INTERFACE royalsocietypublishing.org/journal/rsif Review l * J Check for Updates Cite this article: Voutsa V et al. 2021 Two classes of functional connectivity in dynamical processes in networks. J. R. Soc. Interface 18: 20210486. https://doi.Org/10.1098/rsif.2021.0486 Received: 12 June 2021 Accepted: 13 September 2021 Subject Category: Reviews Subject Areas: biocomplexity Keywords: scale-free graphs, modular graphs, random graphs, synchronisation, excitable dynamics, chaotic oscillators Author for correspondence: Marc-Thorsten Hütt e-mail: m.huett@jacobs-university.de Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare. c.5648010. THE ROYAL SOCIETY PUBLISHING Two classes of functional connectivity in dynamical processes in networks Venetia Voutsa1 , Demian Battaglia2,3 , Louise J. Bracken5 , Andrea Brovelli4 , Julia Costescu5 , Mario Diaz Muhoz6 , Brian D. Fath7 '8 '9 , Andrea Funk10 '11 , Mel Guirro5 , Thomas Hein1 0 , 1 1 , Christian Kerschner6,9 , Christian Kimmich9,12 , Vinicius Lima2,4 , Arnaud Messe13 , Anthony J. Parsons5 , John Perez5 , Ronald Poppl15 , Christina Prell14 , Sonia Recinos10 , Yanhua Shi9 , Shubham Tiwari5 , Laura Turnbull5 , John Wainwright5 , Harald Waxenecker9 and Marc-Thorsten Hutt1 department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany 2 Aix-Marseille Universite, Inserm, Institut de Neurosciences des Systemes (UMR 1106), Marseille, France 3 University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg 67083, France 4 Aix-Marseille Universite, CNRS, Institut de Neurosciences de la Timone (UMR 7289), Marseille, France department of Geography, Durham University, Durham DH1 3LE, UK department of Sustainability, Governance and Methods, Modul University Vienna, 1190 Vienna, Austria department of Biological Sciences, Towson University, Towson, Maryland 21252, USA advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg 2361, Austria department of Environmental Studies, Masaryk University, 60200 Brno, Czech Republic 10 lnstitute of Hydrobiology and Aguatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences Vienna (BOKU), 1180 Vienna, Austria "wasserCluster Lunz - Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5,3293 Lunz am See, Austria 12 Regional Science and Environmental Research, Institute for Advanced Studies, 1080 Vienna, Austria "Department of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany "Department of Cultural Geography, University of Groningen, 9747 AD, Groningen, The Netherlands ^Department of Geography and Regional Research, University of Vienna, Universitatsstr. 7,1010 Vienna, Austria VV, 0000-0001-6079-0292; MG, 0000-0003-1565-5686; TH, 0000-0002-7767-4607; AM, 0000-0001-9081-3088; YS, 0000-0001-7575-6177; LT, 0000-0002-3307-1214; M-TH, 0000-0003-2221-423X The relationship between n e t w o r k structure a n d d y n a m i c s is one of the most extensively investigated problems i n the theory of c o m p l e x systems of recent years. U n d e r s t a n d i n g this relationship is o f relevance to a range of d i s c i p l i n e s — f r o m neuroscience to g e o m o r p h o l o g y . A major strategy of investigating this relationship is the quantitative c o m p a r i s o n of a representation of n e t w o r k architecture (structural connectivity S C ) w i t h a (network) representation of the d y n a m i c s (functional connectivity F C ) . Here, w e s h o w that one c a n d i s t i n g u i s h t w o classes of functional connect i v i t y — o n e based o n simultaneous activity (co-activity) of nodes, the other based o n sequential activity o f nodes. W e delineate these t w o classes i n different categories of d y n a m i c a l processes—excitations, regular a n d chaotic oscillators—and p r o v i d e examples for S C / F C correlations of b o t h classes i n each of these models. W e e x p a n d the theoretical v i e w of the S C / F C relationships, w i t h conceptual instances o f the S C a n d the t w o classes of F C f o r v a r i o u s application scenarios i n g e o m o r p h o l o g y ecology systems b i o l o g y neuroscience a n d socio-ecological systems. Seeing the organisation of d y n a m i c a l processes i n a n e t w o r k either as governed b y co-activity o r b y sequential activity a l l o w s u s to b r i n g some order i n the m y r i a d of observations relating structure a n d function of c o m p l e x networks. © 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.0rg/licenses/by/4.O/, which permits unrestricted use, provided the original author and source are credited. 1. Introduction The relationship between network structure a n d dynamics has been at the forefront of investigation i n the field of complex systems d u r i n g the past decades, w i t h networks serving as p o w e r f u l abstract representations of real-world systems. H o w ever, a solid theoretical understanding of the generic features relating network structure a n d d y n a m i c s is still missing. Here, our strategy of investigating these features is v i a the quantitative comparison of network architecture (structural connectivity, SC) w i t h a network (or matrix) representation of the dynamics (functional connectivity, F C ) . W e establish k e y relationships using simple m o d e l representations of dynamics: excitable dynamics represented b y a stochastic cellular automaton, coupled phase oscillators, chaotic oscillators represented b y coupled logistic maps. W e validate these relationships i n coupled F i t z H u g h - N a g u m o oscillators, i n the excitable a n d the oscillatory regimes. Furthermore, w e give examples of h o w the t w o classes of F C can be applied to various application domains, i n w h i c h networks play a prominent role. The simplest w a y of representing time series of d y n a m i c a l elements as a network is to compute pairwise correlations. Often, one also k n o w s about the 'true' or 'static' connectivity of these d y n a m i c a l elements beforehand. The statistical question then arises i n a natural w a y , whether the k n o w n network (SC) a n d the network d e r i v e d f r o m the d y n a m i c a l observations (FC) are similar. A s w e w i l l see i n the applications, functional connectivity c a n either be thought of as d y n a m i c a l similarities of nodes o r flows (of material, activity, information, etc.) connecting t w o nodes. The simplicity of the d y n a m i c s i n c l u d e d i n our investigation allows us to w o r k w i t h this correlation-based approach. In case of a large heterogeneity of d y n a m i c a l elements, v e r y noisy dynamics, poor statistics (temporal sampling) or incomplete information, more sophisticated representations of d y n a m i c a l relationships a m o n g nodes are required [1-5]. Originating i n neuroscience [6], research into S C / F C correlations has become a p r o m i s i n g marker for changes i n systemic function a n d a means for exploring the principles u n d e r l y i n g the relationship between network architecture a n d d y n a m i c s — i n systems b i o l o g y [7,8], social sciences [9-11], g e o m o r p h o l o g y [12-14] a n d technology [15-17], just to name a few of the application areas. S u c h S C / F C relationships are at the same time markers for certain forms of systemic behaviour (e.g. a loss of S C / F C correlation m a y indicate pathological brain activity patterns [18]) a n d h i g h l y informative starting points for a mechanistic understanding of the system (e.g. revealing h i g h l y connected elements—hubs—as centres of self-organized excitation waves i n scale-free graphs [19,20]). W h i l e the systemic implications a n d the key results have been reviewed elsewhere [21], here w e w o u l d like to s h o w that across a range of d y n a m i c a l processes a n d n e t w o r k architectures some f u n d a m e n t a l c o m m o n principles exist. W e argue that one needs to distinguish between t w o types of functional connectivity, one related to synchronous activity (or co-activation), the other related to chains of events (or sequential activation). A system, like phase oscillators [22-24], f a v o u r i n g o n e type of functional connectivity (for this example, synchronization) c a n also d i s p l a y the other type of S C / F C correlations under certain conditions. A c o n d i t i o n here is characterized b y the n e t w o r k type, the strength of the c o u p l i n g of the d y n a m i c a l elements a n d the choice of further (intrinsic) parameters of each of the d y n a m i cal elements. Here, w e s h o w m a n y examples of transitions f r o m one type of S C / F C correlations to another type u n d e r changes of these conditions. Stylized models of d y n a m i c s often offer a deep mechanistic understanding of the d y n a m i c a l processes a n d phenomena and, i n particular, help discern h o w network architecture shapes the d y n a m i c a l behaviour. This point is illustrated b y the intense research over the past decades o n networks of coupled phase oscillators as a stylized m o d e l of oscillatory dynamics. T w o prominent examples of this line of investigation are the topological determinants of synchronizability [23,25], the lifetimes of intermediate synchronization patterns i n a time course towards full synchronization a n d their relationships to the network's m o d u l a r organization [22]. Remarkably, it is precisely this f o r m a l distinction between functional connectivity based o n co-activation a n d sequential activation that is often h a r d to discriminate i n more detailed (e.g. continuous) m o d e l s [26] a n d experimental data [27]. In the case of S C / F C correlations, the best-investigated stylized m o d e l is the—three-state cellular automaton—SER m o d e l of excitable d y n a m i c s [19,28,29]. K e y results include that the topological overlap [30] is h i g h l y associated w i t h functional connectivity based o n simultaneous activity, F C s m v a n d that v i a this m e c h a n i s m — a clustering of high topological overlap values w i t h i n m o d u l e s — m o d u l a r graphs display h i g h S C / F C correlations, w h i l e scale-free graphs tend to display low, or even systematically negative S C / F C correlations w i t h this definition of F C [28,30]. Furthermore, a large asymmetry of the sequential activation matrix (which is the foundation of functional connectivity based o n sequential activation, FCseq) can be associated w i t h self-organized waves a r o u n d hubs [20]. A d d i t i o n a l l y the role of cycles for organizing S C / F C correlations has been investigated [31] a n d i n the deterministic limit of the m o d e l , a theoretical framework for predicting S C / F C correlations has been established [30]. A s a first illustration of the tremendous p o w e r of p r o b i n g networks w i t h v a r i o u s types of d y n a m i c s , i n order to understand h o w n e t w o r k architecture determines some of the d y n a m i c a l features, i n figure 1, w e s h o w snapshots of d y n a m i c a l states for three real-life n e t w o r k s c o m i n g f r o m different d o m a i n s — N e u r o s c i e n c e (the macaque cortical area n e t w o r k f r o m [32]), systems b i o l o g y (the core metabolic system of the g u t bacterium Escherichia coli f r o m [33]) a n d social sciences (intra-organizational n e t w o r k of skills awareness i n a c o m p a n y f r o m [34])—under the action of three types of dynamics—excitable d y n a m i c s , phase oscillators, the logistic m a p as a n example of a chaotic oscillator. The real-life networks s h o w n i n figure 1 c a n all be considered examples of structural connectivity. T h e detailed description of the structure of these networks is g i v e n i n the electronic supplementary material. A n important question a r o u n d figure 1 is whether the three types of d y n a m i c s are plausible for the networks at h a n d . First, w e w o u l d like to emphasize that the strategy of our investigation is to probe n e t w o r k architectures b y simple prototypes (or v e r y stylized forms) of d y n a m i c s , rather than d e v i s i n g realistic m o d e l s of the most plausible f o r m of d y n a m i c s for each of these networks. In the case of the cortical area network, the excitable d y n a m i c s as w e l l as the oscillatory d y n a m i c s can be seen as stylized b u t plausible d y n a m i c a l probes a n d , i n fact, those have been p r e v i o u s l y e m p l o y e d to explore