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Enzymes are in high demand for very diverse biotechnological

applications. However, natural biocatalysts often need to be

engineered for fine-tuning their properties towards the end

applications, such as the activity, selectivity, stability to

temperature or co-solvents, and solubility. Computational

methods are increasingly used in this task, providing

predictions that narrow down the space of possible mutations

significantly and can enormously reduce the experimental

burden. Many computational tools are available as web-based

platforms, making them accessible to non-expert users. These

platforms are typically user-friendly, contain walk-throughs,

and do not require deep expertise and installations. Here we

describe some of the most recent outstanding web-tools for

enzyme engineering and formulate future perspectives in this

field.
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Introduction
Enzymes are the catalysts used by nature to perform the

complex chemical reactions required to sustain life. They

evolved over billions of years to achieve the high effi-

ciency and specificity needed for each lifeform to survive

and thrive in their environments. Biotechnology has

emerged as a way for mankind to exploit such nature’s

creations, with numerous benefits over the classical

chemical processes. In many cases, however, technologi-

cal applications require particular properties beyond what

is available in naturally occurring biomolecules, such as

specific activity, selectivity, stability, solubility, etc. In

such cases, they have to be reengineered on-demand [1].
www.sciencedirect.com 
The global protein-engineering market was evaluated in

USD 1.9 billion in 2018, and it is projected to reach USD

3.9 billion in 2024 with a remarkable annual growth of

12.4% (CAGR) during this period. The rational protein

design accounted for the largest technology segment

of the market in 2018, while the biopharmaceutical

companies accounted for the largest end-user [2]. This

categorically demonstrates the growing importance of

protein engineering.

Directed evolution methods have been extensively used

to improve natural biomolecules successfully. However,

they can be expensive and time-consuming. Therefore,

the usage of computational methods for rational design is

becoming more and more common. The predictive power

of computational tools is gradually improving. Many of

the existing tools are developing intuitive and user-

friendly web-based platforms, which expand their usabil-

ity to the broader community. Without the need for

software installation or Unix command-line environment,

these platforms are ideal for non-specialists.

In this review, we focused on web-based computational

tools for enzyme engineering. We surveyed the recently

developed web servers (published in 2018–2020) and

tested them. We selected the ones that we considered

the most outstanding and promising (Table 1) from a

much larger pool of tools (Supplementary Tables S1–S6).

We organized them by their focus: (i) enzyme discovery,

(ii) protein solubility, (iii) enzyme activity and specificity,

(iv) protein stability, (v) protein dynamics, and (vi) mul-

tipurpose. To keep the focus on enzyme design, we

omitted the tools specialized in structure prediction or

identification of protein–protein interactions.

Enzyme discovery
A common strategy for getting a suitable catalyst for a

given substrate is to find a new natural enzyme in the

genomic databases. Interestingly, there exists a vast space

allowing for the discovery of novel enzymes, since the

proportion of protein sequences that have not yet been

biochemically characterized is enormous: only 1 in every

450 protein sequences present in the NCBI nr database

[35] has a record potentially encompassing functional

annotation in the manually curated UniProtKB/Swiss-

Prot database [36]. Despite the availability of high

throughput methods for biochemical characterization of

large numbers of gene expression products [37], in silico
approaches can conveniently reduce the process’s time

and costs.
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Table 1

Selected web-based computational tools for enzyme engineering classified by their focus and published between 2018 and 2020. The complete list of the tools is available in the

Supplementary Tables S1–S6

Web server URL Inputb Outputc Runtime Reference

Descriptiona

Enzyme discovery

HEC-net http://hecnet.cbrlab.org

Deep learning application to predict the enzymatic

activity (EC number up to its fourth level) of a protein

sequence.

Validation: Tested on a dataset of 11 353 different

enzymes and 402 enzyme classes.

- Sequence - EC class prediction, up to the

fourth level

Minutes [3]

Bio2Rxn http://design.rxnfinder.org/bio2rxn

Consensus prediction of the enzymatic activity (EC

number up to its fourth level) of a protein sequence

from six different predictive methods.

Validation: Tested on a dataset of 3926 Escherichia

coli proteins with manual annotation of EC numbers.

- Sequence - Reaction type

- Reaction schema

- EC class prediction, up to the

fourth level

- List of predictors agreeing with the

predicted class

Hours [4�]

GSP4PDB https://structuralbio.utalca.cl/gsp4pdb

Search for deposited protein structures (PDB)

compatible with the input graph-based structural

pattern.

Validation: Representation of a C2H2 zinc finger as a

user case.

- Graph-based structural pattern - List of compatible PDB structures Seconds to

minutes

[5]

LIBRA-WA http://biochimica3.bio.uniroma3.it/LIBRAWA

Identification of protein function via recognition of

binding pockets.

Validation: Tested on a set of 373 apoprotein

structures.

- PDB ID

- PDB file

- Ligand database

- Ligand PDB ID

- Search parameters

- List of PDB structures with

compatible binding pocket.

- Their ligands

- Structural similarity score

- Confidence

Minutes [6]

EnzymeMiner https://loschmidt.chemi.muni.cz/enzymeminer

To retrieve a list of protein sequences that potentially

have the same enzymatic function than the input

ones, considering their essential residue profiles.

