|Rt71| + ’72|Rt71| X I(Rt,1 < 0) + 2

(11)

where I(R; < 0) is a signaling function that returns 1 if the condition is true and
0 otherwise. The asymmetric effect is captured by the vo|Ri—1| X I(R:—1 < 0)
term. However, it is likely that when market volatility RV;_; is higher, the
absolute return |R;_1| also is, which in turn might lead to a significant v2 not
only because of the existence of the asymmetric effect, but also because of the

dependence between |R;—1| and RV;_;. We therefore include the size effect

10



v X |Rt,1|m Substituting RB; leads to the RB-HAR-L model.

3.1.8. RV-HAR-SV model, RB-HAR-ASY
The RV-HAR-SV model described above aims to exploit the asymmetric

volatility effect in different ways than the RV-HAR-L model. |Patton & Sheppard|

(2015)) show that the decomposition of the realized volatility into positive and
negative return components might improve a model’s forecasting accuracy. The

positive and negative semivolatilities are:

N N
PSt :Z’f'ii XI(Tt,i >0) ; NSt :ZT?,Z» XI(’I‘tﬂ‘ SO) (12)

i=1 i=1
where I(r;; > 0) is a signaling function. The RV-HAR-SV model is specified
as:

RV, i = Bo+ Bi1PSi—1 + Bo2NSi—1 + BsRV,Y, + BsRVM, + z (13)

As shown by [Patton & Sheppard| (2015), the volatility asymmetric effect is

exploited by higher persistence of N.S;_; as opposed to P.S;_1.
The same principle cannot be directly applied for a range-based HAR model.

Instead, we use the following specification:
RBi i = Bo+B1RBi—1+B2RB—1 X I(Ri—1 < 0)+B3RB |+ B4 RVY +2; (14)

If B2 > 0, volatility tends to be higher after the market declines.
All HAR models are estimated using weighted least squares (WLS) with the
goal of making the parameter estimates less sensitive to extreme volatility levels.

In particular, we use the following weighting scheme: w; = RV;}}

10An absolute value of return can be considered as an alternative volatility measure, as
returns high in absolute value are likely associated with high volatility. In other words,
significant 2 also captures the impact of past volatility. The asymmetric effect is captured
by the vy2|R¢—1| X I(R¢—1 < 0) term, as this term captures how the impact of |R;—1| differs
between positive and negative returns.

HClements & Preve| (2019) discuss several alternative estimation techniques: OLS, LAD,
and four WLS techniques of the form w: = z;l. The z; are either: i) conditional volatilities
of OLS residuals, ii) OLS fitted values (as in [Patton & Sheppard| (2015)), iii) square root of

11



HAR model forecasts are performed using the direct method, i.e. the given H
day-ahead realized (range-based) volatility estimate is directly modeled within
a given estimation sample. Using the estimated coefficients and the last-known

right-hand side values a next H period-ahead volatility is predicted.

8.1.4. ARFIMA-class models

As volatility exhibits long-memory properties, a natural candidate to model

volatility is to use an ARFIMA-class model, see, e.g., |Granger & Joyeux| (1980)),
[Hosking] (1981) and Baillie| (1996]). We use the following specification:

RV: = jo+ 255 (1—¢L)(1 — L)%z = (1 +0L)e; (15)

where L is the lag operator and 0 < d < 1 is the fractional integration parameter.

The ARFIMA model is given by:

feo = o my ~iid(0,1) (16)

where 7, follows the |Johnson| (1949ab) distribution, which is flexible to account

for the asymmetries and heavy tails often observed with equity returns (Choi

2008). The volatility of the error term, o, changes over time. For
modeling the volatility of realized volatility, we consider the standard GARCH

model of |Bollerslev| (1986) and the resulting model is denoted as RV-ARFIMA-
GARCH:

of =w+ae_y + foi_ (17)

Modeling RB; in the mean equation leads to the RB-ARFIMA-GARCH model.
Alternatively, we use the EGARCH model of (1991)) in the volatility

realized quarticity that down weights observations when measurement error is large, or iv)
simply the RV4, which is our method of choice. In fact, given several market indices and
multiple forecast horizons, |Clements & Prevel, |2019| find that w; = RVtT}} leads to the most
accurate forecasts. We therefore follow their approach.

12



equation, in which case:
In(o?) =w+CRV;_1 +as;_1+7(|si_1| — Elss_1|) + Bln(o?_,) (18)

where s; represents standardized innovations. The resulting model is denoted
as RV-ARFIMA-EGARCH or when range-based estimators are used, the model
is denoted as RB-ARFIMA-EGARCH.

