
Preventing Cheating in Hands-on Lab Assignments
Jan Vykopal

Masaryk University
Czech Republic

vykopal@ics.muni.cz

Pavel Seda
Masaryk University

Czech Republic
seda@fi.muni.cz

ABSTRACT
Networking , operating systems, and cybersecurity skills are exer­
cised best i n an authentic environment. Students w o r k w i t h real
systems and tools in a lab environment and complete assigned tasks.
Since all students typically receive the same assignment, they can
consult their approach and progress w i t h an instructor, a tutoring
system, or their peers. They may also search for information on the
Internet. H a v i n g the same assignment for all students i n class is
standard practice efficient for learning and developing skills. H o w ­
ever, it is prone to cheating when used in a summative assessment
such as graded homework, a mid-term test, or a final exam. Students
can easily share and submit correct answers without complet ing
the assignment. In this paper, we discuss methods for automatic
problem generation for hands-on tasks completed i n a computer lab
environment. Us ing this approach, each student receives personal­
ized tasks. We developed software for generating and submitting
these personalized tasks and conducted a case study. The software
was used for creating and grading a homework assignment i n an
introductory security course enrolled by 207 students. The soft­
ware revealed seven cases of suspicious submissions, w h i c h may
constitute cheating. In addition, students and instructors welcomed
the personalized assignments. Instructors commented that this ap­
proach scales w e l l for large classes. Students rarely encountered
issues w h i l e r u n n i n g their personalized lab environment. Finally,
we have released the open-source software to enable other educa­
tors to use it i n their courses and learning environments.

CCS CONCEPTS
• Social and professional topics —> Computing education; •
Security and privacy;

KEYWORDS
summative assessment, automatic problem generation, networking,
operating systems, cybersecurity, exercise, homework, case study

ACM Reference Format:
J a n V y k o p a l , V a l d e m a r Svabensky, P a v e l Seda, a n d Pave l Celeda. 2022.
Prevent ing C h e a t i n g i n H a n d s - o n L a b Ass ignments . I n Proceedings of the

SIGCSE 2022, March 3-5, 2022, Providence, PJ, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to A C M .
This is the author's version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 53rd ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2022),
March 3-5, 2022, Providence, PJ, USA, https://doi.org/10.1145/3478431.3499420.

Valdemar Švábenský
Masaryk University

Czech Republic
svabensky@ics.muni.cz

Pavel Čeleda
Masaryk University

Czech Republic
celeda@ics.muni.cz

53rd ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE
2022), March 3-5, 2022, Providence, PJ, USA. A C M , N e w York, N Y , U S A ,
7 pages, https://doi.org/10.1145/3478431.3499420

1 INTRODUCTION
Master ing networking, operating systems, and cybersecurity is
inconceivable without practical experience w i t h real computer sys­
tems and tools. Practicing these skills i n a physical or vir tual labo­
ratory or at students' o w n hosts is a common instructional practice.
In general, students receive task assignments that are prepared
to be solved i n the provided lab environment (single or mult iple
connected computers). These assignments could be a part of o n -
premise or remote sessions w i t h an instructor, individual or team
homework, or extracurricular competitions. Regardless of the used
instructional method, all students usually receive the same assign­
ment and an instance of the same environment for its solving. They
are expected to achieve the same goal and submit the same answer.

H a v i n g the same learning environment is convenient for learn­
i n g new skills and technologies, but it is not always suitable for
evaluating student learning or competitions. Students may share
the correct answers w i t h their peers v i a online communicat ion.
This answer sharing is easier than in other disciplines because the
assignments themselves require interactions w i t h computers. M o n ­
itoring students during the evaluation is laborious. Disconnecting
students' computers f rom the Internet is impractical or infeasible
because searching online sources such as documentation or data
might be an inherent part of the assignment. Therefore, cheating is
an issue that many computing educators face.