Validation: Experimentally validated with haloalkane

dehalogenases. 658 putative hits were prioritized and

the top 20 experimentally tested, leading to the

discovery of several biocatalysts encompassing

unique properties.

- Sequence(s)

- Essential residues

- List of putative hits annotated with

multiple scores

- Similarity network view

Hours [7��]
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Table 1 (Continued )

Web server URL Inputb Outputc Runtime Reference

Descriptiona

Engineering protein solubility

AGGRESCAN3D 2.O http://biocomp.chem.uw.edu.pl/A3D2

To predict the solubility of a protein from its three-

dimensional structure, the effects of mutations on

such structure, and the optimal substitutions for

solubilization.

Validation: The effect of dynamics in aggregation

prediction tested in a set of 163 proteins. The

prediction of mutation effects on solubility and

stability was tested in a set of 75 globular proteins.

Design of a fast-folding and aggregation-resistant

green fluorescent protein.

- PDB ID

- PDB file

- Mutation(s)

-Non-mutable residues list

- Preferences on enabling the

exploration of dynamics and

enhancing protein solubility.

- Aggregation profile

- Per residue score

- 3D view.

- Effect of mutations

Minutes [8��]

SOLart http://babylone.ulb.ac.be/SOLART

To predict the solubility of a protein from its three-

dimensional structure.

Validation: Developed in a set of 412 proteins from

Escherichia coli. Tested on 54 proteins from

Saccharomyces cerevisiae.

- PDB ID

- PDB file

- Predicted solubility value

- Scores of the individual features

used for prediction

Seconds [9]

AggreRATE-pred http://www.iitm.ac.in/bioinfo/aggrerate-pred

To predict the effects of mutations on solubility.

Validation: Assessed on experimental data consisting

of 183 unique single point mutations that lead to

changes in aggregation rates for 23 polypeptides and

proteins.

- Sequence

- PDB ID

- PDB file

- Mutation(s)

- Predicted aggregation rate for

each mutation

Minutes to hours [10]

Solubility-Weighted Index https://tisigner.com/sodope

To predict the solubility and flexibility of an input

protein sequence, having the possibility of focusing

only in a region of the sequence.

Validation: Tested with the 3198 Escherichia coli

proteins with annotated solubility present in the eSOL

dataset.

- Sequence - Solubility probability

- Flexibility score

- Hydropathy score

- Hydrophobicity and flexibility

- Solubility tags suggestion

Seconds [11�]

SoluProt https://loschmidt.chemi.muni.cz/soluprot

To predict the solubility of a protein specified by an

input sequence.

Validation: Evaluated against a balanced

independent test set derived from the NESG

database consisting of 2904 proteins.

- Sequence

- List of sequences

- Solubility score Seconds [12�]
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Table 1 (Continued )

Web server URL Inputb Outputc Runtime Reference

Descriptiona

Engineering enzyme activity and selectivity

FuncLib http://FuncLib.weizmann.ac.il

To redesign an active site and create multiple-point

designs. Based on conservation analysis and energy

calculations.

Validation: Applied to design a number of

phosphotriesterases and acetyl-CoA synthetases

with modified specificities and improved catalytic

efficiencies.

- PDB ID

- PDB file

- Mutable residues

- Essential residues

- Ligands

- List of mutants ranked by DDG

- PDB structures of the best designs

Hours [13��]

CaverDock and Caver Web https://loschmidt.chemi.muni.cz/caverweb

To calculate trajectory and interaction energy profiles

of a ligand traveling through a protein tunnel.

Available at the Caver Web interface.

Validation: Tested with a set of enzymes with known

differences in their tunnel geometries, a set of

substrates with different specificities, and a set of

enzymes with engineered tunnels.

- PBD ID

- PDB file

- Ligand file

- Ligand drawing

- Ligand smiles

- ZINC ligand code

- Ligand trajectory as PDBQT file

- Binding energy profiles

- Energy barriers

Minutes to hours [14]

DaReUS-Loop http://bioserv.rpbs.univ-paris-diderot.fr/services/

DaReUS-Loop

For modeling or remodeling loops in homology

models and finding the best loops conformation.

Validation: Tested on dozens of examples from

CASP11 and CASP12 with good or improved

prediction accuracies.

- PBD ID

- PDB file

- Sequence

- PDB structures of the modeled

proteins

- Confidence scores

Minutes to hours [15��]

LoopGrafter https://loschmidt.chemi.muni.cz/loopgrafter/

For transplanting loops between two structurally

related proteins, with a focus on the analysis of

dynamic properties of the selected loops to

transplant.

Validation: Transplantation of a loop from Renilla

luciferase to a reconstructed ancestor vastly

improved the luminescent properties of the resulting

grafted mutant.

- PDB IDs

- PDB files

- Flexibility assessment to guide the

grafting process

- Sequences and PDB files of the

grafted proteins

- Confidence scores

Minutes to hours [16�]

nAPOLI http://bioinfo.dcc.ufmg.br/napoli

Graph-based tool to analyze protein–ligand

interactions and detect important conserved

interacting residues.