Following Baillie et al.| (2012)), let

A
=
I

1—§:wjy’ =(1-¢L)(1-L)¥1+6L)! (19)
Y(L) = 1+§:¢ij =01+6L)(1-¢L)" (1 -L)¢ (20)

A stationary long-memory ARFIMA process with |d| < 0.5 may be alternatively

expressed as an infinite AR or MA process as
m(L)z =€,  z=¢(L)e (21)

A predictor for a single step (H = 1) at time ¢ may be obtained as
o0
Zt,H = ZWHJ‘yt—j (22)
§=0

Following (Eq, the volatility forecast is calculated as RV; g = o+ 2, . For
other forecast horizons, rolling forecasts based on (Eq are calculated (see

section [3.3).

3.1.5. RV-GARCH, RB-GARCH models

Hansen et al.| (2012) proposes a framework that relates the conditional
volatility to the given realized (or other) measures of price variation. Given

the ARMA mean equation for returns
Tig = pio+ 25 (1—¢L)ze=(1+60L)e (23)

13



where L is the lag operator, the RV-GARCH model is defined by the volatility
equation:

o7 =w+ oy +yRV,y (24)

and the measurement equation:
RV, = £+ o} + 7(er) + ug; ug ~ N(0,A), (25)

where 7(€;) = 116, + T2(e7 — 1) accounts for possible asymmetric shocks.
For forecasting, we follow Hansen et al|(2012), and note that by combining

the last two equations, it is possible to obtain a VARMA(1,1) structure

o? 8 v o2 w 0
t =1 n (26)
RV, oB py| |RVia £+ pw T(€) + uy

which (e.g., for H = 1) may be used for forecasting

H

Ut2+H _ B Y Ut2

RViim ©B @y RV,
p (27)

H—-1
I5) w 0
Dol A +
j=o |¥B ey £+ pw T(€t+H—j5) + UtpH—;j

Substituting RB; for RV; leads to the RB-GARCH model. As in ARFIMA-

class models, for other forecast horizons, rolling forecasts are calculated (see

section E

3.2. Forecast combination

The idea behind employing forecast combinations is to mitigate model choice
uncertainty (Timmermann 2006]). In our setting, one could argue that the com-
bination of low-frequency volatility forecasts could lead to forecast that are more

accurate than those given by individual, high-frequency, volatility forecasting

I2GARCH class models are estimated using the |(Ghalanos| (2020) rugarch package in R.
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models. Therefore, ignoring forecast combinations could result in underestimat-
ing the accuracy of low-frequency volatility models. However, similar arguments
hold for high-frequency volatility models. We therefore employ combination
forecasts for both low- and high-frequency volatility model forecasts. Further-
more, the recent study of Ma et al.| (2018) shows that, in a day-ahead volatility
forecasting setting, combining low- and high-frequency forecasts leads to im-
proved forecasting accuracy. We therefore study, whether this holds also for
multiple market indices and more importantly for longer forecast horizons. In
order to do so, we also combine forecasts from individual high- and low-frequency
volatility models.

We use three combination forecasts. Let F' Vt(z) denote the value of the
forecasted volatility from individual model m = 1,2,..., M, with M = 6 (six
low- and six high-frequency volatility models), where (m) indicates that the
forecasted values are ordered from the lowest to highest forecasts. First, the
trimmed mean forecast of size p = 1 is given by:

M-1
- 1
trim __ (m)

PV = Gr gy 2o FVer (28)

m=2
which is a simple average after removing the highest and the lowest prediction.
Next, we use a weighted average across forecasting models, where each model
receives a higher weight if it resulted in lower forecast errors in the past (cali-

bration sample):

M
FVig =Y FVw G (29)
m=1
m \—1 t—1
*(m) (wt,H) m 1 j—t+27m
W = o e = ag 2 0 Ly (30)
S (W) ! CS ; 4=es ’

where ¢ is the discount factor (Stock & Watson, 2004; Ma et al., [2018)), Ly is
the value of the loss function and C'S is the size of the calibration sample, set to

CS = 200. We use § = 0.95, which gives higher weight to recent forecast errors

15



in the calibration sample[™|

Finally, given the weights in Eq.7 we use the forecasts from the models
(lowest weighted forecast errors) that performed the best over the past CS
observations. This is the recent best approach. Our main results are reported

under the QLIKE loss function (to be defined later).

3.8. Forecasting procedure and predictions

We employ a rolling window forecasting algorithm. The size of the estimation

window is F = 1000 observations, which is similar to the value found in other

volatility forecasting studies, e.g., [Patton & Sheppard| (2015). The rolling drift

parameter is set to 1, meaning that all the model parameters are updated daily
using the last 1000 known observations. Note that the first evaluated forecast
starts with the 12015 observation, as 200 observations are used in the calibration

sample to calculate combination forecasts.