such n e t w o r k neural network metabolic network social network I 0.065 0.060 0.055 0.050 0.045 0.05 -0.05 •-0.10 [r 0.400 - 0.375 0.350 • 0.325 - 0.300 • V 0.275 ^ 1 0.060 0.055 0.050 0.045 0.040 0.035 0.030 0.08 0.07 0.06 0.05 0.06 irnal/i 0.04 irnal/i 0.02 0 -0.02 s - -0.04 R.Soc.Interfai 0.400 Interfai 0.375 0.350 OO 0.325 0.300 ho o ho 0.275 0.250 10486 Figure 1. An illustrative example of applying different categories of dynamical processes to real networks with different structures. Neural network: macaque cortical area network from [32]. Metabolic network: core metabolic system of the gut bacterium Escherichia coli from [33]. Social network: skills awareness network from [34]. SER: The mean activity of each node after 1000 timesteps, with a rate of spontaneous activity f= 0.001 and a recovery probability p = 0.1. Phase oscillators: The average effective frequency of each node for ten simulations of length T= 200 initialized with a uniform distribution of eigenfrequencies. Logistic map: The average standard deviation of the time series of each node for 10 simulations of 500 timesteps with the parameter R for each node randomly selected from a uniform distribution with ffmin = 3.7 and /?m a x = 3.9. b i3 structures [20,35-37]. B u t also chaotic d y n a m i c s , as i n the third r o w of figure 1, have been used to s t u d y neuronal connectivity patterns [38,39]. In the case of metabolic networks, synchronous activity patterns, a n d hence c o u p l e d phase oscillators, are a plausible f o r m of d y n a m i c s (see, for example, the arguments i n [40], where enzymes are described as cyclically operating devices, as w e l l as the prominent usage of correlation networks i n metabolomics [41^13]). A more pathway-oriented v i e w of m e t a b o l i s m m i g h t emphasize the propagation o f activity a n d , hence, w o u l d b e closer to t h e excitable d y n a m i c s s h o w n i n the first r o w of figure 1. Chaotic oscillators are clearly less relevant for this application d o m a i n . Interaction d y n a m i c s , contact d y n a m i c s a n d information f l o w i n a corporate setting unite aspects of excitable d y n a m i c s (as i n t h e case of r u m o u r spreading, [44]) o r synchronization [45,46]. B u t also chaotic d y n a m i c s have been e m p l o y e d to m o d e l decision d y n a m i c s a n d activity i n corporate settings [47-49]. The three m a i n messages of the illustration of d y n a m i c s o n real-life networks s h o w n i n figure 1 are: (1) T h e representation of complex systems as networks enables the p r o b i n g of such complex structures w i t h dynamics. (2) Different networks react differently to o n e type of dynamics. This general point can be seen for example i n figure 1 b y f o l l o w i n g one type of d y n a m i c s (e.g.excitable dynamics; first r o w i n figure 1) across the three networks a n d observing that groups of nodes acting together (similar colour, representing similar d y n a m i c a l states) c a n be either i n the periphery or i n the centre of these network representations. (3) A given network reacts differently to different d y n a m i c a l probes. This general feature c a n be seen b y f o l l o w i n g a single network across different types of d y n a m i c s (columns i n figure 1). Regions i n the g r a p h w i t h a similar d y n a m i c a l state (same colours) for one d y n a m i c s look heterogeneous (different colours) for another d y n a m i c s . A l s o , similarities occur. T h e periphery a n d the centre of the networks tend to behave differently i n a l l the examples o f d y n a m i c s s h o w n i n figure 1. It is obvious that s u c h a n illustration c a n o n l y p r o v i d e a single snapshot of the diverse d y n a m i c s possible o n such networks, even for a single type of dynamics, as the internal parameters at each node, as w e l l as the c o u p l i n g type a n d strength a m o n g t h e m c a n have different values. I n the following, w e w a n t to further explore the systematic changes of these d y n a m i c a l patterns as a function o f network architecture, coupling a n d internal d y n a m i c a l parameters a n d h o w this theoretical framework c a n be a p p l i e d to various disciplines. 2. Results and discussion W e create different instances that indicate the behaviour of the two classes of F C u s i n g various numerical schemes. T h e means of enhancing or destroying S C / F C correlations c a n be structural (i.e. d r i v e n b y network architecture) or d y n a m i c a l (induced b y changing the parameters o f the d y n a m i c a l model). T h e investigation i s organized a r o u n d the f o r m of change: §2.1 topological changes, §2.2 changes i n the c o u p l i n g strength, §2.3 changes of the intrinsic parameters of the i n d i v i d ual elements. In §2.4, w e illustrate these principles i n a case («) 0.7 0.6 0.5 £ 0.3 0.2 0.1 0 1 SC/FCsjm - S C / F C ! e q ! ! ^ : ( i 1 — ' — i =f ) 0.2 0.4 0.6 0 8 1.0 randomization (b) 0 •a io o g 20 5 30 : l 4 0 ° 50 0 10 20 30 40 m 50 SC 10 20 30 40 50 10 20 30 40 50 ft-*. A- ' 2 » a FC sim 10 20 30 40 50 FC seq 10 20 30 40 50 10 20 30 40 50 Km*- i«* 10 20 30 40 50 10 20 30 40 10 20 30 40 50 0 - —1 r . 10 2020 - • 5\_* . . • . > . . . j ; 30 • C - • ' ^ . ^ ••" t r m »• i,i > - . 40 * - • *^ v • v . - : - - . \>. 50 1 .• ."".rv Figure 2. (a) SC/FCsjm and SC/FCseq correlations across the randomization of a modular network, (b) Illustration of the SC and the FCsjm, FCseq matrices for three network cases, pointed out by the dashed vertical black lines on the left figure (original modular network, 30% randomized network and completely randomized network). The dynamical model used for the FC is the SER model (parameters: fmax = 10, NR = 10000, p = 0.1, f= 0.001.) study o n a network of coupled F i t z H u g h - N a g u m o oscillators i n the excitable a n d oscillatory regimes. U s i n g the three examples f r o m figure 1, i n §2.5, w e s h o w the behaviour of S C / F C correlations o n these real-world networks. 2.1. Topological changes The first part of our investigation is related to the effect of topology i n the S C / F C correlations. W e started w i t h networks w i t h a distinct structure (modular graph, hierarchical graph, regular graph), w h i c h w e gradually destroyed either b y r a n d o m i z i n g or b y rewiring the initial network (see M e t h o d s , §5). Figure 2 introduces the c o m p a r i s o n of structural connectivity a n d functional connectivity o n the matrix level, b y depicting the adjacency matrices o f t w o networks, together w i t h examples of the corresponding functional connectivity matrices d e r i v e d f r o m d y n a m i c s (here: the co-activation a n d sequential activation matrices obtained f r o m simulations of the S E R m o d e l ; see M e t h o d s , §5). This matrix v i e w o n S C / F C relationships is similar to fig. 1 i n [26] a n d fig. 1 i n [28] a n d a l l o w s u s to v i s u a l l y discern the strong positive correlation between the adjacency matrix a n d the co-activation matrix i n the case o f the m o d u l a r g r a p h (first row) a n d the apparent lack thereof i n the more r a n d o m g r a p h (second row), for w h i c h w e , however, can v i s u a l l y perceive a n agreement between the adjacency matrix a n d the sequential activation matrix. S o , here a change i n n e t w o r k t o p o l o g y goes a l o n g w i t h a change f r o m o n e type of S C / F C correlations (co-activation to sequential activation). This is the p h e n o m e n o n w e set out to explore further i n the following. In the electronic s u p p l e m e n t a r y material, figures S2 a n d S3 s h o w the same matrix view, but for c o u p l e d phase oscillators a n d logistic m a p s , respectively. I n figure S2 (phase oscillators) i n the electronic supplementary material, a v i s u a l inspection clearly s h o w s that the S C / F C correlations based o n sequential activation are m u c h weaker than the ones based o n co-activation. A l s o , S C / F C s j m remains visibly h i g h d u r i n g r a n d o m i z a t i o n . In figure S3 i n the electronic supplementary material (logistic maps), the lack o f correlation between co-activation a n d the m o d u l a r structure is clearly seen, as is the (faint, but discernible) agreement of this m o d ular structure w i t h sequential activation. C a r e f u l v i s u a l inspection also reveals the persisting positive S C / F C s e q correlations, as w e l l as the negative S C / F C g j m correlations, under r a n d o m i z a t i o n of the m o d u l a r network. I n figure S4 i n the electronic supplementary material examples of space—time plots for single runs o f the chaotic d y n a m i c s are s h o w n a n d this thus provides a microscopic v i e w o f the results s u m m a r i z e d i n figure 2. In figure 3, w e g o f r o m rather structured n e t w o r k topologies to rather unstructured r a n d o m n e t w o r k topologies. Figure 3 supports the v i s u a l impression f r o m the matrix examples s h o w n i n figure 2 b y s h o w i n g the t w o types of S C / F C correlations as a function of n e t w o r k r a n d o m i z a t i o n procedures, f o r the S E R m o d e l ( w h i c h w a s also used i n figure 2), as w e l l as t w o other types of d y n a m i c s , n a m e l y c o u p l e d phase oscillators a n d c o u p l e d logistic m a p s i n the chaotic regime (see M e t h o d s , §5). It s h o u l d b e noted that each o f these d y n a m i c a l m o d e l s has been instrumental i n the past i n a d v a n c i n g o u r u n d e r s t a n d i n g of f u n d a m e n t a l relationships between n e t w o r k architecture a n d d y n a m i c s (see, e.g. [19,30,50] for the S E R m o d e l , [22,24] f o r c o u p l e d phase oscillators, a n d [51,52] for the logistic maps). For the S E R m o d e l , w e see a trend that structured topologies favour h i g h S C / F C correlations o f b o t h types, whereas unstructured r a n d o m networks favour h i g h S C / F C s e q correlations. W e c a n also see that S C / F C s j m is v e r y sensitive to topological changes, i n contrast to S C / F C s e q , w h i c h , i n this case, shows a more stable behaviour. The networks of coupled phase oscillators behave i n almost the opposite way, where co-activation (rather than sequential activation) is favoured b y r a n d o m network structures a n d shows a more stable 0.8 I 0.6u 0.4- % u 0.2- 0-0 7modular to Erdds-Renyi 0.8 0.6 I _ ^ ^ ^ ^ SC/FCsim _ SC/FC , y \\ \ () 0 2 0 4 0 6 0 8 1 0 0.6 0.4 1 U 0.2 ° 5 .H 55 0 -0.2 -0.4 .2 U 0.4- 6; £ g 0.2a. 0- -0.2- 0 0 2 0 4 0 6 0 8 1 0 SC/FCsim 0.2 0.4 0.6 randomization 1.0 0.8 0.6 0.4 0.2 0 -0.2 0.8 0.6 0.4 0.2 0 -0.2 0.6 0.4 0.2 0 -0.2 -0.4 regular to Erdds-Renyi hierarchical to scale-free SC/FCsim cr/cf T seq \ 0.2 0.4 0.6 0.8 1.0 SC/FCsim SC/FC. 0.2 0.4 0.6 0.8 1.0 3C/FCsim () 0 2 0 4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0 -0.2 0.8 0.6 0.4 0.2 0 -0.2 0.6 0.4 0.2 0 -0.2 -0.4 rewiring SC/FCsimSC/FCsim 0.2 0.4 0.6 0.8 1.0 SC/FCsim SC/FQ„ 0.2 0.4 0.6 0.8 1.0 5C/FCsim5C/FCsim 0.2 0.4 0.6 0.8 randomization 1.0 Figure 3. SC/FCsjm and SC/FCseq correlations across the range of randomization/rewiring processes. First column: randomization of a modular graph. Second column: rewiring of a regular graph. Third column: randomization of a hierarchical graph in the three models. First row: SER model; parameters: fmax = 10, NR (over different initial conditions) = 10000, Wff (over different initial graphs) = 10, p = 0.1, f= 0.001. Second row: coupled phase oscillators; parameters: fmax = 50, Wff (over different initial conditions) = 100, NR (over different initial graphs) = 10, co e (0,1), k = 10, a = 0.25, u e (0,1). Third row: logistic map (chaotic oscillators); parameters: fmax = 500, Wff (over different initial conditions) = 50, R e (3.7, 3.9), k = 2. behaviour under topological changes. I n the case o f chaotic oscillators, the details about the n e t w o r k architecture a n d the selection o f the type of c o u p l i n g matter. For this case, the transition f r o m structured to unstructured networks does not affect the S C / F C s e q , but leads to strong negative correlations of the S C / F C s m v The hierarchical n e t w o r k is the o n l y one, though, i n w h i c h the destruction of the m o d u l a r i t y is n o t revealed f r o m the dynamics. For this graph, all the d y n a m i c a l models s h o w that the r a n d o m i z a t i o n does not essentially affect the value of S C / F C correlations, instead constant, l o w positive correlations o f S C / F C s e q a n d constant, l o w negative correlations o f S C / F C s j m a r e m a i n t a i n e d d u r i n g t h e r a n d o m i z a t i o n process. 