Validation: Usability demonstrated with the analysis

of several crystal structures and data sets of ligand-

bound proteins.

- PDB ID(s)

- PDB file(s)

- Interaction cutoffs

- Interactive view of contact

residues

- Interaction networks

- Analysis charts and tables of

contacts

Minutes [17]
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Table 1 (Continued )

Web server URL Inputb Outputc Runtime Reference

Descriptiona

Engineering protein stability

FireProtASR https://loschmidt.chemi.muni.cz/fireprotasr

To perform ASR and infer ancestral sequences and

find more stable (and promiscuous) proteins.

Validation: Tested by characterization of several

ancestral haloalkane dehalogenases, most of them

with improved thermal stability, good activity and

some with increased catalytic promiscuity.

- Sequence

- Own multiple sequence

alignment

- Essential residues

- Multiple sequence alignment

- Phylogenetic tree

- Sequence analysis and

visualization

Hours [18�]

TKSA-MC http://tksamc.df.ibilce.unesp.br

To find hot-spots by optimizing the protein charge

interactions. Calculates electrostatic free energy

DGele of all polar/charged residues to identify

destabilized ones.

Validation: Applied to the cold shock protein Bs-

CspB from Bacillus subtilis and the T4 phage

lysozyme, where several predicted stabilizing

mutations were confirmed experimentally.

- PDB ID

- PDB file

- pH value or range

- Temperature

- Electrostatic energy for every

ionizable residue

- DGele versus pH profile

Seconds [19]

pStab http://pbl.biotech.iitm.ac.in/pStab

To engineer protein stabilities through mutations

involving charged residues. A statistical mechanical

model is employed to predict the unfolding curves for

the selected mutants as a function of temperature.

Validation: The usage was demonstrated on ubiquitin

and the haemolysin expression modulating protein

(Hha), and showed some agreement with previous

experimental data.

- PDB ID

- PDB file

- pH

- Temperature

- Pairwise electrostatic interactions

- Mutational hot-spots

- Stabilizing mutations and

respective DDG

- Thermal unfolding curves

- Local stability profiles

Minutes to hours [20]

ProTSPoM http://cosmos.iitkgp.ac.in/ProTSPoM

To estimate the thermodynamic stabilization DDG

upon single-point mutations using machine learning.

Validation: Tested on several data sets of mutations

of the tumor suppressor p53 protein with high

correlations, predicted were mutations destabilizing

the protein and those deleterious to its function by

impairing the interaction with DNA.

- PDB file

- Mutation

- DDG value Seconds [21]

Yosshi https://biokinet.belozersky.msu.ru/yosshi

To select hot-spots for introducing disulfide bonds

which naturally occur in some proteins, based on

multiple-sequence alignments.

Validation: Examples and benchmarking of disulfide

bond predictions are given for subtilisin, myoglobin,

lipases, carbonic anhydrases and xylanases.

- PDB file

- Multiple sequence alignment

- Cysteine-mutation pairs

- Disulfide frequencies

- PyMOL session with hot-spots

- Structures of disulfide mutant

Seconds to

minutes

[22�]
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Table 1 (Continued )

Web server URL Inputb Outputc Runtime Reference

Descriptiona

SSbondPre http://liulab.csrc.ac.cn/ssbondpre

To predict disulfide bonds to enhance the protein

structural stability based on machine learning and

geometric restraints.

Validation: Tested on several data sets of structures

containing dozens of natural and engineered disulfide

bonds. Experimentally validated with flavodoxin.

- PDB ID

- PDB file

- Cysteine-mutation pairs

- Energy and entropy change

Seconds [23]

mCSM-membrane http://biosig.unimelb.edu.au/mcsm_membrane

To predict the stability or pathogenic effects of

mutations on membrane protein and the likelihood of

them being disease-associated.

Validation: Tested with the sets containing dozens of

experimentally characterized single-point mutations

on several transmembrane proteins, showing

accuracy levels above the alternative methods.

- PDB ID

- PDB file

- Uniprot ID

- Sequence

- Mutation(s)

- DDG value

- PyMOL session with the contact

maps

Seconds [24]

DenseCPD http://protein.org.cn/densecpd.html

To predict the probabilities of the 20 natural amino-

acids for each residue in a protein structure,

considering the three-dimensional density

distribution of protein backbone. Uses machine

learning.

Validation: Tested with a set containing hundreds of

randomly selected structures, showing accuracy

higher than state-of-the-art methods.

- PDB ID

- PDB file

- Probability scores for every

possible amino-acid in every

position

Minutes [25]

Engineering protein dynamics

DynaMut2 http://biosig.unimelb.edu.au/dynamut2

To assess changes in stability and flexibility upon

mutation.

Validation: Tested with an independent dataset

consisting of 611 single point mutations derived from

ProTherm database, a test set of 276 mutations with

low sequence identity to proteins in the original

ProTherm dataset, and an independent test set

comprising 173 variants in six proteins with

experimental melting temperatures changes.