3.4. Forecast evaluation

To evaluate the forecastﬂ we use the asymmetric QLIKE loss function,

which provides consistent model ranking even in the presence of a noisy proxy

2011) of the following form (Christoffersen, 2011):

Lt)H(m):RVE,H/FV;’H—ZH(RVZ’H/FV;’H)—1 (31)

Our main results are based on the QLIKE loss function, but mean square fore-

cast error (MSFE) is a viable alternative as well (Patton, 2011). We make a

13Note that weights sum to 1 and forecast error realized 150 observations before ¢ received
a weight of just 0.001 when § = 0.95. However, if the calibration sample contains a period of
larger forecast errors (crisis period) such forecast errors still influence model rankings.

14Given 18 market indices, 21 models and 22 forecast horizons, occasionally, forecasts lead to
implausibly large or small forecasts. Such issues are not uncommon in the volatility forecasting
literature. We follow Bollerslev et al.|(2016) and use an ’insanity filter’ that makes our analysis
more realistic. All negative volatility forecasts are replaced by the minimum of the target
variable (either RV; or RB;) found over the estimation window. Forecasts that are higher
than the 99.9 percentile of the target variable over the estimation window are replaced by
that given quantile.
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short discussion of our findings under the MSFE loss function in a separate
subsection.

An important aspect of our study is that the volatility proxy is the realized
volatility, thus putting the low-frequency volatility forecasts at a disadvantage
and strengthening our argument that low- and high-frequency volatility model
forecasts are similar for longer forecast horizons.

To summarize, we compare the average loss function for each of the 18 stock
market indices, for 1- to 22-day-ahead forecast horizons and across 21 models:
6 individual and 3 combinations of either only low- or high-frequency volatility
models and 3 combinations of all individual low- and high-frequency volatility
models (2 x (6 + 3) + 3). The statistical evaluation of the forecasting accuracy
is performed via the model confidence set of [ Hansen et al.| (2011)), which sequen-
tially evaluates all forecasts until only models with equal forecasting accuracy
remain. We use the T,,, statistic from Hansen et al.| (2011)), where the critical
values are bootstrapped (stationary bootstrap with random block lengths) using
2000 samples and a = 0.15. We apply the test on a set of 21 models, for each

market index and for each forecasting horizon separately.

4. Results

4.1. Estimates of annualized realized volatility across stock markets

The statistical characteristics of the annualized realized volatilities in Table
2 show that volatilities are subject to well-known stylized facts, e.g., excess
volatility and persistence. For example, the distribution of volatilities is skewed
to the right and shows a high level of kurtosis, which is consistent with the
occurrence of days of excess volatilities. Next, volatilities show considerable
persistence that declines slowly with time. Our estimates are in line with these
observations, as the average 1%¢-order autocorrelation (across both estimators
and market indices) is 0.67 (see Table 2), while at the 57, 2279 and 100"
lag, the persistence is still at 0.53, 0.31, and 0.14, respectively, suggesting that
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volatility has long memoryE

A comparison of volatility levels across stock markets shows that the highest
levels of volatility are found for emerging stock markets in India and China
and for the technology index NASDAQ. Lower levels are found for developed
markets in Australia, Canada, and Switzerland. Among the emerging markets,
lower volatility is observed for Pakistan and Mexico. The differences in the
volatility levels can be considerable. Broader stock market indices and those
with higher market capitalization are likely to show lower levels of volatility

than market indices in emerging markets.

<< Please insert Table 2 around here>>

4.2. Realized and range-based volatility: An empirical comparison

As range-based estimators are unbiased, we would expect small differences
in the averages (across time) between realized volatility and range-based estima-
tors. This indeed appears to be the case, as realized volatilities are on average
1.34% higher than range-based estimatorﬂ which is not much given that for
5 market indices, the range-based estimator is in fact higher than the realized
volatility estimator. At the same time, given that realized volatility is more
efficient, range-based estimators should be noisier; thus, empirically, we would
expect range-based estimators to have larger volatility. The results in Table 2
(column SD) confirm this intuition. Sudden spikes of range-based estimators
are visible also in Figure 1. Of 18 market indices, 18 show that range-based
estimators a have higher standard deviation. Moreover, range-based estimators

have also led to much higher skewness and kurtosis.
<< Please insert Figure 1 around here>>

The volatility series tend to be persistent, a feature exploited by autoregres-

sive models. Given that realized volatilities are less noisy estimates, we would

15Persistence at higher than the 15 order is not reported in Table 2.
16Calculated from the mean volatility in Table 2
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expect them to show larger persistence than range-based estimators. The results
in Table 2 largely confirm this intuition, as the persistence of the range-based
estimators is always lower, with the relative difference increasing for higher lag
orders. Specifically, the persistence of realized volatility is 24.6%, 30.2%, 38.4%,
and 55.6% higher as opposed to the persistence of range-based estimators.
Given these observations, we would therefore expect that the realized volatil-
ity models would perform better for market indices where the differences in the
magnitude of the volatility estimates and persistence are larger. Having es-
tablished baseline volatility characteristics, we now turn our attention to the
empirical part, an out-of-sample study. In the next section, we compare fore-
casts generated by models using either realized volatility (RV) or range-based

volatility (RB) estimates, i.e., RV-models and RB-models.