Automatic Problem Generation (A P G , also Automated Exercise
Generation) enables instructors to create modif ied versions of the
problems (tasks), called problem instances. Each student is provided
w i t h one instance of the same problem. A P G can thus mitigate the
threat of copied or leaked answers [2]. A l t h o u g h A P G has already
been applied i n computing disciplines, it is not commonly used in
hands-on assignments involving a lab environment (see Section 2).

This paper contributes to the broader adoption of A P G by i) pro­
viding an open-source toolset for an automated setup of a lab envi­
ronment w i t h unique configuration for each student (Section 3, [8]),
and ii) reporting experience from a case study of using the toolset in
an introductory security course enrolled by 207 students (Section 4).
The toolset enabled instructors to assign personalized hands-on
homework to all students. The additional effort was minimal com­
pared to the standard practice of assigning the same tasks to all

mailto:vykopal@ics.muni.cz
mailto:seda@fi.muni.cz
https://doi.org/10.1145/3478431.3499420
mailto:svabensky@ics.muni.cz
mailto:celeda@ics.muni.cz
https://doi.org/10.1145/3478431.3499420

students. In return, the toolset revealed seven groups of submis­
sions indicat ing forbidden cooperation, such as sharing answers
between students (Section 5).

2 RELATED WORK
Cheating and its mit igat ion is summarized i n a recent paper [6,
Section 2.3]. A P G is one of the methods, w h i c h we focus on.

2.1 APG in Lab Environment
This subsection reviews existing works on A P G i n hands-on assign­
ments featuring a lab environment (or sandbox), w h i c h we define
as one or more physical or virtual computers and/or networks the
students interact w i t h to solve the assignment.

Security Scenario Generator (SecGen) [14] is a robust framework
for building networks of virtual machines w i t h randomized services,
vulnerabilities, and themed content. SecGen can randomly choose
elements of generated machines, such as operating systems, net­
work services, user credentials, or vulnerabilities. Configuration of
each element of the machines can be varied, such as network ports
or the strength of passwords. SecGen uses its o w n complex scenario
specification language i n the X M L format to describe constraints
and properties of the generated machines, such as a system w i t h a
remotely exploitable vulnerabi l i ty that w o u l d grant user-level ac­
cess. SecGen has been used for teaching at universities and hosting
a country-wide security competition i n the Uni ted Kingdom.

Chothia and Novakovic [4] developed a vir tual machine frame­
w o r k for cybersecurity education at the Univers i ty of B i r m i n g ­
ham, United Kingdom. The virtual machine runs a L inux operating
system w i t h many user accounts and intentionally f lawed access
control, web server, database server, and purposely-built insecure
protocols. Once the machine is booted for the first time, its unique
content is generated for each student. Students are tasked to f ind
particular text strings (flags) and submit them to the server, w h i c h
checks their correctness. The authors used the framework for ex­
ercises i n introductory cybersecurity courses for master's degree
and undergraduate students. The exercises covered encryption, ac­
cess control, key-agreement protocols, web security, and reverse
engineering. The authors encountered three cases where groups of
students copied the flags or shared the vir tual machine.

Tele-Lab [17] is an online lab environment w i t h the automatic
assessment of practical exercises i n cybersecurity. The assignments
can include variables, w h i c h are instantiated and used for creating
personalized content of v i r tual machines i n the lab. The variables
are used i n multiple-choice or free-text tests i n a web interface of
the lab environment. Students w o r k w i t h personalized machines
and answer the tests w i t h personalized content. The exercises cover
attacks on accounts and passwords, network reconnaissance, eaves­
dropping of network traffic, wireless and web security.

2.2 APG Not Involving the Lab Environment
This subsection reports applications of A P G where students do not
interact w i t h full-fledged computer hosts or networks.

Burket et al. [2] deployed A P G in 2014 in PicoCTF, a large-scale
cybersecurity competi t ion for middle- and high-school students.
They used problem templates to generate a pool of problem instances

wi th unique answers per instance. The competition included ten au­
tomatically generated problems: five on cryptography, three featur­
ing web pages, one on reverse engineering, and one on converting
a number to a different base.