- PDB ID

- PDB file

- Mutation(s)

- DDG value

- 3D view (wild type or mutant) with

predicted interactions of the

mutated residue(s) and B-factor and

hydrophobicity mapping

- B-factor profile

Seconds to

minutes

[26�]

CABS-flex 2.0 http://biocomp.chem.uw.edu.pl/CABSflex2

To evaluate the flexibility of the input protein

structure.

Validation: The method was compared to the

classical, all-atom molecular dynamics on

22 different proteins. The calculated relative

fluctuations were shown to be well correlated to

140 different NMR ensembles.

- PDB ID

- PDB file

- Execution parameters

- Ensemble of structure files for all

normal modes.

- Contact (cross-correlations) map

- Fluctuations plot

Minutes to hours [27]
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Table 1 (Continued )

Web server URL Inputb Outputc Runtime Reference

Descriptiona

ProSNEx http://prosnex-tool.com

To evaluate the flexibility of the input protein

structure.

Validation: The effectiveness of the approach is

illustrated on the use case of TEM-1 b-lactamase.

- PDB ID

- PDB file

- Execution parameters

- 3D view mapping calculated

properties on the structure

- Network analysis

- Cross-correlation maps

Minutes to hours [28�]

AlloSigMA 2 http://allosigma.bii.a-star.edu.sg

To evaluate the allosteric effects of ligand binding or

mutations.

Validation: Benchmarked on a dataset consisting of a

total of 52 proteins with 60 allosteric sites.

- PDB ID

- PDB file

- Mutation(s)

- Ligand-binding site

- Per residue DDG value

- Allostery modulation graph for the

effects of ligand binding or mutation.

Minutes [29]

LARMD http://chemyang.ccnu.edu.cn/ccb/server/LARMD

To perform short-timed fully atomistic conventional

(Int_mod) and steered (str_mod) molecular dynamic

simulations, and normal mode analysis (nor_mod) for

the study of ligand binding and unbinding.

Validation: The usefulness illustrated with a selective

mechanism of the b-type estrogen receptor, which

plays a vital role in the treatment of inflammatory

diseases and many types of cancers.

- PDB ID

- PDB file

- Ligand

- Ensemble of structure files

representing the trajectory.

- PCA analysis, conformation

clusters and dynamic residue cross-

correlations (int_mod)

-Hydrogen bond analysis and

energy decomposition if protein–

ligand is submitted (int_mod)

- Tunnel and transport energy profile

(str_mod)

- Cross-correlations and residues

fluctuations map (nor_mod)

Int_mod: minutes,

Str_mod: hours

[30�]

Multipurpose

Caver Web https://loschmidt.chemi.muni.cz/caverweb

To calculate tunnels in proteins with buried binding

sites and analyze the ligand transport through those

tunnels.

Validation: Applied on several haloalkane

dehalogenases with well-known tunnel properties,

the binding of paracetamol to cytochrome P450 3A4,

and the virtual screening of leukotriene A4 hydrolase/

aminopeptidase inhibitors. Utility can be inferred by

the many articles that used CAVER 3.0 as a key

instrument for enzyme design.

- PBD ID

- PDB file

- Ligand file

- Ligand drawing

- SMILES

- ZINC codes

- Enzyme cavities

- Enzyme tunnels

- Tunnel profiles

- PyMOL session with tunnels

- Tunnel residues

- Ligand energy profiles

- Energy barriers - ligand trajectory

Pockets:

seconds, tunnels:

seconds, ligand

transport:

minutes to hours

[31��]

HotSpot Wizard 3.0 http://loschmidt.chemi.muni.cz/hotspotwizard

For automated identification of hot-spots in semi-

rational protein design to give improved protein

stability, catalytic activity, substrate specificity and

enantioselectivity. It can estimate the stability effect

of specified mutations and design smart libraries.

Validation: Tested by predicting the stabilization

effects of thousands of experimentally characterized

single- and multiple-point mutations, for correctly

identifying a previously known mutation as the most

stabilizing substitution, and for the automated design

of tunnel-engineered variants with single- and

multiple-point mutations.

- PDB ID

- PDB file

- Sequence

- Enzyme pockets

- Enzyme tunnels

- Multiple sequence alignment

- Homology models

- Correlated residues

- Amino-acid frequency

- Mutational effect on function

- Flexibility (B-factors)

- Mutability scores

-Sequence consensus

- DDG of designed mutants

- Library design for saturation

mutagenesis

Analysis: hours,

mutations design:

minutes to hours,

library design:

seconds

[32�]
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Table 1 (Continued )

Web server URL Inputb Outputc Runtime Reference

Descriptiona

ProteinsPlus https://proteins.plus

To search, validate, analyze and predict multiple

properties and features of proteins, their binding sites

and interactions with ligands.

Validation: Demonstrated with test examples of the

human deoxy hemoglobin and matrix

metalloprotease-13, and several tutorials available at

the server.