4.3. Out-of-sample forecasts

The results from the out-of-sample study are presented in Tables 3 - 5. Table
3 presents the results for 1-day-ahead forecasts, Table 4 for 5-day-ahead forecasts
and Table 5 for 22-day-ahead forecasts. The values in the tables are the losses
(QLIKE) averaged across time: lower values suggest more accurate forecasts.
The columns correspond to the stock market indices. The T symbol indicates
that the given forecast belongs to the set of superior forecasting models (Hansen
et al., |2011), where all models in the given column are statistically compared.
Each table is divided into five panels. The first two correspond to individual
forecasting models. Panel A is the results from model that utilize high-frequency
data, i.e., realized volatility, and Panel B, the low-frequency data, i.e., range-
based volatility. The third to fifth panel present the results from combination
forecasts. Panel C corresponds to three combination forecasts derived from
individual high-frequency models, Panel D uses combinations from individual
low-frequency models and finally, Panel E presents results from forecasts, that
combine results from all individual (high- and low-frequency models) forecasting
models. A visual comparison of the accuracy of the selected RV- and RB-models

is presented in Figure 2.
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Among all the individual forecasting models, the best performing model is
the RV-ARFIMA-EGARCH model (see the results in Tables 3 - 5), that consis-
tently leads to low forecast errors across both stock market indices and forecast
horizons. Interestingly, RV-ARFIMA-GARCH is not performing that well, par-
ticularly for longer forecast horizons, meaning that allowing for asymmetry in
the volatility of volatility improves forecast accuracy. Among low-frequency
models it was again RV-ARFIMA-EGARCH that performed the best. Irre-
spective of whether we employed realized or range-based measures, the realized
GARCH models performed poorly.

Combination forecasts, specifically the weighted average approach, almost
never surpass the best performing individual model (RV-ARFIMA-EGARCH).
However, in an out-of-sample setting, where one is unsure about the best indi-
vidual forecasting model, combination forecasts are a good option. Specifically,
the combinations from realized volatility models (weighted average) almost al-
ways belong to the set of superior models. This holds across market indices and
forecast horizons. Moreover, even if for some market index and forecast horizon,
the RV-ARFIMA-EGARCH model does not perform well, the weighted aver-
age of individual high-frequency model forecasts leads to competitive forecasts.
Our results therefore present further empirical evidence that in real-life scenar-
ios, combination forecasts tend to be very useful; these results are in accordance
with [Lydcsa et al.| (2017]).

Our key observation is that the benefits of using high-frequency data di-
minish with an increasing forecasting horizon. For day-ahead forecasts, the set
of superior models almost always includes only models with realized volatility.
This result is surprisingly consistent across stock markets, with individual excep-
tionsiZ] found only for market indices in Mexico, Japan and the Indian (NSEI).
For five-day-ahead volatility forecasts, at least one range-based low-frequency
volatility forecast model belongs to the set of superior models in 8 of 18 stock

market indices. For the 22-day-ahead forecast, this value improves to 17 of 18

17Notably the RB-ARFIMA-EGARCH model.
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stock market indices (Netherlands’s market index being the sole exception), i.e.,
we almost always find at least one low-frequency volatility model that performs
competitively with the high-frequency volatility model(s).

That said, it is also evident that the superior set of models includes mostly
realized volatility models, which suggests that an analysis is subject to less model
choice uncertainty when high-frequency data models are used. However, our
results show that for multiple-day-ahead volatility forecasts, the combination
forecasts created from range-based forecasting models are a safe bet for analysts.
Specifically, the weighted average with discount factor § = 0.95 performs very
competitively, the trimmed mean much less so, while the recent best shows very
inconsistent results across market indices and forecast horizons; it is therefore

also not recommended.
<< Please insert Table 8 around here>>

We have established that for day-ahead volatility forecasts, realized volatility
models are superior to range-based models: the question is, to what extent. For
each stock market index, we calculated the average loss across realized volatil-
ity models and compared the result with the average loss across range-based
models. Across all stock market indices, the range-based models led to forecast
errors that are 78.6% higher than the forecast errors from realized volatility
models. Comparing the realized and range-based versions of weighted average
combinations forecasts, shows that the range-based model leads to 26.2% higher
forecast errors on average. We can therefore conclude that high-frequency data
are needed for short forecasting horizons.