2.2. Changes in coupling strength The second set o f o u r n u m e r i c a l experiments pertains to changes i n the c o u p l i n g strength a m o n g nodes. For this type of change, o n l y the models of the phase a n d chaotic oscillators can be used, as the S E R m o d e l — i n the f o r m used here—has no c o u p l i n g parameter ( w h i c h c o u l d , however, b e introduced v i a a relative excitation threshold, as i n [29,53]). Figure 4 shows that i n the case of c o u p l e d phase oscillators, all the n e t w o r k architectures stabilize S C / F C g ^ against changes o f c o u p l i n g strength. Large values o f c o u p l i n g strength lead t o r a p i d synchronization (co-activity o f the nodes) a n d therefore to inadequate a m o u n t o f information for the sequential activation. A s a result, seeing the structure of the n e t w o r k through the d y n a m i c s u s i n g the sequential activation is, i n this case, not possible. For the chaotic oscillators, w e observe general trends o f increasing S C / F C s e q w i t h increasing c o u p l i n g , reaching a m a x i m u m , a n d gradually decreasing for further increase of the c o u p l i n g , essentially across all n e t w o r k architectures (figure 4). 2.3. Changes in intrinsic parameters Each d y n a m i c a l m o d e l i s characterized b y specific intrinsic parameters that determine the b e h a v i o u r o f the i n d i v i d u a l elements a n d of the system, too. Changes i n the values of the intrinsic parameters m a y result i n drastic changes to the functional connectivity. I n this part o f the investigation, the t w o types of functional connectivity are studied as a function of such intrinsic parameters. W e are here attempting t o address the f o l l o w i n g question: i s there at least one class of the functional connectivity that c a n s u r v i v e u n d e r the changes of a d y n a m i c a l parameter of the m o d e l ? O r relatedly is it possible to observe the structure of the n e t w o r k t h r o u g h the d y n a m i c s even i f w e are consistently c h a n g i n g a n intrinsic parameter? The stochastic S E R m o d e l is characterized b y the recovery probability p, that determines if a node i n the refractory state w i l l return to the susceptible state. For the phase oscillators, w e use the range of natural frequencies as the intrinsic parameter. The logistic m a p has o n l y one intrinsic parameter, R, w h i c h defines the d y n a m i c a l behaviour o f the u n c o u p l e d modul argraph Erdos-Rényi graph Barabási-Albert graph hierarchical graph LQ b i3 Figure 4. SC/FCsjm and SC/FCseq correlations as a function of the coupling strength among the nodes in the two types of oscillators applied to different network architectures. First column: modular graph. Second column: Erdos-Renyi graph. Third column: Barabasi-Albert graph. Fourth column: hierarchical graph. First row: coupled phase oscillators; parameters: fmax = 50, Wp = 100 (over different initial conditions), Wp = 10 (over different initial graphs), w e (0,1), k = 10, a= 0.25, u e (0,1). Second row: logistic map (chaotic oscillators); parameters: fmax = 500, Wp = 50, /?e (3.7, 3.9), k=2. modular graph Erdos-Rényi graph Barabási-Albert graph hierarchical graph o CO (-0.1,0.1) (-0.1,0.1) (-0.6,0.6) 0.4 0.3 0.2 0.1 0 -0.1 -0.2 - SC/FC,h - S C / F C 0.4 0.3 0.2 0.1 0 -0.1 -0.2 - SC/FC,i ( - SC/FC, 0.4 0.3 0.2 0.1 0 -0.1 -0.2 - SC/FC ,i ( - SC/FC. 0.4 0.3 0.2 0.1 0 -0.1 -0.2 - SC/FC,i ( - S C / F C , , , Figure 5. SC/FCsjm and SC/FCseq correlations under changes of dynamical parameters in the three models. First row: SER model with increasing recovery probability (parameters: fmax =10, Wff = 10 000 (over initial conditions), Ng = 10 (over different initial graphs), f= 0.001). Second row: coupled phase oscillators under a widening of the distribution of the natural frequencies (parameters: fmax = 50, Wff = 100 (over initial conditions), Ng = 10 (over different initial graphs), k = 10, rj= 0.25, u e (0,1)). Third row: logistic map under a shift of /?average of the distribution of R within the interval (3.7, 3.9), keeping the width equal to 0.2 (parameters: fmax = 500, Wff = 50 (over initial conditions), k=2). Four network architectures were used for each model: First column: modular graph. Second column: Erdos-Renyi graph. Third column: Barabasi-Albert graph. Fourth column: hierarchical graph. oscillator. W e here v a r y the average R such that the u n c o u p l e d oscillator w o u l d reside i n the chaotic regime (3.7, 3.9). Figure 5 s h o w s the results of this part of the investigation. For the S E R m o d e l , w e see that n e t w o r k effects are consistent across the w h o l e parameter range. W e c a n see that S C / F C s m l is consistently h i g h f o r the m o d u l a r g r a p h a n d v e r y close to zero f o r a l l the other graphs, where, i n contrast, t h e S C / F C s e q h a s positive correlation values. F o r the phase oscillators, t h e w i d t h o f the frequency distribution matters: increasing w i d t h leads to a consistent decrease of S C / F C s m v b u t leaves S C / F C s e q intact i n a l l graphs, except for the m o d u l a r , i n w h i c h the behaviour of S C / F C s e q is similar t o S C / F C s m v T h e logistic m a p does n o t s h o w a n y parameter sensitivity of S C / F C correlations i n the different n e t w o r k architectures. 2.4. Additional case study The F i t z H u g h - N a g u m o m o d e l c a n b e u s e d as a case s t u d y verifying whether o u r previous results translate t o this (a) 0.7 I 0.6- 0.5 u 0.4- & u 0.3 - 0.2- 0.1 - 0 FitzHugh-Nagumo: excitable FitzHugh-Nagumo: oscillatory randomization SC/FC.r a S C 7 F C e [ ] - — () 0.2 0.4 0.6 0 8 1.0 0.2 0.4 0.6 0.8 randomization 1.0 Figure 6. SC/FC correlations from the FitzHugh-Nagumo model in excitable (a) and oscillatory (b) regime while randomizing random modular networks. The blue curves represent co-activation (i.e. a time window of 1 ms), while the red curves represent sequential activation (i.e. using a time window of 12 ms). more detailed, more realistic m o d e l . T o this end, w e study the behaviour of S C / F C correlations as a function of r a n d o m i z i n g a m o d u l a r g r a p h i n the oscillatory regime (a = 0) a n d i n the excitable regime (a = 0.8). T h e results of this more complicated m o d e l s h o w n i n figure 6 c o n f i r m the general observations d e r i v e d f r o m the t w o corresponding m i n i m a l models: the excitable d y n a m i c s enhance the S C / F C s e q across the transition of a m o d u l a r to a n E r d o s - R e n y i graph, whereas oscillations favour the S C / F C s m l across the r a n d o m i z a t i o n process. 2.5. SC/FC correlations in real networks W e c a n n o w return to the real-life n e t w o r k s f r o m figure 1 a n d study the t w o types of S C / F C correlations i n these networks as a function of the intrinsic parameters of the d y n a m i c a l models, as d o n e i n figure 5 f o r the abstract n e t w o r k architectures. T h e results are s u m m a r i z e d i n figure 7. R e g a r d i n g the S E R m o d e l , w e see h i g h S C / F C s e q correlations for the neural system a n d , i n contrast, h i g h S C / F C s j m correlations for the social system, u n d e r the increase of the recovery probability, w h i l e i n the case of the metabolic system, the type of S C / F C correlation that is higher depends strongly on the parameter value. F o r the phase oscillators, w e see initially h i g h correlations that approach zero v a l u e as w e increase the w i d t h of the eigenfrequencies distribution, w i t h the S C / F C g ^ to have constantly higher values. I n the metabolic network, d o m i n a n t a n d relatively strong a n d stable S C / F C s j m appears u n d e r the same changes of the o) distribution, whereas the zero values of S C / F C g ^ for the n a r r o w distributions give place to strong negative correlations as w e m o v e to w i d e r distributions. T h e behaviour of the social n e t w o r k is similar to the neural o n e , b u t w i t h lower S C / F C correlation values. T h e results for the logistic m a p are d o m i n a t e d b y S C / F C s e q correlations, independent of n e t w o r k architecture a n d parameter value. connectivity exist i n this d o m a i n a n d (3) h o w the t w o types of functional connectivity appear i n this setting. Throughout this investigation, w e have the f o l l o w i n g scenario i n m i n d : given a network (structural connectivity) a n d d y n a m i c a l processes for each of the nodes, w e analyse the time series observed at each node a n d derive relationships a m o n g the nodes (functional connectivity) i n order to understand h o w network architecture determines o r shapes the d y n a m i c a l relationships a m o n g nodes. This interplay of structure a n d d y n a m i c s is then illustrated b y a n d quantified i n terms of S C / F C correlations. T h e topic of d y n a m i c s o n graphs is, of course, m u c h broader than w e describe it here. T h e clear distinction between (static or s l o w l y changing) structural c o n n e c t i v i t y — w h i c h serves as 'infrastructure' for d y n a m i c a l processes—and (often r a p i d l y changing) functional connectivity is not plausible for a l l applications. A s a consequence, a debate about S C / F C correlations is not possible i n important areas of research. Often, i n those disciplines, the evolution of the network itself under the action of its agents (nodes) is investigated, therefore w e c a n o n l y conceptualize the F C i n the context of the evolution of the structure of the netw o r k . Social network analysis ( S N A ) is the m e t h o d o l o g y of choice for such situations [54] (see electronic supplementary material for more details). W h e n multiple relationships must b e taken into account to provide a more realistic a n d precise description of a complex system o r w h e n interactions g o b e y o n d the pairwise level (with examples f r o m systems biology being protein complexes or biochemical reactions), hypergraphs [55,56] can serve as a useful framework for representing these systems. Furthermore, if the structural network changes o n a similar timescale to functional connectivity or even under the influence of the functional dynamics, w e enter the rich field of adaptive networks [57-59]. In this case, inevitably, the topology influences the character of the collective dynamics of the system, b u t d y n a m i c s affect topology, too, leading to a continuing interplay between them. This is of particular relevance i n social-ecological systems (see §3.5). 3. Applications In this section, w e briefly review some areas of application to illustrate, (1) h o w structural connectivity c a n b e defined i n these contexts, (2) w h i c h approaches for d e f i n i n g functional 3.1. Application to geomorphology W i t h i n h y d r o l o g y a n d geomorphology, the examples of structurally connected pathways that w e w i l l discuss here are those that direct the f l o w of water a n d sediment over the S C / F C s t a S C / F C s e q 3 u 3 ft. o U 1 ft ° 5 0.6 0.4 0.2 0 -0.2 0.6 0.4 0.2 0 -0.2 -0.4 (-0.1,0.1) 0.4- 0.2 - 0-0.2 • -0.4 neural network metabolic network social network 0 0.2 0.4 0.6 C P .8 1.0 S C / F C s i m SC/FC.._ seq (-0.6, 0.6) 0) — S C / F C s i m S C / F C s e q S C / F C s i m S C / F C s e q 0.2 0 -0.2 -0.4 S C / F C s i m SC/FCs e q • - 0 0.2 0.4 P 0.6 0.8 1.0 SC/FCs i r SC/FCs e n \ SC/FCs i r SC/FCs e n \ (-0.1,0.1) 0.4" 0.2 0 -0.2 -0.4 S C / F C s i m SC/FC seq (-0.6, 0.6) 3.65 3.70 3.75 3.80 3.85 3.65 3.70 3.75 3.80 3.85 " S C / F C s i m 3.65 3.70 3.75 3.80 3.85 Figure 7. SC/FCsjm and SC/FCseq correlations for the three real-life networks under changes of dynamical parameters in the three models, as in §2.3. First column: neural network. Second column: metabolic network. Third column: social network. First row: SER model; parameters: fmax = 10, Wff (over different initial conditions) = 10000, f= 0.001. Second row: coupled phase oscillators; parameters: fmax = 50, Wff=100 (over different initial conditions), /r = 10, ~\0 Xi(t) = S o r R . Separating the nodes into the two categories (active or inactive) is a convenient way to define the t w o classes of functional connectivity. The co­activation matrix is Q = 5>(f)c,­(f), t and the sequential activation matrix is S? = $ > ( f ) c , ­ ( f ­ l ) . t It should be noted that different normalizations of these quantities can be envisioned (see [28] for a detailed discussion). For all the cases where the SER model was used, we simulated NR = 10 000 runs of i m a x = 10 (unit timestep) with randomly generated initial conditions, with 6% of the nodes to be i n the E state and the rest to be i n S or R state with an equiprobability. The information for the F C matrices was accumulated by initially taking the sum over the time of each matrix, and then by taking the s u m over the multiple runs. The S C / F C correlations were computed with the Pearson correlation between the flattened adjacency and the co­activation/sequential activation matrix. The final average value was computed as the mean of the correlations from the 10 different initial graphs, and the errors as the standard deviation of these correlation values. W e obtain the main results using the recovery probability p = 0.1 and transmission probability/= 0.001. 