Agudo et al. [l] designed SERA, an extensible framework for per­
sonalized exercises for introductory computer security courses. The
exercises are defined using their o w n specification language, which
works w i t h modules for generating assignments and checking stu­
dents' submissions. Each exercise is defined by i) the assignment
template, ii) template parameters and their ranges used for the gen­
eration, and iii) functions for checking the students' submissions
and provid ing feedback. S E R A has been pi loted at the Univers i ty
of Malaga, Spain, using exercises o n X.509 and T L S certificates,
vulnerabilities of web servers, and secure e-mail.

M e t a C T F [3] is a set of 17 homework assignments o n reverse
engineering and malware analysis for L i n u x operating systems.
The assignments are organized into levels w i t h increasing difficulty.
Each level is completed w h e n a student runs a provided binary,
enters a correct password, and causes the binary to print the string
" G o o d Job". The binaries are unique for each student. M e t a C T F
includes a web interface for distributing individual binaries to stu­
dents and checking the submitted passwords. M e t a C T F was used
i n a course at Portland State University, U S A , i n 2015.

Sadigh et al. [13] reported their work-in-progress on apply ing
A P G for an undergraduate embedded systems course at the U n i ­
versity of California, Berkeley, U S A , in 2012. They generated state-
machines and real-time scheduling problems using problem tem­
plates and techniques for formal verification and synthesis.

Fowler and Zil les [6] focused o n assessing basic programming
skills. They created question variants of a similar difficulty using
surface feature permutations. The variants were derived from base
questions by changing specific elements such as variable or function
names and the order of the parameters. The variant questions were
used i n homework assignments and the exam i n an introductory
Python course at the Universi ty of Illinois, U S A , i n 2020.

Q i and Fossati [11] introduced U n l i m i t e d Trace Tutor, w h i c h
automatically generates original blocks of Java code for practicing
code tracing of f o r and w h i l e loops and i f statements. The system
generates a parse tree from a provided code snippet, modifies vari ­
ables' values and relational operators, and produces a new snippet.
The authors ran a pilot experiment w i t h 11 volunteer students of
Emory University, U S A .

2.3 Our Contribution
The contr ibution of this paper is i n three areas. We enable fair
summative assessment i n the lab environment, report results of a
study i n the large class, and provide our toolset to other educators.

2.3.1 Approach. Our approach and technical solution appear simi­
lar to Tele-Lab [17], w h i c h involves the lab environment and auto­
matical ly assesses personalized assignments. However, no imple­
mentation or evaluation of Tele-Lab personalized assignments has
been published after the ini t ia l paper from 2012.

Our approach is close to [6], w h i c h uses base questions and
permutes their specific elements. However, [6] does not target net­
working, operating systems, or cybersecurity and does not involve
any lab environment. Also, p icoCTF [2], MetaCTF [3], and S E R A [1]

use templates for generating problems or files for cybersecurity
competitions or classes. Sti l l , they do not create the whole lab en­
vironment (virtual machines or networks), only their parts (web
pages, binaries, certificates). P icoCTF and S E R A provide a program­
ming interface for generating arbitrary tasks and values. Whi le this
approach is more flexible than ours, instructors have to provide
code for the generation instead of declaring type and constraints
i n the Y A M L markup language as i n our approach.

Our technical solution is the most similar to [4]. W h i l e [4] pro­
vides a single virtual machine that is difficult to modify, we enable
educators to generate arbitrary networks w i t h multiple machines.
Next, unlike [4], which developed a custom submission server that
is not publ ic ly available, we extended C T F d [5], a popular open-
source platform for hosting competitions and exercises.

SecGen [14] applies A P G i n the lab environment w i t h a different
goal. Our goal is to provide students w i t h a lab environment w i t h
the same structure but different content and values that students are
required to search for. SecGen, on the other hand, creates various
environments of the same complexity based on instructor-defined
constraints. A s a result, two environments generated by SecGen
can feature different network services and vulnerabilities.