We perform the same analysis for 5- and 22-day-ahead volatility forecasts. A
comparison of the average forecast errors shows that individual realized volatil-
ity models had approximately 15.9% lower forecast errors. This result illustrates
a clear drop in the 'value’ of high-frequency data at longer forecasting horizons.
Finally, for the 22-day-ahead forecasts, individual realized volatility models had

approximately 10.1% (still in favor of the realized volatility models) lower fore-
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cast errors on average@ These results let us conclude that for volatility forecast-
ing purposes, the importance of high-frequency data diminishes with increasing
forecasting horizon. Indeed, as noted above, for 22-day-ahead volatility fore-
casts, the differences between most of the realized and range-based volatility

models are not statistically significant (see the model confidence set results).
<< Please insert Table 4 around here>>

<< Please insert Table 5 around here>>

4.8.1. Is there an added value in low-frequency volatility forecasts?

We have established that high-frequency models are useful for short-term
forecasts. In a day-ahead setting, [Ma et al.| (2018]) shows that low-frequency
volatility models might still be useful, if their forecasts are combined with high-
frequency volatility models. In Panel E of Tables 3 — 5 we perform such an
analysis but move it into multiple-day-ahead horizons as well.

For longer forecast horizons, combinations from high- and low-frequency
volatility forecasts tend to be in the set of superior models, while average losses
are not lower as those achieved by high-frequency volatility forecasts. In the
short term, one should resort only to high-frequency volatility forecasts, as
adding low-frequency volatility forecasts to combinations might make the re-
sulting forecasts even WOI‘SQE It follows, that there is very little benefit of
using low-frequency forecasts, if high-frequency forecasts are available.

Finally, we complement our analysis with Figure 2, which shows how the
forecast errors change with respect to the forecast horizon. For comparison pur-
poses, we selected the weighted average combination forecast that discounts past
forecast errors with a discount factor 6 = 0.95. The model leads to competitive
forecasts for most market indices and forecast horizons for both high- (black

line) and low-frequency (blue line) models. A dot on the line indicates that the

18When calculating the 10.1% the average loss for the low-frequency model excluded the
RB—ARFIMA—GARCH models for BSENS, GPTSE, HSE, MXX and N225 as the average
losses were clear outliers.

90ur results are therefore slightly different from those of Ma et al.| (2018).
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given model belongs to the superior set of models, i.e., the model leads to an
accuracy that is statistically similar to that of the other best performing models
in the set.

The differences in forecast accuracy tend to be large for short forecast hori-
zons and then decline with increasing horizon, i.e., high-frequency data are
most important for short forecast horizons. With increasing forecast horizon,
the differences tend to diminish, and in many instances, the forecasts converge.
Usually, the red line, namely, the combination from all individual forecasts,
lies in between the high- and low-frequency volatility forecasts suggesting that

combining forecasts from both approaches does not lead in increased forecast

accuracy@

<< Please insert Figure 2 around here>>

4.4. Results under squared forecast errors

In many practical instances, using the QLIKE is advantageous as it assigns
more weight for volatility underestimation. Alternatively, the means squared
forecast error (SFE),

(RViuw — FVin)® (32)

is a symmetric loss function that penalizes extreme under/overestimations more
severely, while in the presence of a noisy proxy, it also leads to consistent model
rankings (Pattonl [2011)).

In this section we present results for the MSFE. In order to do that, we only
need to re-estimate combination forecasts, where past forecast errors are now
weighted according to the SFE instead of the QLIKE. The resulting forecasts are
evaluated using the SFE. Figure 3 presents our main results, where we compare

the weighted combination forecasts (similarly as in Figures 2)@

200ur conclusions here are drawn only with respect to our simple combination methods.
More sophisticated methods might lead to different conclusions.

21Detailed tabulated results for h = 1, 5,22 are part of the electronic supplementary mate-
rial.
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<< Please insert Figure 3 around here>>

Similarly as before, the results show that with increasing forecast horizons,
low- and high-frequency volatility models lead to similar forecast errors. Even
though for short-term forecasts, high-frequency volatility models tend to lead to
lower forecast errors, for most market indices, these differences are statistically
insignificant. Therefore, our general conclusion that a low-frequency volatility
model forecast still matters appears to be even stronger than under the MSE
loss function.

A closer inspection revealed that almost all indices suffer from periods of
large forecast errors associated with periods of high market volatility. During
such periods, no model performs well, and the SFE from these periods are highly
influential when the forecasting accuracy is evaluated across the whole sample.
Consequently, it is difficult to statistically distinguish between forecast errors,
i.e. high- and low-frequency volatility forecasts provide statistically comparable

accuracy.