5.4. Phase oscillators The second, also well studied, model studied here is the Kuramoto model [118,284]. It describes the behaviour of a large set of coupled phase oscillators and their transition to synchronization. W e use it here i n a variant, where the oscillators are coupled according to the architecture of a given network [24]. Each of the oscillators has a n intrinsic natural frequency (or 'eigenfrequency') &>,­ and all of them are equally coupled with their neighbours with coupling k. The evolution of the phase of a node i n a population of N oscillators is governed b y the following dynamics: - £ = W I + Ň S A i j s i n { d i ~ 0 i ) ' i = 1 N This model has been instrumental i n the past for understanding h o w network topology determines synchronizability [23] and h o w synchronization patterns emerge from architectural features of networks [22]. Investigating the behaviour of the two classes of FC , i n this model, requires oscillators that have not reached the total synchronization, w h i c h indicates the absolute ' w i n ' of the co­activation. Thus, Gaussian noise, scaled b y amplitude a, was added i n order to delay the synchronization process. d-0- k ^ -r1 = COÍ + — V AH siní Oj -6Í) + ( = ^ ' + f ' W + 1 ) ­ ei{f) Z a l t'=t-M for some suitable choice of a time w i n d o w At. For a continuous model, such as the coupled phase oscillators, the definition of the two classes of functional connectivity is not possible i n a parameter­free manner. In equation (5.1), for St = 0, we have strict co­activation and with increasing time lag St a transition from correlations dominated by co­activation to correlations dominated b y sequential activation (before the two timeseries of effective frequencies essentially de­couple). Particularly, the decision of the appropriate selection of the time lag for the sequential activation was based o n the results of S C / F C correlations as a function of the coupling strength for different values of time lag. In the electronic supplementary material, figure S5 shows the multiple curves of the different time delay values for a modular and an E R graph. While the effect of the increasing time delay i n a m o d ular graph is the gradual decrease of the S C / F C correlation, i n the ER graph three groups of curves emerge. The first one corresponds to the co­activity of the nodes (includes the zero and time lag equal to 1), the second group includes the curve that corresponds to the time­delay 2 and, i n this case, is the appropriate selection for the sequential activation, since larger values for the time delay, which constitutes the third group of curves, have zero contribution in the sequential activation. For this case, we simulated NR = 100 runs over f m a x = 50 using the Euler method, with randomly generated initial conditions from the uniform distribution (—n, TI) o n different graphs with non­identical oscillators. The integration timestep for the solution of the system was equal to 0.1. The Gaussian noise was selected to have zero mean, unit variance and it was scaled b y amplitude a = 0.25. The eigenfrequencies were uniformly selected from the interval (0,1). The size of the time w i n d o w we selected At for the effective frequency was equal to 20 and the F C matrices were constructed from the Pearson correlation of the effective frequencies between each pair of nodes. The diagonal elements are zero, b y default. A s i n the SER model, the S C / F C correlations were computed with the Pearson correlation of the flattened adjacency and F C matrices. F or the latter one, the sum, over multiple runs, was taken and the average correlation values derived from the S C / F C correlations of 10 different initial networks; the corresponding errors derived from the standard deviation of these 10 values. F or the main results, we selected a coupling strength equal to 10. 5.5. Logistic map The third model that was used as a dynamical probe of network architectures is the logistic map. Such dimensional maps (also termed finite­difference equations or recursion relations) are used to describe the evolution of one variable over discrete steps i n time, following a template of the form xM =f(xf). The logistic map xi+i = Rx,(l - xt) is the most well­known example of this class of dynamical models [285]. Starting from a stable fixed point at low R, the system undergoes a sequence of period­doubling bifurcations with increasing R leading to a large regime of deterministic chaos, occasionally interrupted b y small periodic windows. Systems of coupled logistic maps have been studied extensively as a model for spatio­temporal pattern formation [286] and o n networks [51,52,287]. The coupled system has the form k N Xi(t + l)=RjXi(t)(l-Xi(t)) + t ; 1 = 1, where k is the coupling strength a n d Ay is the network's adjacency matrix (structural connectivity). Note that w e impose additional constraints o n the system to force each xt(t) to be i n the interval x e [0, 1]. W e define F C as the correlation between the timeseries of the nodes for zero time lag (co-activation) and a time lag of 1 (sequential activation): Cjj = corr,(x;(f), Xj{t)), Si, = corr,(x,-(f), Xj(t + 1)). We simulated NR = 50 runs over f m a x = 500 (unit timestep) w i t h randomly generated initial conditions from the uniform distribution (0,1). The parameter R was randomly selected b y each oscillator from the interval (3.7, 3.9). For the m a i n results, the coupling strength that was used was equal to 2. The F C matrices were constructed from the Pearson correlation between the time series of the x variable (diagonal elements are zero b y default). The S C / F C correlations derived from the comparison of the flattened adjacency a n d F C matrices, b y taking the Pearson correlation, after each run. The average correlation value derived from the mean correlation values over the multiple runs a n d the errors from the standard deviation of the correlation values over the multiple runs. 5.6. FitzHugh-Nagumo model A s a more sophisticated model of excitable dynamics a n d regular oscillations, w e use the F i t z H u g h - N a g u m o model [288,289], a two-dimensional model of ordinary differential equations (ODEs). The F i t z H u g h - N a g u m o model is composed of two coupled variables, where x represents the membrane potential a n d y is the recovery variable: x?(f) •Vi{t) (d) the randomization process of a modular graph i n the excitable and i n the oscillatory regime. A s w i t h the logistic map, coupled F i t z H u g h - N a g u m o oscillators have been employed i n a range of investigations focusing on spatio-temporal pattern formation [290] a n d collective dynamics i n networks [26]. We simulated 10 runs, using the Euler method to solve the system. The total time of each simulated r u n was 180 s a n d the integration step 0.1 ms. W e downsampled the output at 1 ms and we used this to calculate the F C . The F C s m l matrix derived from the s u m of the co-activation matrices over the time of each run. The co-activation matrices were constructed as i n the SER model, after discretizing the time series (spike detection) w i t h a threshold equal to one a n d using a time w i n d o w equal to 1 ms. For the FCseq matrices, various widths of time w i n d o w s were selected i n order to discretize the time series a n d detect the spikes. Larger time w i n d o w s include both spikes that occur simultaneously a n d sequentially, thus, from the whole activity within the window, the co-activity (time w i n d o w 1 ms) was subtracted. The calculation of S C / F C correlations derived from the flattened adjacency a n d functional connectivity matrices, after excluding the diagonal elements. The final correlation values came from the mean value of the 10 correlation values from the different runs a n d the errors from the corresponding standard deviation. The co-activity of the nodes, as well as the sequential activity of the nodes, using different w i n d o w sizes, were tested under different values for the coupling strength and the noise amplitude for both the excitable (a = 0.8) a n d oscillatory regime (a = 0) (see electronic supplementary material, S6). The selected parameter values for the system are /? = 0.6, y=l, rx = 0.001, Ty = 0.1. The random numbers for the noise ux were selected from a normal distribution w i t h zero mean a n d unit variance, whose amplitudes were scaled b y a a n d w i t h a n additional scaling parameter y/dt/rx (At is the size of the integration step). The scaling term for the uy is equal to zero. For the main results, we selected the coupling strength (divided b y the average degree i n the network) equal to 0.044, the amplitude of the noise equal to a = 0.15 a n d the time w i n d o w of 12 ms for the sequential activation. b ho o ho o C O and ßyit)+a, where (d) is the average degree i n the network, xx, Ty are the timescale parameters for each variable, again k the coupling strength among the connected nodes, vx, vy are random variables d r a w n from a Gaussian distribution of zero mean a n d unit variance and a the amplitude of the noise. In the xy plane, w e can distinguish three regions a n d the intersection of the nullclines of the system (see electronic supplementary material, figure SI), dxj(t)/dt = 0 A dyi(t)/dt = 0 defines the fixed point. Hence, depending o n the region that the fixed point is placed, the system can be found either i n the oscillatory or i n the excitable regime. By shifting the linear nullcline (changing the parameter a), w e can move from region 1 (excitable regime) to region 2 (oscillatory regime). Here, we plot the correlation values during Data accessibility. This article has no additional data. The Python codes used for the numerical simulations will be available from the authors upon request. Authors' contributions. V.V. and M.-T.H. designed research. V.V. and A . M . wrote computational code and performed simulations. V.V. and M.-T.H. analysed results and wrote the framework of the paper. L.J.B., J.C., M.G., A.J.P., J.P., R.P., ST., L.T. and J.W. wrote the geomorphology section. A.F., T . H . and S.R. wrote the freshwater ecology section. M.T.H. wrote the systems biology section. D.B., A.B. and V L . wrote the neuroscience section. M . D . M . , B.F., C.Ker., C.Kim., Y.S. and H.W. wrote the social-ecological systems section. C P . wrote §1.2 of the Electronic Supplementary Material and contributed to the application section. A l l authors read and approved the final version of the paper. Competing interests. We declare we have no competing interests. Funding. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement N o . 859937. References 1. Mukherjee S, Speed TP. 2008 Network inference 2. Marbach D, Prill RJ, Schaffter T, Mattiussi C, using informative priors. Proc. Natl Acad. Sei. USA Floreano D, Stolovitzky G. 2010 Revealing strengths 105,14313-14318. (doi:10.1073/pnas.0802272105) and weaknesses of methods for gene network inference. Proc. Natl Acad. Sci. USA 107, 6286-6291. (doi:10.1073/pnas. 0913357107) 3. Marbach D et at. 2012 Wisdom of crowds for robust gene network inference. Hat. Methods 9, 796-804. (doi:10.1038/nmeth.2016) 4. Zhao J, Zhou Y, Zhang X, Chen L. 2016 Part mutual information for quantifying direct associations in networks. Proc. Natl Acad. Sei. USA 113, 5130-5135. (doi:10.1073/pnas.1522586113) 5. Newman MEJ. 2018 Network structure from rich but noisy data. Nat. Phys. 14, 542-545. (doi:10.1038/ s41567-018-0076-1) 6. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran J-P, Meuli R, Hagmann P. 2009 Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sei. USA 106, 2035-2040. (doi:10.1073/pnas.0811168106) 7. Sonnenschein N, Dzib JPG, Lesne A, Eilebrecht S, Boulkroun S, Zennaro M-C, Benecke A, Hütt M-T. 2012 A network perspective on metabolic inconsistency. BMC Syst. Biol. 6, 41. (doi:10.1186/1752-0509-6-41) 8. Ideker T, Krogan NJ. 2012 Differential network biology. Mol. Syst. Biol. 8, 565. (doi:10.1038/msb. 2011.99) 9. Dong Y, Zha Q, Zhang H, Kou G, Fujita H, Chiclana F, Herrera-Viedma E. 2018 Consensus reaching in social network group decision making: research paradigms and challenges. Knowledge-Based Syst. 162,3-13. (doi:10.1016/j.knosys.2018.06.036) 10. Jal iIi M. 2013 Social power and opinion formation in complex networks. Physica A 392, 959-966. (doi:10.1016/j.physa.2012.10.013) 11. Potts R, Vella K, Dale A, Sipe N. 2016 Exploring the usefulness of structural-functional approaches to analyse governance of planning systems. Planning Theory 15, 162-189. (doi:10.1177/ 1473095214553519) 12. Wainwright J, Turnbull L, Ibrahim TG, LexartzaArtza I, Thornton SF, Brazier RE. 2011 Linking environmental regimes, space and time: interpretations of structural and functional connectivity. Geomorphology 126, 387-404. (doi:10.1016/j.geomorph.2010.07.027) 13. Baartman JEM et al. 2020 What do models tell us about water and sediment connectivity? Geomorphology 367, 107300. (doi:10.1016/j. geomorph.2020.107300) 14. Wohl E et al. 2019 Connectivity as an emergent property of geomorphic systems. Earth Surf. Processes Landforms 44, 4-26. (doi:10.1002/esp. 4434) 15. Boguna M, Krioukov D, Claffy KC. 2009 Navigability of complex networks. Nat. Phys. 5, 74-80. (doi:10. 1038/nphys1130) 16. Meyer M, Hütt M-T, Bendul JC. 2015 The elementary flux modes of a manufacturing system: a novel approach to explore the relationship of network structure and function. Int. J. Prod. Res. 54, 16. (doi:10.1080/00207543.2015.1106612) 17. Li Y, Tao F, Cheng Y, Zhang X, Nee AYC. 2017 Complex networks in advanced manufacturing systems. J. Manut. Syst. 43, 409-421. (doi:10.1016/ j.jmsy.2016.12.001) 18. Zhang J, Zhang Y, Wang L, Sang L, Yang J, Yan R, Li P, Wang J, Qiu M. 2017 Disrupted structural and 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 32. 33. functional connectivity networks in ischemic stroke patients. Neuroscience 364, 212-225. (doi:10.1016/ j.neuroscience.2017.09.009) Müller-Linow M, Hilgetag CC, Hütt M-T. 2008 Organization of excitable dynamics in hierarchical biological networks. PLoS Comput. Biol. 4, e1000190. (doi:10.1371/journal.pcbi.1000190) Moretti P, Hütt M-T. 2020 Link-usage asymmetry and collective patterns emerging from rich-club organization of complex networks. Proc. Natl Acad. Sei. USA 117, 18332-18340. (doi:10.1073/pnas. 1919785117) Turnbull L et al. 2018 Connectivity and complex systems: learning from a multi-disciplinary perspective. Appl. Netw. Sei. 3, 1-49. (doi:10.1007/ s41109-018-0067-2) Arenas A, Diaz-Guilera A, Pérez-Vicente CJ. 2006 Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102. (doi:10.1103/PhysRevLett.96.114102) Arenas A, Diaz-Guilera A, Kurths J, Moreno Y, Zhou C. 2008 Synchronization in complex networks. Phys. Rep. 469, 93-153. (doi:10.1016/j.physrep.2008.09.002) Rodrigues FA, D.M. Peron TK, Ji P, Kurths J. 2016 The Kuramoto model in complex networks. Phys. Rep. 610, 1-98. (doi:10.1016/j.physrep.2015. 10.008) Chen M, Shang Y, Zhou C, Wu Y, Kurths J. 2009 Enhanced synchronizability in scale-free networks. Chaos 19, 013105. (doi:10.1063/1.3062864) Messe A, Hütt M-T, König P, Hilgetag CC. 2015 A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks. Sei. Rep. 5, 1-5. (doi:10.1038/ srep07870) Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo DR. 2013 Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett. 110, 178101. (doi:10.1103/PhysRevLett.110.178101) Garcia GC, Lesne A, Hütt M-T, Hilgetag CC. 2012 Building blocks of self-sustained activity in a simple deterministic model of excitable neural networks. Front. Comput. Neurosci. 6, 50. (doi:10.3389/fncom. 2012.00050) Fretter C, Lesne A, Hilgetag CC, Hütt M-T. 2017 Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs. Sei. Rep. 7, 42340. (doi:10.1038/srep42340) Messe A, Hütt M-T, Hilgetag CC. 2018 Toward a theory ofreactivationpatterns in excitable neural networks. PLoS Comput. Biol. 14, e1006084. (doi:10. 1371/journal.pcbi.1006084) Garcia GC, Lesne A, Hilgetag CC, Hütt M-T. 2014 Role of long cycles in excitable dynamics on graphs. Phys. Rev. E 90, 52805. (doi:10.1103/PhysRevE.90. 052805) Markov NT et al. 2014 A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24,17-36. (doi:10.1093/cercor/ bhs270) Palsson B. 2015 Systems biology. Cambridge, UK: Cambridge University Press. 34. Cross RL, Cross RL, Parker A. 2004 The hidden power of social networks: understanding how work really gets done in organizations. Boston, MA: Harvard Business Review Press. 35. Wu Z, Guo A. 1999 Selective visual attention in a neurocomputational model of phase oscillators. Biol. Cybern. 80, 205-214. (doi:10.1007/s004 220050518) 36. Corchs S, Deco G. 2001 A neurodynamical model for selective visual attention using oscillators. Neural Netw. 14, 981-990. (doi:10.1016/S0893- 6080(01)00055-7) 37. Messe A, Rudrauf D, Benali H, Marrelec G. 2014 Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities. PLoS Comput. Biol. 10, e1003530. (doi:10.1371 /joumal.pebi.1003530) 38. Babloyantz A, Lourenco C. 1994 Computation with chaos: a paradigm for cortical activity. Proc. Natl Acad. Sei. USA 91, 9027-9031. (doi:10.1073/pnas. 91.19.9027) 39. Xu K, Maidana JP, Castro S, Orio P. 2018 Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators. Sei. Rep. 8, 1-12. (doi:10.1038/s41598-018-26730-9) 40. Becker T, Beber ME, Windt K, Hütt M-T, Helbing D. 2011 Flow control by periodic devices: a unifying language for the description of traffic, production, and metabolic systems. J. Stat. Meek Theory Exp. 2011, P05004. (doi: 10.1088/1742-5468/2011 /05/ P05004) 41. Camacho D, De La Fuente A, Mendes P. 2005 The origin of correlations in metabolomics data. Metabolomies 1, 53-63. (doi:10.1007/s11306-005- 1107-3) 42. Müller-Linow M, Weckwerth W, Hütt M-T. 2007 Consistency analysis of metabolic correlation networks. BMC Syst. Biol. 1, 1-12. (doi:10.1186/ 1752-0509-1-1) 43. Kumar S, D'Souza RN, Corno M, Ullrich MS, Kuhnert N, Hütt M-T. 2020 Correlation network analysis based on untargeted LC-MS profiles of cocoa reveals processing stage and origin country. bioRxiv. (doi:10.1101/2020.02.09.940585) 44. Moreno Y, Nekovee M, Pacheco AF. 2004 Dynamics of rumor spreading in complex networks. Phys. Rev. E 69, 066130. (doi:10.1103/PhysRevE.69. 066130) 45. Helbing D. 2012 Social self-organization: agentbased simulations and experiments to study emergent social behavior. New York, NY: Springer. 46. Nowak AK, Vallacher RR, R.Praszkier, Rychwalska A, Zochowski M. 2020 Synchronization in groups and societies. In In sync: the emergence of function in minds, groups and societies (understanding complex systems), pp. 113-136. New York, NY: Springer. 47. Dooley KJ, Van de Ven AH. 1999 Explaining complex organizational dynamics. Organ. Sei. 10,358-372. (doi:10.1287/orsc.10.3.358) 48. Whitby S, Parker D, Tobias A. 2001 Non-linear dynamics and duopolistic competition: a R&D model and simulation. J. Bus. Res. 51, 179-191. (doi:10.1016/S0148-2963(99)00050-8) b o C O Yuan X, Nishant R. 2019 Understanding the complex relationship between R&D investment and firm growth: a chaos perspective. J. Bus. Res. 129, 666-678. (doi:10.1016/j.jbusres.2019.11.043) Damicelli F, Hilgetag CC, Hütt M-T, Messe A. 2019 Topological reinforcement as a principle of modularity emergence in brain networks. Netw. Neurosa. 3, 589-605. (doi:10.1162/netn_a_00085) Lind PG, Gallas JAC, Herrmann HJ. 2004 Coherence in scale-free networks of chaotic maps. Phys. Rev. E 70, 056207. (doi:10.1103/PhysRevE.70.056207) Masoller C, Atay FM. 2011 Complex transitions to synchronization in delay-coupled networks of logistic maps. Eur. Phys. J. D 62, 119-126. (doi:10. 1140/epjd/e2011-10370-7) Hütt M-T, Jain MK, Hilgetag CC, Lesne A. 2012 Stochastic resonance in discrete excitable dynamics on graphs. Chaos, Solitons & Fractals 45, 611-618. (doi:10.1016/j.chaos.2011.12.011) Prell C. 2012 Social network analysis: history, theory and methodology. Los Angeles, CA: Sage. Klamt S, Haus U-U, Theis F. 2009 Hypergraphs and cellular networks. PLoS Comput. Biol. 5, e1000385. (doi:10.1371/journal.pcbi.1000385) Battiston F, Cencetti G, lacopini I, Latora V, Lucas M, Patania A, Young J-G, Petri G. 2020 Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1-92. (doi:10.1016/j. physrep.2020.05.004) Gorochowski TE, Bernardo MD, Grierson CS. 2012 Evolving dynamical networks: a formalism for describing complex systems. Complexity 17,18-25. (doi:10.1002/cpIx.20386) Maslennikov OV, Nekorkin VI. 2017 Adaptive dynamical networks. Phys. Usp. 60, 694. (doi:10. 3367/UFNe.2016.10.037902) Battaglia D et al. 2020 Dynamic functional connectivity between order and randomness and its evolution across the human adult lifespan. Neurolmage 222, 117156. (doi:10.1016/j. neuroimage.2020.117156) Nunes JP, Wainwright J, Bielders CL, Darboux F, Fiener P, Finger D, Turnbull L. 2018 Better models are more effectively connected models. Earth Surf. Processes Landforms 43, 1355-1360. (doi:10.1002/ esp.4323) Era's T, Olden JD, Schick RS, Schmera D, Fortin M. 2012 Characterizing connectivity relationships in freshwaters using patch-based graphs. Landsc. Ecol. 27, 303-317. (doi:10.1007/s10980-011-9659-2) Schick RS, Lindley ST. 2007 Directed connectivity among fish populations in a riverine network. J. Appl. Ecol. 44, 1116-1126. (doi:10.1111/j.1365- 2664.2007.01383.x) Marra WA, Kleinhans MG, Addink EA. 2014 Network concepts to describe channel importance and change in multichannel systems: test results for the Jamunariver,Bangladesh. Earth Surf. Processes Landforms 39, 766-778. (doi:10.1002/esp.3482) Tejedor A, Longjas A, Zaliapin I, Foufoula-Georgiou E. 2015 Delta channel networks: 1. A graphtheoretic approach for studying connectivity and steady state transport on deltaic surfaces. Water Resour. Res. 51, 3998-4018. (doi:10.1002/ 2014WR016577) 65. Passalacqua P. 2017 The delta connectome: a network-based framework for studying connectivity in river deltas. Geomorphology 277, 50-62. (doi:10. 1016/j.geomorph.2016.04.001) 66. Pearson SG, van Prooijen BC, Elias EPL, Vitousek S, Wang ZB. 2020 Sediment connectivity: a framework for analyzing coastal sediment transport pathways. J. Geophys. Res.: Earth Surface 125, e2020JF005595. (doi:10.1029/2020JF005595) 67. Trigg MA, Michaelides K, Neal JC, Bates PD. 2013 Surface water connectivity dynamics of a large sale extreme flood. J. Hydro! 505, 138-149. (doi:10. 1016/j.jhydrol.2013.09.035) 68. Abed-Elmdoust A, Singh A, Yang Z-L. 2017 Emergent spectral properties of river network topology: an optimal channel network approach. Sci. Rep. 7,1-9. (doi:10.1038/s41598-017-11579-1) 69. Rigon R, Rinaldo A, Rodriguez-lturbe I, Bras RL, Ijjasz-Vasquez E. 1993 Optimal channel networks: a framework for the study of river basin morphology. Water Resour. Res. 29, 1635-1646. (doi:10.1029/ 92WR02985) 70. Balister P, Balogh J, Bertuzzo E, Bollobas B, Caldarelli G, Maritan A, Mastrandrea R, Morris R, Rinaldo A. 2018 River landscapes and optimal channel networks. Proc. Natl Acad. Sci. USA 115, 6548-6553. (doi:10.1073/pnas.1804484115) 71. Jencso KG, McGlynn BL, Gooseff MN, Wondzell SM, Bencala KE, Marshall LA. 2009 Hydrologic connectivity between landscapes and streams: transferring reach- and plot-scale understanding to the catchment scale. Water Resour. Res. 45, W04428. (doi:10.1029/2008WR007225) 72. Turnbull L, Wainwright J. 2019 From structure to function: understanding shrub encroachment in drylands using hydrological and sediment connectivity. Ecol. Indie. 98, 608-618. (doi:10.1016/ j.ecolind.2018.11.039) 73. Rinderer M, AN G, Larsen LG. 2018 Assessing structural, functional and effective hydrologic connectivity with brain neuroscience methods: state-of-the-art and research directions. Earth Sci. Rev. 178, 29-47. (doi:10.1016/j.earscirev.2018. 