Works [13] and [11] do not involve the lab environment, and use
approaches specific to the problem they generate.

2.3.2 Evaluation. This paper evaluates our method and toolset in
the authentic teaching context o f a large class. The same applies
to [6], but they do not involve the lab environment. In contrast,
A P G by [2] was evaluated i n a different context (team security
competition), though attended by 10,000 students i n 3,000 teams.
Similarly, SecGen [14] was used i n another competition, but only
wi th 59 students. Other works included evaluation w i t h only a few
participants (MetaCTF [3], U n l i m i t e d Trace Tutor [11]), d id not
report the number of participants i n their studies ([4]), or d i d not
include any evaluation at al l (Tele-Lab [17], S E R A [1], [13]).

2.3.3 Reusability. We have released our toolset as an open-source
software project. Only the authors of SecGen [14] and picoCTF [2]
did the same, and partially [4]. Unl imited Trace Tutor [11] is avail­
able free upon request.

3 TOOLSET FOR APG FOR HANDS-ON LABS
Since no toolset for generating a personalized lab environment
for summative assessment was available, we implemented it. The
toolset consists of two core components, the environment generator
and the submission server, see Figure 1.

3.1 Environment Generator
Before developing the A P G toolset, the lab environment where the
students solved hands-on tasks was static, i.e., the same for every­
one. The static lab environment was defined by text files specifying
the parameters and configuration of virtual machines that students
used for solving the hands-on assignments. Students were given
these files and instantiated the lab environment local ly o n their
computers using Cyber Sandbox Creator [16] based on free and
open-source tools Vagrant [7], Vir tualBox [10], and Ansible [12].

The new environment generator is a set o f P y t h o n scripts that
work on top of these lab definition files. A student instantiates their

© run -

) interact with '
Environment generator I Student

Personalized lab environment

Virtual machine 1

. ® associate personalized^.
answers with the student

Virtual machine 2

Infrastructure for
hands-on lab tasks

D get logs - •

Novel APG toolset ^ ^ ^ B
and the control flow Instructor

ITd plugii CTFdplugin ® submit
personalized

answers

<---'

CTFd portal
(submission server)

Figure 1: The APG toolset design. (J) The student starts the
environment generator with a unique seed. (2) The generator
creates a personalized lab environment. (3) Answers specific
to that environment are stored in the submission database.
(4) The student solves the tasks. © The submitted answers
are checked against the generated personalized answers. ©
Instructor examines the submission logs for cheating.

lab environment w i t h a unique identifier, such as an e-mail address.
This identifier is hashed and serves as a seed for generating values
used to configure and deploy the personalized lab environment. For
example, network service w i l l r u n on a different unique port for
each student i n a networking lab.

The environment generation is driven by a configuration file that
specifies the types of the generated values and their constraints,
such as a range or prohibi ted values. Currently, it can generate
user names and passwords of a predefined length, sentences, IP ad­
dresses, and port numbers. The generated random values are passed
to Ansible, w h i c h is responsible for configuration management of
the vir tual machines i n the environment.

3.2 Submission Server
Students who solve hands-on tasks enter their answers into a central
submission server. However, i n traditional static assignments, every
student searches for the same answer, w h i c h is prone to cheating.

A l o n g w i t h the environment generator, we developed an open-
source plugin that extends the popular platform C T F d [5]. C T F d is
a web portal that allows students to submit answers to instructor-
defined tasks. W h e n the students instantiate their personalized lab
environment, the environment generator sends the generated per­
sonalized answers to C T F d . Our p l u g i n then associates individual
answers w i t h the corresponding students i n the database.

This submission server brings two key improvements over the
traditional assessment process. First, for each student, only their
personalized answer is accepted as correct. Second, i f a student
submits an answer of someone else, this activity is logged.

4 CASE STUDY METHODS
We describe the methods of the case study that uses the proposed
toolset for A P G . The goal is to evaluate A P G for hands-on lab
assignments i n an authentic teaching context.