4.5. Asset allocation study

In this subsection, we present a portfolio study as an empirical application,
where we compare the Sharpe ratios of two asset allocation strategies. In the
original mean-variance portfolio theory, the utility function of a risk-averse in-
vestor is shown to be an increasing function of expected return, and a decreasing
function of return volatility, which is interpreted as a measure of risk. In the
first strategy, portfolio weights are managed using a high-frequency volatility
forecast model. In the second strategy, portfolio weights are managed using a

low-frequency volatility forecast model.

4.5.1. Portfolio construction

As our objective is the comparison of the consequences of using different
volatility forecasts, we opt for a rather simple portfolio model, where the allo-
cation is restricted to only two assets — the stock market index and a risk-free

asset , similarly to|Wang et al.| (2016]), |Luo et al.[(2019) and [Lyécsa & Todorova
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(2020). Our approach follows a U.S. investor with risk-free rates approximated
via the 3-month US T-bill and perfectly hedged foreign currency positions. This
investor can always hold only two assets: risk-free asset and a particular stock
market index.

The portfolio choice problem reduces to the calculation of weights w; ; max-

imizing the utility function
B [w;(Ri,s1. = RFi) + RFir4] = 2D [wio(Ri i — RFirs) + RFi) - (33)

Here, ¢ = 1,2,...,18 refers to the stock market index, R; g+ is its H-period
index return at time ¢, and RFpy, is the return for holding the T-bill between
t— H 41 and t. We allow for borrowing, but not short sales of the stock index
by imposing 0 < w;; < 1.5. In regard to the risk-aversion parameter, we allow
for v = 3, which represents low and v = 6 which is high risk aversion@ The
E[.] and D].] are the usual expectation and dispersion operators.

To calculate the optimal weights, we take (conditional) expectations on the
ex ante value R} ;, and volatility F'V; g+ of the index returns. Following its
performance reported in|Welch & Goyall (2007)), we consider the simple h-period
average return within the estimation window of W = 1000 days as the estimate
R} 4+ For the volatility, we directly use the forecasted F'V;, H,tg As we treat
the 3-month T-bill as a risk-free asset, its expected return (RFy ) is calcu-
lated as the yield at t — H + 1, scaled for the period of H days, matching the
forecast horizon. Accordingly, the covariance of the stock market index and
the risk-free asset is assumed to be zero over the investment horizon. Under
these assumptions, the stock market index optimal portfolio weight w;; may be

directly calculated as
* Ry, — RFy,

* YEVi bt (34)

22Results for v = 1,9 lead to qualitatively similar results and are available upon request.
23Note that we forecast the price variation directly. We therefore do not use the *2’ super-

script for F'V; g ¢.
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The weight for the risk-free asset is then simply 1 —w;,. Weights are updated
after each trading day using the past 1000 observations.

4.5.2. Portfolio performance evaluation

Let T° designate the set of time indices, excluding the subsample necessary
for the calculation of volatility forecasts and expected returns defined in the
previous subsection (i.e., the estimation window). The number of out-of-sample
periods is given by the cardinality |7°|. Additionally, let R; g and RFp 4
represent the H-period out-of-sample returns and yields at t € T°. We define

the portfolio return and excess portfolio return at ¢ € T as

rige = wiRimge+ (1—w)RFp, (35)

ripe = Wi Rige+ (1—w)RFgs— RFp, (36)

The average out-of-sample return and excess return is given by

|To ZTth i,h |To‘ Z Ty H,t (37)

teTe teTe

Mih =

Regarding the portfolio return volatility (Ji 1), we opt for the long-run volatility
estimator based on the approach of Andrews| (1991)), with the quadratic spectral
weighing scheme and automatic bandwidth parameter selection by Newey &
West| (1994), in order to account for the possible autocorrelation introduced by
using the moving windows in portfolio construction.

We compare the performance of the portfolios by Sharpe ratios, defined as

€
i i

SRi,H =
0i H

(38)

To formally evaluate the performance measured by Sharpe ratios for selected
strategies, we test for the null hypothesis of their equality using the robust sta-
tistical test of Ledoit & Wolf] (2008) based on studentized circular bootstrap of
Politis & Romano| (1994) and heteroscedasticity and autocorrelation consistent

standard errors; for details see Section 3.1 in |Ledoit & Wolf] (2008).
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4.5.8. Ewvaluation of the asset allocation study

We compare asset allocation along two strategies. In the first, F’ Vﬁf ; is pre-
dicted using the weighted average combination forecasts from high-frequency in-
dividual model forecasts. In the second, FVZLIf , is predicted using the weighted
average combination forecasts from low-frequency individual model forecasts.
Annualized@ Sharpe ratios across market indices and forecast horizons are re-

ported in Tables 6 - 7.
<< Please insert Table 6 around here>>
<< Please insert Table 7 around here>>

Note that in many instances, Sharpe ratios are negative. However, the pur-
pose of this study is not to find the most profitable strategy, but instead to
compare economic merit of the two strategies. There are two key observations
from the portfolio study. First, regardless of whether the analyst uses high-
or low-frequency volatility models, Sharpe ratios are very similar across mar-
ket indices and forecast horizons. As indicated by the [Ledoit & Wolfl (2008)
test, statistically significant differences are almost nonexistent. Second, larger
differences tend to systematically appear for short-term forecast horizons: how-
ever, they are almost never significant. These results suggest that in an asset
allocation framework, low-frequency volatility model forecasts are as useful as

high-frequency volatility model forecasts.