01.009) 74. Turnbull L, Wainwright J, Brazier RE. 2010 Changes in hydrology and erosion over a transition from grassland to shrubland. Hydro! Process.: An Int. J. 24, 393-414. (doi:10.1002/hyp.7491) 75. Phillips RW, Spence C, Pomeroy JW. 2011 Connectivity and runoff dynamic in heterogeneous basins. Hydro! Processes 25, 3061-3075. (doi:10. 1002/hyp.8123) 76. Zuecco G, Rinderer M, Penna D, Borga M, van Meerveld HJ. 2019 Quantification of subsurface hydrologic connectivity in four headwater catchments using graph theory. Sci. Total Environ. 646, 1265-1280. (doi:10.1016/j.scitotenv. 2018.07.269) 77. Keefer TO, Moran MS, Paige GB. 2008 Long-term meteorological and soil hydrology database, walnut gulch experimental watershed, Arizona, United States. Water Resour. Res. 44, W05S07. (doi:10. 1029/2006WR005702) 78. Zaliapin I, Foufoula-Georgiou E, Ghil M. 2010 Transport on river networks: a dynamic tree approach. J. Geophys. Res.: Earth Surface 115, F00A15. (doi:10.1029/2009JF001281) 79. Czuba JA, Foufoula-Georgiou E. 2014 A networkbased framework for identifying potential synchronizations and amplifications of sediment delivery in river basins. Water Resour. Res. 50, 3826-3851. (doi:10.1002/2013WR014227) 80. Sanchez-Andres R, Sanchez-Carrillo S, Ortiz-Llorente MJ, Alvarez-Cobelas M, Cirujano S. 2010 Do changes in flood pulse duration disturb soil carbon dioxide emissions in semi-arid floodplains? Biogeochemistry 101, 257-267. (doi:10.1007/s10533-010-9472-z) 81. Ashauer R, Boxall ABA, Brown CD. 2007 Modeling combined effects of pulsed exposure to carbaryl and chlorpyrifos on Gammarus pulex. Environ. Sci. Techno! 41, 5535-5541. (doi:10.1021/es070283w) 82. Parsons AJ, Wainwright J, Abrahams AD, Simanton JR. 1997 Distributed dynamic modelling of interrill overland flow. Hydro! Processes 11, 1833-1859. (doi:10.1002/(SICI)1099-1085(199711)11:14<1833:: AID-HYP499>3.0.C0;2-7) 83. Mueller EN, Wainwright J, Parsons AJ. 2007 Impact of connectivity on the modeling of overland flow within semiarid shrubland environments. Water Resour. Res. 43, W09412. (doi:10.1029/ 2006WR 005006) 84. Korup 0. 2005 Large landslides and their effect on sediment flux in south westland, New Zealand. Earth Surface Process. Landforms: The J. British Geomorpho! Res. Group 30, 305-323. (doi:10.1002/ esp.1143) 85. Croissant T, Steer P, Lague D, Davy P, Jeandet L, Hilton RG. 2019 Seismic cycles, earthquakes, landslides and sediment fluxes: linking tectonics to surface processes using a reduced-complexity model. Geomorphology 339, 87-103. (doi:10.1016/ j.geomorph.2019.04.017) 86. Tunnicliffe J, Brierley G, Fuller IC, Leenman A, Marden M, Peacock D. 2018 Reaction and relaxation in a coarse-grained fluvial system following catchment-wide disturbance. Geomorphology 307, 50-64. (doi:10.1016/j.geomorph.2017.11.006) 87. Betterle A, Schirmer M, Botter G. 2017 Characterizing the spatial correlation of daily streamflows. Water Resour. Res. 53, 1646-1663. (doi:10.1002/2016WR019195) 88. Crake J, Fryirs K, Thompson C. 2013 Channelfloodplain connectivity during an extreme flood event: implications for sediment erosion, deposition, and delivery. Earth Surf. Processes Landforms 38, 1444-1456. (doi:10.1002/esp.3430) 89. Borrett SR, Scharler UM. 2019 Walk partitions of flow in ecological network analysis: review and synthesis of methods and indicators. Eco! Indie. 106, 105451. (doi:10.1016/j.ecolind.2019.105451) 90. Siqueira T, Duraes LD, de Oliveira Roque F. 2014 Predictive modelling of insect metacommunities in biomonitoring of aquatic networks. In Ecological modelling applied to entomology (eds C Ferreira, W Godoy), pp. 109-126. New York, NY: Springer. (doi:10.1007/978-3-319-06877-0_5) 91. Bodin Ö, Saura S. 2010 Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol. Modell 221, 2393-2405. (doi:10.1016/j. ecolmodel.2010.06.017) 92. Erö's T, Olden JD, Schick RS, Schmera D, Fortin M-J. 2012 Characterizing connectivity relationships in freshwaters using patch-based graphs. Landsc. Ecol. 27, 303-317. (doi:10.1007/s10980-011-9659-2) 93. Erö's T, Lowe WH. 2019 The landscape ecology of rivers: from patch-based to spatial network analyses. Curr. Landsc. Ecol. Rep. 4, 103-112. (doi:10.1007/s40823-019-00044-6) 94. Minor ES, Urban DL. 2008 A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Bi ol. 22, 297-307. (doi:10.1111/J.1523-1739.2007.00871 .x) 95. Bohlen PJ, Groffman PM, Driscoll CT, Fahey TJ, Siccama TG. 2001 Plant—soil—microbial interactions in a northern hardwood forest. Ecology 82, 965-978. (doi:10.1890/ 0012-9658(2001 )082[0965:PSMIIA]2.0.CO;2) 96. Baldan D, Piniewski M, Funk A, Gumpinger C, Flödl P, Höfer S, Hauer C, Hein T. 2020 A multi-scale, integrative modeling framework for setting conservation priorities at the catchment scale for the freshwater pearl mussel Mwgwi ti fera margaritifera. Sei . Total Environ. 718, 137369. (doi:10.1016/j.scitotenv.2020.137369) 97. Heino J et al. 2017 Integrating dispersal proxies in ecological and environmental research in the freshwater realm. Environ. Rev. 25, 334-349. (doi:10.1139/er-2016-0110) 98. Saura S, Rubio L. 2010 A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33, 523-537. (doi:10. 1111/j.1600-0587.2009.05760.x) 99. Schick RS et al. 2008 Understanding movement data and movement processes: current and emerging directions. Ecol. Lett. 11,1338-1350. (doi:10.1111/j. 1461-0248.2008.01249.x) 100. Tonkin JD, Altermatt F, Finn DS, Heino J, Olden JD, Pauls SU, Lytle DA. 2018 The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshwater Biol. 63, 141-163. (doi:10.1111/fwb.13037) 101. Calabrese JM, Fagan WF. 2004 A comparisonshopper's guide to connectivity metric. Front. Ecol. Environ. 2, 529-536. (doi:10.1890/1540- 9295(2004)002[0529:ACGTCM]2.0.C0;2) 102. Neufeld K, Watkinson DA, Tierney K, Poesch MS. 2018 Incorporating asymmetric movement costs into measures of habitat connectivity to assess impacts of hydrologic alteration to stream fishes. Divers. Di stri buti ons 24, 593-604. (doi:10.1111/ ddi.12713) 103. Larsen S et al. 2021 The geography of metapopulation synchrony in dendritic river networks. Ecol. Lett. 24, 791-801. (doi:10.1111/ele.13699) 104. Muneepeerakul R, Weitz JS, Levin SA, Rinaldo A, Rodriguez-lturbe I. 2007 A neutral metapopulation model of biodiversity in river networks. J. Theor. Biol. 245, 351-363. (doi:10.1016/j.jtbi.2006.10.005) 105. Gilarranz LJ, Hastings A, Bascompte J. 2015 Inferring topology from dynamics in spatial networks. Theor. Ecol. 8, 15-21. (doi:10.1007/ s12080-014-0231-y) 106. Terui T, Kobayashi S, Okubo Y, Murakami M, Hirose K, Kubo H. 2018 Efficacy and safety of guselkumab, an anti-interleukin 23 monoclonal antibody, for palmoplanar pustulosis: a randomized clinical trial. JAMA Dermatol. 154, 309-316. (doi:10.1001/ jamadermatol.2017.5937) 107. K elly CR, K ahn S, Kashyap P, Laine L, Rubin D, Atreja A, Moore T, Wu G. 2015 Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 149, 223-237. (doi:10.1053/j. gastro.2015.05.008) 108. Holland MD, Hastings A. 2008 Strong effect of dispersal network structure on ecological dynamics. Nature 456, 792-794. (doi:10.1038/nature07395) 109. Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Lugue B, Bascompte J. 2009 The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018-1020. (doi:10.1038/nature07950) 110. Hajian-Forooshani Z, Vandermeer J. 2021 Viewing communities as coupled oscillators: elementary forms from Lotka and Volterra, Kuramoto. Theor. Ecol. 14, 1-8. (doi:10.1007/s12080-020-00493-4) 111. Lotka AJ. 1925 Elements of physical biology. Baltimore, MD: Williams & Wilkins. 112. Volterra V. 1926 Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Memoire della R. Accademia Nazionale dei Lincei, anno CCCCXXIII, II. 1926. (Fluctuations in the abundance of a species considered mathematically). Nature 118, 558-560. (doi:10.1038/118558a0) 113. Brechtel A, Grämlich P, Ritterskamp D, Drossel B, Gross T. 2018 Master stability functions reveal diffusion-driven pattern formation in networks. Rhys. Rev. E 97, 032307. (doi:10.1103/PhysRevE.97. 032307) 114. Dame RF, Patten BC. 1981 Analysis of energy flows in an intertidal oyster reef. Mar. Ecol. Progress Ser. 5, 115-124. (doi:10.3354/meps005115) 115. Rudolf VHW, Lafferty KD. 2011 Stage structure alters how complexity affects stability of ecological networks. Ecol. Lett. 14, 75-79. (doi:10.1111/j. 1461-0248.2010.01558.x) 116. Christian RR, Thomas CR. 2003 Network analysis of nitrogen inputs and cycling in the Neuse River estuary, North Carolina, USA. Estuari es 26, 815-828. (doi:10.1007/BF02711992) 117. Winfree AT. 1967 Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Bi ol. 16, 15-42. (doi:10.1016/0022- 5193(67)90051-3) 118. K uramoto Y. 1975 Self-entrainment of a population of coupled non-linear oscillators. In Int. Symp. on Mathematical Problems in Theoretical Physics, 23-29 January 1975, Kyoto University, Kyoto, Japan (ed. H Araki), pp. 420-422. New York, NY: Springer. 119. Rinaldo A, Gatto M, Rodriguez-lturbe I. 2018 River networks as ecological corridors: a coherent ecohydrological perspective. Adv. Water Res. 112, 27-58. (doi:10.1016/j.advwatres. 2017.10.005) 120. Chaput-Bardy A, Alcala N, Secondi J, Vuilleumier S. 2017 Network analysis for species management in rivers networks: application to the Loire river. Biol. Conserv. 210, 26-36. (doi:10.1016/j.biocon. 2017.04.003) 121. Hanski I, Ovaskainen 0. 2003 Metapopulation theory for fragmented landscapes. Theor. Popul. Biol. 64, 119-127. (doi:10.1016/S0040- 5809(03)00022-4) 122. Arumugam R, Lutscher F, Guichard F. 2021 Tracking unstable states: ecosystem dynamic in a changing world. Oikos 130, 525-540. (doi:10.1111/ oik.08051) 123. Gilarranz LJ, Hastings A, Bascompte J. 2015 Inferring topology from dynamics in spatial networks. Theor. Ecol. 8, 15-21. (doi:10.1007/ s12080-014-0231-y) 124. Lugue S, Saura S, Fortin M-J. 2012 Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data. Landsc. Ecol. 27, 153-157. (doi:10. 1007/s10980-011-9700-5) 125. Moore JW et al. 2015 Emergent stability in a large, free-flowing watershed. Ecology 96,340-347. (doi:10.1890/14-0326.1) 126. Terui A, Ishiyama N, Urabe H, Ono S, Finlay JC, Nakamura F. 2018 Metapopulation stability in branching river networks. Proc. Natl Acad. Sci . USA 115, E5963-E5969. (doi:10.1073/pnas.1800060115) 127. Shen-Orr SS, Milo R, Mangan S, Alon U. 2002 Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64-68. (doi:10.1038/ng881) 128. Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U. 2004 Just-in-time transcription program in metabolic pathways. Nat. Genet. 36, 486-491. (doi:10.1038/ng1348) 129. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ. 2000 Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Bi ol. Cell 11, 369-391. (doi:10.1091/mbc.11.1.369) 130. Li F, Long T, Lu Y, Ouyang Q, Tang C. 2004 The yeast cell-cycle network is robustly designed. Proc. Natl Acad. Sci . USA 101, 4781-4786. (doi:10.1073/pnas. 0305937101) 131. Davidich Ml, Bornholdt S. 2008 Boolean network model predicts cell cycle seguence of fission yeast. PLoS ONE 3, e1672. (doi:10.1371 /journal.pone. 0001672) 132. Bornholdt S. 2005 Less is more in modeling large genetic networks. Science 310, 449-451. (doi:10. 1126/science.1119959) 133. Le Nověre N. 2015 Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 16, 146-158. (doi:10.1038/nrg3885) 134. Hiitt M-T, Lesne A. 2020 Gene regulatory networks: dissecting structure and dynamics. In 5ysfems medicine: i ntegrati ve, guali tati ve and computati onal b o C O approaches (ed. Olaf Wolkenhauer), pp. 77-85. Amsterdam, The Netherlands: Elsevier. 135. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL. 2000 The large-scale organization of metabolic networks. Nature 407, 651-654. (doi:10.1038/ 35036627) 136. Beber ME, Fretter C, Jain S, Sonnenschein N, Müller-Hannemann M, Hütt MT. 2012 Artefacts in statistical analyses of network motifs: general framework and application to metabolic networks. J. R. Soc. Interface 9, 3426-3435. (doi:10.1098/rsif. 2012.0490) 137. Hütt M-T. 2014 Understanding genetic variation the value of systems biology. Br. J. Clin. Pharmacol. 77, 597-605. (doi:10.1111/bcp.12266) 138. Knecht C, Fretter C, Rosenstiel P, Krawczak M, Hütt MT. 2016 Distinct metabolic network states manifest in the gene expression profiles of pediatric inflammatory bowel disease patients and controls. Sei. Rep. 6,32584. (doi:10.1038/srep32584) 139. Perrin-Cocon L et al. 2021 Lipogenesis and innate immunity in hepatocellular carcinoma cells reprogrammed by an isoenzyme switch of hexokinases. Commun. Biol. 1, 1-15. (doi:10.1101/ 2020.03.13.973321) 140. Nyczka P, Hütt M-T, Lesne A. 2021 Inferring pattern generators on networks. Physica A 566, 125631. (doi:10.1016/j.physa.2020.125631) 141. Orth JD, Thiele I, Palsson B0. 