- PDB ID

- PDB file

- Ligand file

- Keyword search

- Hydrogen prediction

- Protein pockets and binding sites

- 2D interaction diagrams

- Ensemble compilation from PDB

- Protein–protein interaction

analysis

- Metal coordination prediction

- Protein–ligand affinity or activity

- Placement of water molecules in

the active site

- Structure quality assessment

Seconds to

minutes

[33�]

pPerturb http://pbl.biotech.iitm.ac.in/pPerturb

To quantify the strength of an interaction network by

employing perturbations (alanine mutations); can

predict the extent of destabilization of proteins arising

from side-chain truncations.

Validation: Usage examples for the human

Neurotensin Receptor 1, acyl-CoA-binding protein

(ACBP), synaptic protein 95, phosphofructokinase,

and ubiquitin.

- PDB ID

- PDB file

- Target residue

- Perturbation profiles

- Contact network plots

- Allosteric hot-spots

- Thermal unfolding curves

Minutes [34]

a Brief description of the tools and their experimental validation, when available, or usage examples.
b Some of the listed items are mandatory and some are optional.
c DDG is the stabilization energy, and corresponds to the change in free energy upon each mutation from the wild-type or template. All the web servers listed were tested and were fully functional at

the final stage of this manuscript.
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The task of discovering new enzymes can be tackled in

different manners. A straightforward strategy is to

predict the enzymatic activity of a protein from its

sequence. HEC-Net [3] is a deep learning tool that

exploits strategies based on sequence pattern recogni-

tion, sequence similarity, and amino-acid biochemical

properties to achieve prediction accuracy over 90% on

the fourth level of the Enzyme Commission (EC) clas-

sification. Also exploiting deep learning, Bio2Rxn [4�]
produces a consensus prediction based on six individual

predictors. One of them is based on convolutional neural

networks that are trained exclusively on EC-number

annotated protein sequences. The other five are

more traditional predictors based on sequence similarity,

identification of sequence patterns, and amino-acid bio-

chemical properties. Bio2Rxn retains high precision

values (over 90%) while increasing recall (close to

60%) compared to similar tools.

A complementary strategy consists of identifying protein–

ligand structural motifs from the protein structures in

RCSB Protein Data Bank (PDB) [38]. This approach

relies on the rationale that such binding interfaces are

substrate-specific, which in turn is an essential fingerprint

of the catalytic process. GSP4PDB [5] allows the user to

design and define the so-called Graph-based Structural

Patterns as the protein–ligand interface representations

and then query for such patterns in the PDB, thus

returning proteins that could potentially accommodate

the ligand. LIBRA-WA [6] is a web-based application that

exploits network theory to identify binding pockets in an

input protein. Such identification is done upon compari-

son with two precompiled databases, ligand-binding sites,

and the Catalytic Site Atlas [39].

A third strategy consists of finding the existing protein

sequences that could carry on an enzymatic function.

While the first approach relied on precisely predicting

the enzymatic function of an input sequence, the chal-

lenge here is to comprehensively identify the maximum

number of protein sequences able to perform a given

catalytic function. EnzymeMiner [7��] accepts several

proteins with known enzymatic function as input, infers

their essential or catalytic residues, and exploits different

tools for the assessment of sequence similarity to identify

such potential catalysts (Figure 1). In contrast with the

second strategy tools, EnzymeMiner does not rely on

knowledge of the 3D structure of proteins. The tool is

fully automated, ranks sequences by their predicted

solubility, and provides annotations on source organism,

extremophilicity, structure availability, and so on, to

guide the selection process.

Engineering protein solubility and aggregation
A recurring problem with producing engineered proteins

is that they may suffer from diminished solubility or
www.sciencedirect.com 
increased aggregation. Several approaches relying on

sequence and structure properties provide solutions for

solubility prediction and optimization [40,41].

Among the methods requiring the input of 3D structure,

Aggrescan3D 2.0 [8��] is a well-established aggregation

predictor that projects a pre-calculated intrinsic aggregation

propensity scale to the query protein structure. Thus, the

aggregation propensity values used to produce the final

prediction are modulated by the specific structural context

of the evaluated region or patch. The newest version

improves the predictions by considering protein flexibility

and stability and providing optimized solubility suggestions.

SOLart [9] relies on structure-derived statistical potentials to

infer the query protein solubility. Differences in Gibbs free

energy inferred from such statistical potentials – especially

those considering backbone torsion angles, solvent accessi-

bility and inter-residue distances – allow for accurate

predictions of solubility when compared with experimental

values, achieving a Pearson’s correlation coefficient of

0.67 and 0.51 on independent validation set and modelled

proteins, respectively.

AggreRATE-pred [10] integrates amino-acid physico-

chemical and structural-based properties, and mutational

and contact propensities in a multiple regression model to

predict the effect of mutations on the aggregation rates.

The chosen model to be applied depends on the protein

length and the secondary structure type on where the

mutation(s) occur. This strategy achieves a correlation

between experimental and predicted values of up to

0.82 and performs well on modeled proteins. Interest-

ingly, this approach does not rely on any structural infor-

mation for short peptides (< 40 amino-acids).