4.6. Implications for future studies

In our study, the proxy for the unobserved integrated variance is the 5-
minute realized volatility adjusted via the [Hansen & Lunde| (2005)) procedure.
This also includes microstructure noise, most notably variations due to intra-
day price discontinuities. One might consider modeling jump robust alternatives
(e.g. bipower variation of |Barndorff-Nielsen & Shephard, 2004, or median real-

ized volatility of |[Andersen et al.,[2012)). However, a straightforward comparison

24To annualized Sharpe ratios, we follow the non-iid approach of [Lo| (2002).
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of jump robust volatility estimators with range-based daily estimators is prob-
lematic as the formed excludes intraday jumps, while in the latter case the theo-
retical relationship between intraday price discontinuities and daily range-based
estimators is as yet unknown. In our study, we are interested in predictions of
the overall price variation over multiple days, using daily range-based estima-
tors. We are therefore constrained to compare the daily range-based estimator
with high-frequency estimator that also covers the whole price variation.

We have opted for an equal number of individual high- and low-frequency
volatility models. However, availability of intraday price variations leads to a
richer set of high-frequency HAR class volatility models than low-frequency
HAR class models. In our study, we use the benchmark HAR model, the

semivolatility HAR model, and the asymmetric volatility (leverage) HAR model.

Popular alternatives include the signed jump model of [Patton & Sheppard|
(2015), the continuous and jump component model of |Andersen et al. (2007)),

or the measurement error model of Bollerslev et al.| (2016). Another possibility

is to use more advanced estimation techniques, (see [Clements & Preve, [2019)

that allow for nonconstant HAR model coefficients (e.g. [Wang et all, 2016} [Luo|
2019)). The existing literature does not provide a clear guidance into what

models tend to systematically outperform the rest Iﬂ We therefore opted for

simpler models and combination forecasts that appear to perform adequately

across different asset classes (e.g., Wang et al. [2016} |[Ly6csa & Molndr, 2018).

The models used in this study only rely on price information from the given
market index. Several studies argue that accuracy of forecasting models can be

improved when data from other markets or sources are explored. For example,

Degiannakis & Filis| (2017) exploits variables from stock, foreign exchange, com-

(2018) exploit

modity markets and the macro-environment, Ly6csa & Molnar

information from related assets, Bollerslev et al.| (2018) from common volatility

25In a recent study on commodity market volatility, [Degiannakis et al.| (2020) show that
it is difficult to select specific model specification that would outperform other specifications.
Similar results for the nonferrous futures markets or oil and natural gas are found in
et al| (2017) and [Lydcsa & Molnar| (2018).
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components [Ly6csa & Todoroval (2020), and from intraday and overnight price
variations in market indices. However, by using relevant exogenous variables, we
would not be able to compare the usefulness of high- and low-frequency volatil-
ity estimators directly, which is the main purpose of this study. We expect that
relevant exogenous variables are likely to decrease the gap between high- and
low-frequency models. Our analysis might therefore be considered as a first step

that establishes that all is not lost with low-frequency volatility models.

5. Conclusion

The concept of realized volatility was introduced after the emergence of high-
frequency data, leading to more precise volatility estimates. With improved
computation speeds and memory management, volatility models employing re-
alized volatility measures have gained in popularity. Existing studies have shown
that high-frequency volatility models outperform low-frequency models (Ander-
sen et all [2003} [Koopman et al., 2005; Wei, |2012; Horpestad et al., [2019).
However, in the existing evidence, low-frequency volatility models are mod-
els estimated from daily returns, such as GARCH models. Since the highest
and lowest prices of the day contain additional information about volatility,
we consider low-frequency volatility models based on open, high, low and close
daily prices. Using a sample of 18 stock market indices, we compare these low-
frequency volatility models with high-frequency volatility models. The results
reveal that high-frequency volatility models tend to outperform low-frequency
volatility models in a one- to five-day-ahead out-of-sample forecasting setting.
However, at longer forecasting horizons, the differences in forecasting accuracy
tend to diminish and become statistically indistinguishable.