2010 What is flux balance analysis? Nat. Biotechnol. 28, 245-248. Cdoi:10.1038/nbt.1614) 142. O'Brien Edward J, Monk Jonathan M, Palsson Bernhard 0. 2015 Using genome-scale models to predict biological capabilities. Cell 161, 971-987. (doi:10.1016/j.cell.2015.05.019) 143. Fell DA. 1992 Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J. 286, 313-330. (doi:10.1042/ bj2860313) 144. Cascante M, Boras LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PW-N. 2002 Metabolic control analysis in drug discovery and disease. Nat. Biotechnol. 20, 243-249. (doi:10.1038/ nbt0302-243) 145. Oughtred R et al. 2019 The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47, 529-541. (doi:10.1093/nar/gky1079) 146. Moreno-Zambrano M, Grimbs S, Ullrich MS, Hütt MT. 2018 A mathematical model of cocoa bean fermentation. R. Soc. Open Sei. 5, 180964. (doi:10. 1098/rsos.180964) 147. Jones EG. 1999 Golgi, cajal and the neuron doctrine. Hist. Neurosci. 8, 170-178. (doi:10.1076/jhin.8.2. 170.1838) 148. Sporns O, Tononi G, Kötter R. 2005 The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42. (doi:10.1371/ journal.pcbi.0010042) 149. Sebastian Seung H. 2011 Towards functional connectomics. Nature 471, 171-172. (doi:10.1038/ 471170a) 150. Kötter R. 2004 Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2, 127-144. [doi:10.1385/NI:2:2:127) 151. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey 0, Wedeen VJ, Sporns 0. 2008 Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159. (doi:10.1371 /journal.pbio.0060159) 152. Chiang A-S et al. 2011 Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1-11. (doi:10.1016/j.cub.2010.11.056) 153. Van Essen DC et al. 2012 The human connectome project: a data acguisition perspective. Neurolmage 62, 2222-2231. (doi:10.1016/j. neuroimage.2012.02.018) 154. Oh SW et al. 2014 A mesoscale connectome of the mouse brain. Nature 508, 207-214. (doi:10.1038/ naturel 3186) 155. Van den Heuvel MP, Bullmore ET, Sporns 0. 2016 Comparative connectomics. Trends Cogn. Sei. 20, 345-361. (doi:10.1016/j.tics.2016.03.001) 156. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013 Connectomic reconstruction of the inner plexiform layer in the mouse retina. nature 500, 168-174. (doi:10.1038/nature12346) 157. Markram H et al. 2015 Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456-492. (doi:10.1016/j.cell.2015.09.029) 158. Eichler K et al. 2017 The complete connectome of a learning and memory centre in an insect brain. Nature 548, 175-182. (doi:10.1038/nature23455) 159. Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H. 2013 A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80, 184-197. (doi:10.1016/j.neuron.2013.07.036) 160. Cherniak C. 1994 Component placement optimization in the brain. J. Neurosci. 14, 2418-2427. (doi:10.1523/JNEUROSCI.14-04- 02418.1994) 161. Chklovskii DB, Schikorski T, Stevens CF. 2002 Wiring optimization in cortical circuits. Neuron 34, 341-347. (doi:10.1016/S0896-6273(02)00679-7) 162. Sporns 0, Kötter R. 2004 Motifs in brain networks. PLoS Biol. 2, e369. (doi:10.1371/journal.pbio. 0020369) 163. Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB. 2005 Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68. (doi:10.1371/journal.pbio.0030068) 164. Perin R, Berger TK, Markram H. 2011 A synaptic organizing principle for cortical neuronal groups. Proc. Natl Acad. Sei. USA 108, 5419-5424. (doi:10. 1073/pnas.1016051108) 165. Van Den Heuvel MP, Sporns 0. 2011 Rich-club organization of the human connectome. J. Neurosci. 31, 15 775-15 786. (doi:10.1523/JNEUROSCI.3539- 11.2011) 166. Sizemore AE, Giusti C, Kahn A, Vettel JM, Betzel RF, Bassen DS. 2018 Cligues and cavities in the human connectome. J. Comput. Neurosci. 44, 115-145. (doi:10.1007/s10827-017-0672-6) 167. Bassen DS, Sporns 0. 2017 Network neuroscience. Nat. Neurosci. 20, 353-364. (doi:10.1038/nn.4502) 168. Carandini M, Heeger DJ. 2012 Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51-62. (doi:10.1038/nrn3136) 169. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Fristen KJ. 2012 Canonical microcircuits for predictive coding. Neuron 76, 695-711. (doi:10. 1016/j.neuron.2012.10.038) 170. Fornito A, Zalesky A, Breakspear M. 2015 The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159-172. (doi:10.1038/nrn3901) 171. Marr D, Poggio T. 1976 From understanding computation to understanding neural circuitry. Cambridge, MA: MIT. 172. Fox MD, Raichle ME. 2007 Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700-711. (doi:10.1038/nrn2201) 173. Buzsaki G. 2006 Rhythms of the brain. Oxford, UK: Oxford University Press. 174. Wang X-J. 2010 Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195-1268. (doi:10. 1152/physrev.00035.2008) 175. Varela F, Lachaux J-P, Rodriguez E, Martinerie J. 2001 The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229-239. (doi:10.1038/35067550) 176. Brunei N, Wang X-J. 2003 What determines the freguency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol. 90, 415-430. (doi:10.1152/jn.01095.2002) 177. Fries P. 2015 Rhythms for cognition: communication through coherence. Neuron 88, 220-235. (doi:10. 1016/j.neuron.2015.09.034) 178. Roelfsema PR, Engel AK, König P, Singer W. 1997 Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157-161. (doi:10.1038/ 385157a0) 179. Fries P, Reynolds JH, Rorie AE, Desimone R. 2001 Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560-1563. (doi:10.1126/science.1055465) 180. Canolty RT, Knight RT. 2010 The functional role of cross-freguency coupling. Trends Cogn. Sei. 14, 506-515. (doi:10.1016/j.tics.2010.09.001) 181. Uhlhaas PJ, Singer W. 2012 Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 75, 963-980. (doi:10.1016/j.neuron.2012. 09.004) 182. Friston KJ. 2011 Functional and effective connectivity: a review. Brain Connectivity 1,13-36. (doi:10.1089/brain.2011.0008) 183. Liu L, loannides AA. 2006 Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces. Neurolmage 31, 1726-1740. (doi:10.1016/j. neuroimage.2006.02.009) 184. Abeles M. 1991 Corticonics: neural circuits of the cerebral cortex. Cambridge, UK: Cambridge University Press. 185. Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R. 2004 Synfire chains and cortical songs: temporal modules of cortical activity. Science 304, 559-564. (doi:10.1126/science.1093173) 186. Mitra A, Snyder AZ, Blazey T, Raichle ME. 2015 Lag threads organize the brain's intrinsic activity. Proc. Natl Acad. Sci. USA 112, E2235-E2244. (doi:10. 1073/pnas.l 503960112) 187. Battaglia D, Witt A, Wolf F, Geisel T. 2012 Dynamic effective connectivity of inter-areal brain circuits. PLoS Comput. Biol. 8, e1002438. (doi:10.137V journal.pcbi.1002438) 188. Bastos AM, Vezoli J, Fries P. 2015 Communication through coherence with inter-areal delays. Curr. Opin Neurobiol. 31, 173-180. (doi:10.1016/j.conb. 2014.11.001) 189. Carlos F-LP, Ubirakitan M-M, Rodrigues MCA, Aguilar-Domingo M, Herrera-Gutierrez E, GomezAmor J, Copelli M, Carelli PV, Matias FS. 2020 Anticipated synchronization in human EEG data: unidirectional causality with negative phase lag. Phys. Rev. E 102, 032216. (doi:10.1103/PhysRevE. 102.032216) 190. Deschle N, Daffertshofer A, Battaglia D, Martens EA. 2019 Directed flow of information in chimera states. Front. Appl. Math. Stat. 5, 28. (doi:10.3389/fams. 2019.00028) 191. Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL. 2004 Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by granger causality. Proc. Natl Acad. Sci. USA 101, 9849-9854. (doi:10.1073/pnas. 0308538101) 192. Ding M, Chen Y, Bressler SL. 2006 Granger causality: basic theory and application to neuroscience. In Handbook of Time Series Analysis: Recent Theoretical Developments and Applications (eds B Schelter, M Winterhalder, J Timmer), pp. 437-460. Weinheim, Germany: Wiley-VCH. 193. Gregoriou GG, Gotts SJ, Zhou H, Desimone R. 2009 High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324, 1207-1210. (doi:10.1126/science. 1171402) 194. Dhamala M, Rangarajan G, Ding M. 2008 Estimating Granger causality from Fourier and wavelet transforms of time series data. Phys. Rev. Lett. 100, 018701. (doi:10.1103/PhysRevLett.100.018701) 195. Bastos AM, Vezoli Julien, Bosman CA, Schoffelen J-M, Oostenveld R, Dowdall JR, De Weerd P, Kennedy H, Fries P. 2015 Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85,390-401. (doi:10.1016/j.neuron.2014.12.018) 196. Michalareas G, Vezoli J, Van Pelt S, Schoffelen J-M, Kennedy H, Fries P. 2016 Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89, 384-397. (doi:10.1016/j.neuron.2015. 12.018) 197. Holme P, Saramaki J. 2012 Temporal networks. Phys. Rep. 519, 97-125. (doi:10.1016/j.physrep. 2012.03.001) 198. Calhoun VD, Miller R, Pearlson G, Adah T. 2014 The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84, 262-274. (doi:10.1016/j.neuron.2014. 10.015) 199. loannides AA. 2007 Dynamic functional connectivity. Curr. Opin Neurobiol. 17, 161-170. (doi:10.1016/j. conb.2007.03.008) 200. Brovelli A, Badier J-M, Bonini F, Bartolomei F, Coulon O, Auzias G. 2017 Dynamic reconfiguration of visuomotor-related functional connectivity networks. J. Neurosci. 37, 839-853. (doi:10.1523/ JNEUROSCI.1672-16.2016) 201. Braun U et al. 2015 Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl Acad. Sci. USA 112, 11 678-11 683. (doi:10.1073/pnas.1422487112) 202. Lombardo D et al. 2020 Modular slowing of restingstate dynamic functional connectivity as a marker of cognitive dysfunction induced by sleep deprivation. Neurolmage 222, 117155. (doi:10.1016/j. neuroimage.2020.117155) 203. Pedreschi N, Bernard C, Clawson W, Quilichini P, Barrat A, Battaglia D. 2020 Dynamic core-periphery structure of information sharing networks in entorhinal cortex and hippocampus. Netw. Neurosci. 4, 946-975. (doi:10.1162/netn_a_00142) 204. Clawson W, Vicente AF, Ferraris M, Bernard C, Battaglia D, Quilichini PP. 2019 Computing hubs in the hippocampus and cortex. Sci. Adv. 5, eaax4843. (doi:10.1126/sciadv.aax4843) 205. Kirst C, Timme M, Battaglia D. 2016 Dynamic information routing in complex networks. Nat. Commun. 7, 1-9. (doi:10.1038/ncomms11061) 206. Battaglia D. 2014 Function follows dynamics: statedependency of directed functional influences. In Directed information measures in neuroscience, (eds M Wibral, R Vicente, J Lizier) pp. 111-135. New York, NY: Springer. (doi:10.1007/978-3-642- 54474-3_5) 207. Kopell NJ, Gritton HJ, Whittington MA, Kramer MA. 2014 Beyond the connectome: the dynome. Neuron 83, 1319-1328. (doi:10.1016/j.neuron. 2014.08.016) 208. Ghosh A, Rho Y, Mcintosh AR, Kdtter R, Jirsa VK. 2008 Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput. Biol. 4, e1000196. (doi:10.1371/journal.pcbi. 1000196) 209. Marder E, Goaillard J-M. 2006 Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563-574. (doi:10.1038/nrn1949) 210. Marrelec Guillaume, Messé Arnaud, Giron Alain, Rudrauf David. 2016 Functional connectivity's degenerate view of brain computation. PLoS Comput. Biol. 12, e1005031. (doi:10.1371/journal. pcbi.1005031) 211. Stetter 0, Battaglia D, Soriano J, Geisel T. 2012 Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Comput. Biol. 8, e1002653. (doi:10.1371/journal. pcbi.1002653) 212. Honey CJ, Kdtter R, Breakspear M, Sporns 0. 2007 Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240-10 245. (doi:10.1073/pnas.0701519104) 213. Deco G, Jirsa VK, Mcintosh AR. 2011 Emerging concepts for the dynamical organization of restingstate activity in the brain. Nat. Rev. Neurosci. 12, 43-56. (doi:10.1038/nrn2961) 214. Atasoy S, Donnelly I, Pearson J. 2016 Human brain networks function in connectome-specific harmonic waves. Nat. Commun. 7, 1-10. (doi:10.1038/ ncomms10340) 215. Deco G, Senden M, Jirsa V. 2012 How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model. Front. Comput. Neurosci. 6, 68. (doi:10.3389/fncom.2012.00068) 216. Papadopoulos L, Lynn CW, Battaglia D, Bassett DS. 2020 Relations between large-scale brain connectivity and effects of regional stimulation depend on collective dynamical state. PLoS Comput. Biol. 16, e1008144. (doi:10.1371/journal.pcbi. 1008144) 217. Hansen ECA, Battaglia D, Spiegler A, Deco G, Jirsa VK. 2015 Functional connectivity dynamics: modeling the switching behavior of the resting state. Neurolmage 105, 525-535. (doi:10.1016/j. neuroimage.2014.11.001) 218. Folke C, Biggs R, Norstrdm AV, Reyers B, Rockstrdm J. 2016 Social-ecological resilience and biospherebased sustainability science. Ecol. Soc. 21, 41. (doi:10.5751 /ES-08748-210341) 219. Martinez-Alier J. 1987 Ecological economics: energy, environment and society. Oxford, UK: Basil Blackwell. 