When the 3D structure of the protein to engineer is not

available or obtaining a model becomes challenging,

solubility can also be predicted from the protein

sequence. Solubility-Weighted Index [11�] offers a pre-

calculated compendium of per-residue flexibility propen-

sities that were refined and optimized in a set of 12,216

target proteins from 196 different species that were

expressed In Escherichia coli using either a C-terminal

or N-terminal poly-histidine fusion tag. The strategy

derives from the observation that, over almost 10 000 dif-

ferent studied protein properties, flexibility was the best

predictor for solubility.

SoluProt [12�] is based on gradient boosting regression

and provides solubility prediction from the protein

sequence. The machine learning model has been devel-

oped using a manually curated TargetTrack database.

Considering the amino-acid singlet and dimer content of

the poly-peptidic chain, their physicochemical properties,

membrane propensity, and similarity to E. coli 3D
Current Opinion in Structural Biology 2021, 69:19–34
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Figure 1

Current Opinion in Structural Biology

Illustration of the EnzymeMiner workflow [7��]. The web server accepts several sequences with the desired function. The user can also input ‘other

sequences’ performing the desired function to help on the sequence filtering step. The server can retrieve catalytic residues from the Catalytic Site

Atlas, or the user can define them (allowing for degenerated positions). The query proteins are used to search for homologs, and the obtained hits are

subsequently clustered and filtered, ensuring the presence of the defined essential residues. Multiple annotations are retrieved to enrich the information

of the filtered list of hits. The final results are presented in two interactively integrated views: (i) Putative Hits allows for prioritization according to any of

the retrieved annotations, and (ii) the Similarity Network view presents the sequences clustered according to their sequence similarity.
proteome, this approach achieves an AUC of 0.60 on a

newly compiled independent set. SoluProt is integrated

in EnzymeMiner [7��], providing an easy way to filter out

unlikely soluble proteins in the process of novel enzyme

discovery.

Engineering enzyme activity and specificity
Enzyme activity and selectivity are the key features

typically targeted in enzyme engineering. Although

enzyme activity and selectivity are very different
Current Opinion in Structural Biology 2021, 69:19–34 
properties, they can often be improved using similar

computational approaches. Engineering the activity

towards a substrate of interest is also likely to enhance

the selectivity towards this substrate. The most common

strategy consists of introducing mutations in the active

site and optimizing it towards the targeted substrate.

Other approaches have also proven successful, namely

the engineering of access tunnels, modification of the

dynamic properties, editing recognition elements such as

loops, or targeting allosteric sites.
www.sciencedirect.com
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Important computational tools for engineering enzyme

function – among which is the gold-standard Rosetta

toolbox [42] – have been reviewed [43,44]. Rosetta-based

web tool FuncLib [13��] was specially designed to add

multiple-point mutations to the binding site. After per-

forming evolutionary analysis and energy calculations,

single-point mutations are combined and ranked by

the predicted stabilization free energies (DDG). The

FuncLib workflow ensures that no deleterious mutations

are introduced, and it can account for potential epistatic

effects resulting from combining multiple mutations.

CaverDock [14], integrated into the Caver Web [31��]
(Section ‘Engineering multiple properties’), can be used

for engineering enzyme activity and selectivity. This

tool was designed to predict the trajectory and energy

profile of (un)binding of a ligand travelling through the

enzyme access tunnels using a constrained molecular

docking algorithm. The user can run calculations for

different ligands or multiple enzyme variants and assess

which combinations provide the best energy profiles.

This is especially useful when the limiting steps in the

catalysis involve the substrate binding or the product

release.

Enzyme specificity can also be modified by engineering

loops, which represent the flexible elements modulating

substrate recognition and binding specificity. DaReUS-

Loop [15��] models loops in homology models, and it can

search the databases for new loop conformations suitable

to be introduced in the target structure. It can help users

find new enzyme variants with diverse substrate specifi-

cities. LoopGrafter [16�] aims to transplant loops between

two structurally related proteins, while evaluating feasi-

bility of potential solutions. The protocol focuses on

analyzing the geometrical similarity and the dynamic

properties of the transplanted loops, and provides graphi-

cal guidance on the process. All possible insertion points

for the selected loops that generate different sequences

are evaluated, providing the user with means to rationally

engineer ligand-recongnition elements and protein

dynamics (Section ‘Engineering protein dynamics’).

nAPOLI [17] automatically identifies conserved protein–

ligand interactions across a large data set, such as a list of

PDB structures or any protein within a specified range of

sequence identity. It compiles the type of interactions

and networks formed to find hot-spots within the binding

sites or suggest mutations that can produce more favor-

able interactions with a specific substrate.

Engineering protein stability
Enzyme stability refers to the range of temperature, co-

solvents, pH, and other general conditions in which

enzymes can resist and remain active. It is desirable for

many biotechnological purposes that the enzymes survive
www.sciencedirect.com 
longer time or harsher conditions beyond what the native

variants normally could. One can push those boundaries

by engineering their stability using: (i) energy calcula-

tions, (ii) phylogenetic analysis, (iii) machine learning,

and (iv) a combination of the previous ones. These

strategies [45–48] and software tools [41] have been

extensively reviewed.

Ancestral sequence reconstruction (ASR) is a strategy that

is becoming increasingly used for protein stabilization.