The intuition behind these results is that volatility has a long memory and
changes only gradually from day to day. Therefore, a precise estimate of the
current day’s volatility is very useful in predicting the volatility of the follow-
ing day. However, when we are interested in volatility levels weeks ahead, a

precise estimate of the current day’s volatility is not that important. Since
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for longer forecast horizons, the benefits of working with high-frequency data
might be limited, and high-frequency data are seldom freely available, in some
applications, low-frequency data might be sufficient.

We complement our main analysis with an asset allocation study. We show
that an asset allocation strategy that uses high-frequency volatility model fore-
casts does not outperform (in terms of Sharpe ratios) an asset allocation strategy
that uses low-frequency volatility model forecasts. This result holds across mar-
ket indices and forecast horizons. These results imply that in order to assess
the merit of a new high-frequency volatility model, it should be tested in a
multiple-day-ahead setting, benchmarked also against low-frequency volatility

models and validated in an economic application.
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Figure 1: Realized and range-based volatility

o =1
5 - o AORD & | BSESN
o ] 8 - b=
= |
g 2 2
> 5
5] g s
o o o
o o =1
S 1 : — 2 : : S 1 : :
~2000 2005 2010 2015 2020 2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
=5 o
= 21 cbaxi
4 w T B
& = e |
S = 51 i i |
= =]
=8 o | o i
(=] o o
S 1L : : — 2 ; : ; S 1 : ; :
:2000 2005 2010 2015 2020 2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
o y
S 1 GSPTSE| §4{ Hsl } =1 IBEX :
= S i =N |
| i
© | o i ]
S 1 = g |
c | =1 s |
(=3 o | o
(=] o o
S ; " " — o ; " = — o1 ; - - .
° 2005 2010 2015 2020 2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
29 IXIC IS KS11 | 1 KSE i
e || = | |
| o | o |
w : : o | g | [ II
s . s i wl I
= | i ! o | =} | ’ | i i | m
(=] o =1
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
1 MXX } 1 nNess 2 NSEl |
4 o 1
o | I =}
2| o2 |
3 | - o
| i | 21
E ¢ i | | =]
I | | 4
o o | N o
o o o
S — o ‘ : S 1 :
2000 2005 2010 2015 2020 :2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
&7 spx S 1 SsEC SSMI !
o (=] | |
° | ] i
4 o
- <3 | — |
© b= S A
=3 =3 = ) |
g ] (=] ] | :
o 7 o o
o o o
S i : — 21 . : S 1 : :
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
— RV (high-frequency) ——— RB (low-frequency)

Note: The lines correspond to raw (not annualized) series of realized and range-based
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Table 1: Overview of market indices

Index Country Country code Starting date # End date # of forecasts
AEX Netherlands NL 02.02.2000 25.06.2020 5195
AORD Australia AU 04.02.2000 25.06.2020 5149
BSESN India IN 03.02.2000 25.06.2020 5035
FCHI Fance FR 02.02.2000 25.06.2020 5199
FTSE United Kingdom GB 03.02.2000 25.06.2020 5142
GDAXI Germany DE 02.02.2000 25.06.2020 5168
GSPTSE  Canada CA 04.06.2002 24.06.2020 4515
HSI Hong Kong HK 02.02.2000 23.06.2020 4994
IBEX Spain ES 03.02.2000 25.06.2020 5164
IXIC United States Us 03.02.2000 24.06.2020 5112
KS11 South Korea KR 03.02.2000 25.06.2020 5017
KSE Pakistan PK 09.02.2000 25.06.2020 4955
MXX Mexico MX 02.02.2000 25.06.2020 5113
N225 Japan Jp 06.03.2000 23.06.2020 4958
NSEI India IN 03.02.2000 25.06.2020 5031
SPX United States Us 03.02.2000 23.06.2020 5113
SSEC China CN 17.02.2000 23.06.2020 4921
SSMI Switzerland CH 03.02.2000 25.06.2020 5106

Notes: Country codes refer to ISO 3166-1 «-2 abbreviations.
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Figure 2: Forecast comparison of QLIKE and MCS results across forecasting horizons
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corresponds to the weighted average combination forecast given by both high- and
low-frequency volatility models. A dot on the line means that the given forecast was
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lines, the two forecasts are statistically indistinguishable.
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Figure 3: Forecast comparison of MSE and MCS results across forecasting horizons
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Note: The y-axis is the average loss achieved by a weighted average combination
forecast. The black line corresponds to the weighted average combination forecast
given by high-frequency volatility models. The blue line corresponds to the weighted
average combination forecast given by low-frequency volatility models. The red line
corresponds to the weighted average combination forecast given by both high- and
low-frequency volatility models. A dot on the line means that the given forecast was
in the superior set of models. If dots are present for a given horizon in two or more
lines, the two forecasts are statistically indistinguishable.
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