220. Bodin 0, Prell C. 2011 Social networks and natural resource management: uncovering the social fabric of environmental governance. Cambridge, UK: Cambridge University Press. 221. Barnes ML, Bodin 0, Guerrero AM, McAllister RRJ, Alexander SM, Robins G. 2017 The social structural foundations of adaptation and transformation in social-ecological systems. Ecol. Soc. 22,16. (doi:10. 5751/ES-09769-220416) 222. Bodin 0, Tengd M. 2012 Disentangling intangible social-ecological systems. Global Environ. Change 22, 430-439. (doi:10.1016/j.gloenvcha. 2012.01.005) 223. Sayles JS, Garcia MM, Hamilton M, Alexander SM, Baggio JA, Fischer AP, Ingold K, Meredith GR, Pittman J. 2019 Social-ecological network analysis for sustainability sciences: a systematic review and innovative research agenda for the future. Environ. Res. Lett. 14, 093003. (doi:10.1088/1748-9326/ ab2619) 224. Prell C, Sun L, Feng K, He J, Hubacek K. 2017 Uncovering the spatially distant feedback loops of global trade: a network and input-output approach. Sci. Total Environ. 586, 401-408. (doi:10. 1016/j.scitotenv.2016.11.202) 225. Wang P, Robins G, Pattison P, Lazega E. 2013 Exponential random graph models for multilevel networks. Soc. Netw. 35, 96-115. (doi:10.1016/j. socnet.2013.01.004) 226. Sáenz de Tejada R. 2007 Democracias de posguerra en Centroamérica : política, pobreza y desigualdad en Nicaragua, El Salvador y Guatemala (1979- 2005). PhD thesis, Facultad Latinoameričana de Ciencias Sociales Sede, Ecuador. 227. Luhmann N. 1984 Soziale systéme: grundríss einer allgemeinen theorie. Frankfurt am Main, G ermany: Suhrkamp. 228. Scott J. 2013 Social network analysis, 3rd edn, Los Angeles, CA: Sage. 229. Jansen D. 1999 Einführung in die netzwerkanalyse: Grundlagen, methoden, anwendung. Operladen, Germany: Leske & Budrich. 230. Stadtfeld C, Block P. 2017 Interactions, actors, and time: dynamic network actor models for relational events. Sociol. Sei. 4,318-352. (doi:10. 15195/v4.a14) 231. Fath BD, Scharler UM, Ulanowicz RE, Hannon B. 2007 Ecological network analysis: network construction. Ecol. Modell. 208, 49-55. (doi:10. 1016/j.ecolmodel.2007.04.029) 232. Ulanowicz RE. 1983 Identifying the structure of cycling in ecosystems. Math. Biosci. 65, 219-237. (doi:10.1016/0025-5564(83)90063-9) 233. Leontief WW. 1936 Quantitative Input and Output relations in the economic systems of the United States. Rev. Econ. Stat. 18, 105-125. (doi:10.2307/ 1927837) 234. Miller RE, Blair PD. 2009 Input-output analysis: foundations and extensions. Cambridge, UK: Cambridge University Press. 235. Chen S, Chen B. 2015 Urban energy consumption: different insights from energy flow analysis, inputoutput analysis and ecological network analysis. Appl. Energy 138, 99-107. (doi:10.1016/j.apenergy. 2014.10.055) 236. Fath BD, Patten BC. 1999 Quantifying resource homogenization using network flow analysis. Ecol. Modell 123, 193-205. (doi:10.1016/S0304- 3800(99)00130-1) 237. Fath BD. 2004 Distributed control in ecological networks. Ecol. Model 179, 235-245. (doi:10. 1016/j.ecolmodel.2004.06.007) 238. Hall CAS, Balogh S, Murphy DJR. 2009 What is the minimum EROI that a sustainable society must have? Energies 2, 25-47. (doi:10.3390/en20100025) 239. G eorgescu-Roegen N. 1975 Energy and economic myths. South. Econ. J. 41, 347-381. (doi:10.2307/ 1056148) 240. Tainter J. 1988 The collapse of complex societies. Cambridge, UK: Cambridge University Press. 241. Odum HT. 2007 Environment, power, and society for the twenty-first century: the hierarchy of energy. New York, NY: Columbia University Press. 242. Hornborg A. 1998 Towards an ecological theory of unegual exchange: articulating world system theory and ecological economics. Ecol. Econ. 25,127-136. (doi:10.1016/S0921 -8009(97)00100-6) 243. Barnes ML, Bodin Ö, McClanahan TR, Kittinger JN, Hoey AS, G aoue OG, G raham NAJ. 2019 Socialecological alignment and ecological conditions in coral reefs. Nat. Commun. 10, 1-10. (doi:10.1038/ s41467-019-09994-1) 244. Janssen MA, Ostrom E. 2006 Resilience, vulnerability, and adaptation: a cross-cutting theme of the international human dimensions programme on global environmental change. Glob. Environ. Change 16, 237-239. (doi:10.1016/j.gloenvcha. 2006.04.003) 245. Sayles JS, Baggio JA. 2017 Social-ecological network analysis of scale mismatches in estuary watershed restoration. Proc. Natl Acad. Sei. USA 114, E1776-E1785. (doi:10.1073/pnas.1604405114) 246. Schlüter M, Haider LJ, Lade SJ, Lindkvist E, Martin R, Orach K, Wijermans N, Folke C. 2019 Capturing emergent phenomena in social-ecological systems. Ecol. Soc. 24, 11. (doi:10.5751/ES-11012-240311). 247. Bodin Ö, Mancilla Garcia M, Robins G. 2020 Reconciling conflict and cooperation in environmental governance: a social network perspective. Annu. Rev. Environ. Resourc. 45, 471-495. (doi:10.1146/annurev-environ-011020- 064352) 248. Nelson DR, Adger WN, Brown K. 2007 Adaptation to environmental change: contributions of a resilience framework. Annu. Rev. Environ. Resourc. 32, 395-419. (doi:10.1146/annurev.energy.32.051807. 090348) 249. Newman L, Dale A. 2005 Network structure, diversity, and proactive resilience building: a response to Tompkins and Adger. Ecol. Soc. 10, R2. (doi:10.5751 /ES 01396-1001 r02) 250. Folke C, Carpenter SR, Walker B, Scheffer M, Chapin T, Rockström J. 2010 Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15, 20. (doi:10.5751 /ES-03610-150420) 251. Walker B, Holling CS, Carpenter SR, Kinzig A. 2004 Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 9, 5. (doi:10. 5751/ES-00650-090205) 252. Rocha CD, Tezel A, Talebi S, Koskela L. 2018 Product modularity, tolerance management, and visual management: potential synergies. In Proc. of the 26th Annual Conf. of the Int. Group for Lean Construction, Chennai, India, (ed. VÄ Gonzalez) pp. 18-20. (doi:10.24928/2018/0482) 253. Kimmich C. 2013 Linking action situations: coordination, conflicts, and evolution in electricity provision for irrigation in Andhra Pradesh, India. Ecol. Econ. 90, 150-158. (doi:10.1016/j.ecolecon. 2013.03.017) 254. Hughes G, Desantis A, Waszak F. 2013 Attenuation of auditory N1, results from identity-specific actioneffect prediction. Eur. J. Neurosci. 37, 1152-1158. CdoT:10.1111/ejn.l 2120) 255. Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, Cousens S, Mathers C, Black RE. 2015 Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 385, 430-440. (doi:10.1016/S0140- 6736(14)61698-6) 256. Leontief W et al. 1974 Environmental repercussions and the economic structure: an input-output approach: a reply. Rev. Econ. Stat. 56, 109-110. (doi:10.2307/1927535) 257. Buzsäki G, Mizuseki K. 2014 The log-dynamic brain: how skewed distributions affect network operations. Hat. Rev. Neurosci. 15, 264-278. (doi:10.1038/ nrn3687) 258. G allos LK, Song C, Havlin S, Makse HA. 2007 Scaling theory of transport in complex biological networks. Proc. Natl Acad. Sei. USA 104, 7746-7751. (doi:10. 1073/pnas.0700250104) 259. Lorenz EN. 1963 Deterministic nonperiodic flow. J. Atmos. Sei. 20, 130-141. (doi:10.1175/1520- 0469(1963)020<0130:DNF>2.0.C0;2) 260. Josic K, Wayne CE. 2000 Dynamics of a ring of diffusively coupled Lorenz oscillators. J. Stat. Phys. 98, 1-30. (doi:10.1023/A:1018600203530) 261. Rössler OE. 1976 An eguation for continuous chaos. Phys. Lett. A 57, 397-398. (dohlO.1016/0375- 9601(76)90101-8) 262. Majhi S, Ghosh D, Kurths J. 2019 Emergence of synchronization in multiplex networks of mobile Rössler oscillators. Phys. Rev. E 99, 012308. (doi:10. 1103/PhysRevE.99.012308) 263. Selivanov AA, Lehnen J, Dahms T, Hövel P, Fradkov AL, Schöll E. 2012 Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E 85, 016201. (doi:10.1103/ PhysRevE.85.016201) 264. Panteley E, Loria A, El Ati A. 2015 On the stability and robustness of Stuart-Landau oscillators. IFACPapersOnLine 48, 645-650. (doi:10.1016/j.ifacol. 2015.09.260) 265. Minati L, Chiesa P, Tabarelli D, D'lncerti L, Jovicich J. 2015 Synchronization, non-linear dynamics and low-freguency fluctuations: analogy between spontaneous brain activity and networked singletransistor chaotic oscillators. Chaos 25, 033107. (doi:10.1063/1.4914938) 266. Minati L, Ito H, Perinelli A, Ricci L, Faes L, Yoshimura N, Koike Y, Frasca M. 2019 Connectivity influences on nonlinear dynamics in weakly-synchronized networks: insights from Rössler systems, electronic chaotic oscillators, model and biological neurons. IEEE Access 7, 174 793-174 821. (doi:10.1109/ACCESS.2019. 2957014) 267. Noel P-A, Brummitt CD, D'Souza RM. 2014 Bottomup model of self-organized criticality on networks. Phys. Rev. E 89, 012807. (doi:10.1103/PhysRevE.89. 012807) 268. G iuraniuc CV, Hatchett JPL, Indekeu JO, Leone M, Perez Castillo I, Van Schaeybroeck B, Vanderzande C. 2006 Criticality on networks with topologydependent interactions. Phys. Rev. E 74, 036108. (doi:10.1103/PhysRevE.74.036108) 269. Rubinov M, Sporns 0, Thivierge J-P, Breakspear M. 2011 Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Comput. Biol. 7, e1002038. (doi:10. 1371/journal.pcbi.1002038) 270. Moretti P, Mufioz MA. 2013 Griffiths phases and the stretching of criticality in brain networks. Nat. Commun. 4, 1-10. (doi:10.1038/ncomms3521) 271. Hilgetag CC, Hütt M-T. 2014 Hierarchical modular brain connectivity is a stretch for criticality. b o C O Trends Cogn. Sci. 18, 114-115. (doi:10.1016/j.tics. 2013.10.016) 272. Yeung MKS, Strogatz SH. 1999 Time delay in the Kuramoto model of coupled oscillators. Phys. Rev. Lett. SI, 648. (doi:10.1103/PhysRevLett.82.648) 273. Klinshov VV, Nekorkin VI. 2013 Synchronization of delay-coupled oscillator networks. Phys. Usp. 56, 1217. (doi:10.3367/UFNe.0183.201312c.1323) 274. Gil S, Mikhailov AS. 2009 Networks on the edge of chaos: global feedback control of turbulence in oscillator networks. Phys. Rev. E 79, 026219. (doi:10.1103/PhysRevE.79.026219) 275. Dhamala M, Jirsa VK, Ding M. 2004 Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 074104. (doi:10.1103/PhysRevLett.92.074104) 276. Deco G, Jirsa V, Mcintosh AR, Sporns 0, Kdtter R. 2009 Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl Acad. Sci. USA 106, 10 302-10307. (doi:10.1073/pnas. 0901831106) 277. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi A-L. 2002 Hierarchical organization of modularity in metabolic networks. Science 297, 1551-1555. (doi:10.1126/science.1073374) 278. Watts DJ, Strogatz SH. 1998 Collective dynamics of 'small-world' networks. Nature 393, 440. (doi:10. 1038/30918) 279. Erdö's P, Renyi A. 1959 On random graphs. Publ. Math. (Debrecen) 6, 290. 280. Barabäsi A-L, Albert R. 1999 Emergence of scaling in random networks. Science 286, 509-512. (doi:10.1126/science.286.5439.509) 281. Maslov S, Sneppen K. 2002 Specificity and stability in topology of protein networks. Science 296, 910-913. (doi:10.1126/science.1065103) 282. Drossel B, Schwabl F. 1992 Self-organized critical forest-fire model. Phys. Rev. Lett. 69,1629. (doi:10. 1103/PhysRevLett.69.1629) 283. Müller-Linow M, Marr C, Hütt M-T. 2006 Topology regulates the distribution pattern of excitations in excitable dynamics on graphs. Phys. Rev. E 74, 016112. (doi:10.1103/PhysRevE.74. 016112) 284. Acebrön JA, Bonilla LL, Vicente ÜP, Ritort F, Spigler R. 2005 The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137. (doi:10.1103/RevModPhys. 77.137) 285. May RM. 1976 Simple mathematical models with very complicated dynamics. Nature 261, 459-467. (doi:10.1038/261459a0) 286. Vadivasova TE, Strelkova Gl, Bogomolov SA, Anishchenko VS. 2016 Correlation analysis of the coherence-incoherence transition in aringof nonlocally coupled logistic maps. Chaos 26,093108. (doi:10.1063/1.4962647) 287. Rubinov M, Sporns 0, van Leeuwen C, Breakspear M. 2009 Symbiotic relationship between brain structure and dynamics. BMC Neurosci. 10,1-18. (doi:10.1186/1471 -2202-10-55) 288. FitzHugh R. 1961 Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445-466. (doi:10.1016/S0006-3495(61 )86902-6) 289. Nagumo J, Arimoto S, Yoshizawa S. 1962 An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061-2070. (doi:10.1109/JRPROC1962. 288235) 290. Grace M, Hütt M-T. 2013 Predictability of spatio-temporal patterns in a lattice of coupled Fitzhugh-Nagumo oscillators. J. R. Soc. Interface 10, 20121016. (doi:10.1098/rsif. 2012.1016)