FireProtASR [18�] is the first fully automated platform for

inferring the ancestral sequences by phylogenetic analy-

sis. Based on a single protein sequence, the tool builds a

data set of homology sequences and performs a multiple

sequence alignment to construct a phylogenetic tree and

reconstruct the ancestral nodes. The method can be used

not only to improve thermostability, but also to expand

the catalytic promiscuity and increase expressibility of

enzymes.

Electrostatic interactions are crucial to protein folding and

integrity. They also rule the effects of pH and ion concen-

tration on protein stability. However, they are often under-

estimated or poorly predicted during enzyme engineering.

TKSA-MC [19] and pStab [20] tools tackle this issue by

assessing unfavorable electrostatic interactions and identify-

ing charged hot-spot residues for mutagenesis.

A very different approach to protein stabilization is

the introduction of disulfide bonds. Yosshi [22�] and

SSBondPre [23] are recent tools devoted to this strategy,

the former using evolutionary analysis and the latter using

machine learning. Most of the stability prediction meth-

ods have been developed for globular soluble proteins.

mCSM-membrane [24] can predict the stability changes

or the pathogenicity associated with mutations in mem-

brane proteins.

Engineering protein dynamics
Proteins exist in dynamic, metastable conformational

states, transitioning through an ensemble of possible local

conformations. The motions resulting from such transi-

tions can fundamentally influence the catalytic activity of

an enzyme [49,50]. Thus, assessing and engineering

enzyme dynamics may be crucial for achieving the

desired activity output. It also has an impact on predicting

protein solubility and stability.

DynaMut2 [26�] combines Normal Mode Analysis meth-

ods and graph-based signatures to investigate the effects

of single-point and multiple-point mutations on protein

stability and dynamics. The server reports B-factors that

characterize the predicted flexibility of the mutants and

the changes in stability. Moreover, the server offers the

possibility to independently run coarse-grained predic-

tions on a structure using five different force fields.
Current Opinion in Structural Biology 2021, 69:19–34
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CABS [51] is a coarse-grained force field accounting for

side-chain contacts, main-chain hydrogen bond networks,

and local geometric preferences. It was validated against

molecular dynamics and nuclear magnetic resonance

ensembles and is part of AGGRESCAN 3D [8��]. Freshly

re-implemented in a web server CABS-flex 2.0 [27], it

allows for evaluating larger proteins with up to 2000 resi-

dues, for imposing user-defined distance restraints, and

offers an improved graphical output.

ProSNEx [28�] models inter-residue interaction networks

from the input 3D coordinates of the protein to be

studied. Such contacts are weighted according to dynam-

ical cross-correlation maps, either obtained from elastic

network models or other normal mode applications, the

graph theory-based spectral clustering of side-chains, or

molecular dynamic simulations derived energies. These

dynamics studies are enriched with subsequent network

and sequence conservation analysis, and the results are

presented in an easy-to-interpret graphic-intensive

interface.

AlloSigMA 2 [29] studies allostery and is based on imple-

menting a structure-based statistical mechanical model.

The server allows for evaluating the allosteric free energy

resulting from the perturbation of any residue in the input

structure. It allows for testing the allosteric effects of
Figure 2

PDB

Ligand
transport

Pockets
Tunnels

Illustration of the Caver Web workflow [31��]. The user enters a PDB file or 

them is used as a starting point to calculate the tunnels to the surface. The

residues and tunnel-lining residues. The user can enter one or multiple ligan

trajectories through the selected tunnels. The user can analyze the binding 

energy barriers. The ligand trajectory and the list of bottleneck residues form
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introducing mutations and the impact of introducing a

ligand into the studied system. An intuitive graphical user

interface provides a rapid interpretation of the protein

regions that changed their dynamics.

LARMD [30�] automates the execution of fully

atomistic molecular dynamics simulations up to 4 ns long.

Untrained users can opt for the suggested easy-to-set-up

predefined conditions, and more versed ones can fine-

tune the execution parameters to their needs. The appli-

cation is focused on deciphering the structural and

dynamical effects of ligand binding, and to this end,

implements tunnel discovery tools such as CAVER

3.0 [52]. Furthermore, it offers a wide range of analyses

on the obtained trajectories: (i) structural variability and

fluctuation analyses, (ii) normal mode analysis, and (iii)

trajectory clustering. The server provides a wide range of

graphics and charts to ease the interpretation of the

results.

Engineering multiple properties
Some protein engineering web-tools integrate multiple

tasks in robust workflows. Caver Web [31��] can be used

to identify molecular tunnels and channels in proteins

with buried cavities and predict the transport of ligands

through these tunnels (Figure 2). The workflow starts
Tunnels

Ligands

Trajectory

Current Opinion in Structural Biology

PDB code. The pockets in the 3D structure are calculated and one of

 identified tunnels can be analyzed for their properties, bottleneck

ds as files, drawing, SMILES or ZINC codes, and calculate their

energy profiles of the ligand, determine energy minima, maxima and

ing the energy barriers can be downloaded.
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Figure 3

