D 2021

Towards Domain Robustness of Neural Language Models

ŠTEFÁNIK, Michal and Petr SOJKA

Basic information

Original name

Towards Domain Robustness of Neural Language Models

Authors

ŠTEFÁNIK, Michal (703 Slovakia, guarantor, belonging to the institution) and Petr SOJKA (203 Czech Republic, belonging to the institution)

Edition

Brno, Recent Advances in Slavonic Natural Language Processing (RASLAN 2021), p. 91-103, 13 pp. 2021

Publisher

Tribun EU

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10200 1.2 Computer and information sciences

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

RIV identification code

RIV/00216224:14330/21:00123248

Organization unit

Faculty of Informatics

ISBN

978-80-263-1670-1

ISSN

Keywords in English

Generalization; Debiasing; Domain extrapolation; Domain adaptation; Domain robustness; Neural language models
Změněno: 15/5/2024 10:24, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

This work summarises recent progress in generalization evaluation and training of deep neural networks, categorized in data-centric and model-centric overviews. Grounded in the results of the referenced work, we propose three future directions towards reaching higher robustness of language models to an unknown domain or its adaptation to an existing domain of interest. In the example propositions that practically complement each of the directions, we introduce novel ideas of a) dynamic objective selection, b) language modeling respecting the token similarities to the ground truth and c) a framework of additive component of the loss utilizing the well-performing generalization measures.

Links

MUNI/A/1573/2020, interní kód MU
Name: Aplikovaný výzkum: vyhledávání, analýza a vizualizace rozsáhlých dat, zpracování přirozeného jazyka, umělá inteligence pro analýzu biomedicínských obrazů.
Investor: Masaryk University