Functional
hotspots

Correlated
hotspots

Stability prediction Smart library design

Stability from
consensus

Stability from
flexibility

Hot spot selection

ΔΔG calculation Codon search
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Illustration of the HotSpot Wizard 3 workflow [32�]. The user enters a PDB structure, or a sequence that will be used to predict the structure by homology

modeling. A sequence of different calculations are performed, leading to four types of hot-spot predictions: (i) functional hot-spots (non-essential residues

located on functional pockets or tunnels, ranked by mutability), (ii) correlated hot-spots (co-evolving pairs of residues, obtained from consensus and correlation

analysis), (iii) stability from flexibility (hot-spots with higher B-factors), and (iv) stability from consensus (hot-spots recommended to be mutated to amino-acids

with higher frequency in the multiple sequence alignment). The user can select the hot-spots for mutagenesis based on the integrated overview of the

suggested positions, such as mutability, secondary structure, amino-acid frequency and mutational landscape. The user can predict the stabilization (DDG)

from all the selected single-point mutations on the selected hot-spots and combine them into multiple-point mutations. The user can also calculate the optimal

DNA codon content to build smart libraries for screening the selected positions with the desired set of amino-acids.

www.sciencedirect.com Current Opinion in Structural Biology 2021, 69:19–34
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with identifying the relevant pockets and computing

the tunnels from the selected pocket to the surface

using CAVER 3.0 [52]. The user then selects the

tunnels and ligands to analyze the transport using

CaverDock (Section ‘Engineering enzyme activity

and specificity’). This integrated analysis allows identi-

fying hot-spots on the enzyme tunnels that can remove

the barriers to the transport of the target substrates or

products or increase their specificity, thus improving the

enzymatic function.

HotSpot Wizard 3 [32�] is a tool for the identification of

mutagenesis hot-spots for improving stability, activity,

and specificity, following a multi-stage automatic work-

flow (Figure 3). The tool sequentially calculates several

parameters to identify: (i) functional hot-spots located in

the active site pocket and/or access tunnels, (ii) stability

hot-spots corresponding to flexible residues, (iii) stability

hot-spots based on back-to-consensus, and (iv) correlated

hot-spots corresponding to co-evolving residue pairs.

Recent updates have made possible the calculation of

homology models from the protein sequence. The user

can build smart libraries based on the amino-acid fre-

quencies, predict the stabilization energy of selected

mutations, and even combine the interesting ones into

multiple-point mutations.

ProteinsPlus [33�] is a unified platform integrating multi-

ple protein investigation tasks, namely database explora-

tion, structural quality assessment, conformational analy-

sis, binding site analysis, 2D-interaction diagrams, pocket

detection, and so on. Although it is not devoted to enzyme

engineering per se, it can provide comprehensive

structural knowledge.

pPerturb [34] aims primarily at assessing the importance

of different residues to the stability by analyzing the

effects of alanine mutations on the global number of

contacts in the structure. The workflow is divided into

perturbation profiles calculation (DQ), interaction net-

works, and the change in thermodynamic stability from

truncating side chains. Overall, the tool can facilitate

identifying residues that determine local stability and

potential allosteric signal transduction pathways.

Conclusions and perspectives
Here we reviewed the recently published web-based

tools specialized in different aspects of enzyme engineer-

ing, which can be valuable resources to experimental

scientists. The advantages of web-based tools are their

immediate use without tedious installations, optimal set-

tings already selected by the developers, regular updates

and maintenance, and shared computational resources.

We observed a boom of new methods and approaches,

especially the rise of predictors based on machine learn-

ing, for which the quality of the experimental data used
Current Opinion in Structural Biology 2021, 69:19–34 
for training is of paramount importance. However, this is

not always guaranteed by the available databases, which

would highly benefit from stronger efforts of the commu-

nity to supply high-quality, findable, annotated and

curated data. These data will also provide essential input

for machine learning as well as critical comparisons of

newly developed tools. Modern high-throughput experi-

mental technologies like fluorescent activated cell

sorting, microfluidics, cell-free expression, and deep

mutational scanning will enable collecting large and

highly consistent data sets.

We observed many tools devoted to enzyme discovery,

although mainly focused on predicting the potential

enzymatic activity of a protein sequence, but not for

retrieving potential catalysts from a collection of orphan

proteins. We also see a shift in the strategies for engi-

neering activity and specificity, as many recent tools focus

on non-active site elements, for example, loops, tunnels,

highly flexible and allosteric regions. In general, tools for

engineering catalytic activity, selectivity and protein sol-

ubility are insufficiently developed, and significant

improvements are needed to provide more accurate

and practically useful predictions. With the constant

increase of computational power, which allows a more

robust assessment of structural ensembles, we expect

protein dynamics to become a more integral part of the

next-generation tools. We predict the same should hap-

pen with the design of catalytic activity using high-level

methods, that is, quantum mechanics or hybrid quantum

mechanics/molecular dynamics, to be made accessible via

web servers. We have witnessed a game-changing situa-

tion with the development of GPU cards and their use for

computationally demanding tasks. We envisage another

breakthrough with the gradual maturation of quantum

computing. Once fully operational, such technology will

boost the current computational capacity by several

orders of magnitude, allowing the routine use of high-

level theory calculations and extensive combinatorics.
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