4.1 Teaching Context and Participants
The case study involves one homework assignment i n an intro­
ductory computer security course enrolled by 207 undergraduate
students. The course was taught at a public university in the Czech
Republic i n the Spring 2021 semester remotely (via video confer­
ences) i n English. The homework constituted 4% of the final grade
and was due in 14 days (May 3-17, 2021).

4.2 Exercise Content and Format
The assignment enhanced the skills students learned i n the lab
session before homework. In particular, it covered network attacks
on authentication of Telnet and SSH servers, securing an SSH server,
and capturing and analyzing S S H traffic. The assignment had to
be completed individually using the personalized lab environment
and submission server introduced i n Section 3.

4.2.1 Task personalization. The homework was structured into
eight tasks. Each task had to be completed by entering a text string
(answer) to the submission server. A n s w e r s to three tasks were
uniform, and five tasks were personalized for each student. These
answers were generated using our A P G toolset. In the end, each
student had a personalized lab environment, w h i c h contained i) a
host running the Telnet server at a random network port, ii) one user
account w i t h a random username, iii) another user account w i t h a
random password, and iv) a file containing a random sentence. The
generation of the random port number was l imi ted to the values
f r o m 1500 to 65000, excluding the number 2323, a w e l l - k n o w n
alternative port number for the Telnet service. The password was
a four-digit number f rom 1300 to 2000, excluding the numbers
1234 and 1337 because some students may guess these numbers.
Finally, the username was one of the c o m m o n usernames f r o m a
w e l l - k n o w n dictionary used for authentication attacks.

4.2.2 Task dependencies. Before a student started to solve the
homework tasks, they were presented w i t h one simple question,
intended only for their familiarization w i t h the submission server
and conventions. The familiarization explained submitting the an­
swers, displaying hints, and unlocking tasks in a chain. Once they
solved it, they were a l lowed to start solving the homework tasks.
In the beginning, they could choose the first task f rom a chain of
six tasks (A 1 - A 4 , SI, and S2), or any of the two other tasks (T l or
T2), as depicted i n Figure 2. The chain defined the order of the six
tasks, unlocked once a student had solved the previous tasks in the
chain. Each task was wor th 1 point.

4.2.3 Homework rules. Students were instructed that sharing cor­
rect answers is strictly prohibited and useless because each of them
had received the personalized lab environment. Next, students had
five attempts to submit a correct answer to each task. Af ter that,
they were not allowed to submit another answer or proceed to the
next task i n a chain. Finally, w h e n the homework was over, we
randomly selected four students who were required to demonstrate

start

Figure 2: Blue tasks are displayed after a student answers the
familiarization question (F). Locked (hidden) tasks are gray.

their approach to the instructor at a dedicated one-to-one video call.
A l l these rules were announced when the homework was assigned.

4.3 Cheating Detection
To reach the goal of this study, we also detect suspicious students'
submissions, w h i c h may indicate cheating. Some of the methods
were piloted i n our previous research [15].

4.3.1 Someone else's answers. The most reliable detection method
is tracking incorrect submissions of correct answers belonging to
other students. This method assumes that some students shared
their correct answers w i t h other students w h o unth ink ingly sub­
mitted someone else's answers.

4.3.2 Task chains. Another method benefits from locked tasks i n a
chain. Since a task i n the chain is unlocked only after the previous
task is successfully solved, this method computes the solve time for
consecutive tasks. Then, the student's solve time is compared to the
minimal possible solve time of a human who immediately performed
all actions required to solve the tasks wi thout any mistakes and
time for thinking about the steps. A n y student's solve time close to
or lower than the minimal possible solve time may indicate that the
student obtained step-by-step instructions from another student.

4.3.3 Submission proximity. The least conclusive method lies i n
searching for time proximity or location proximity of two or more
submissions. A n y of these proximities may indicate that students
were w o r k i n g together and submitted the answers (correct or i n ­
correct) at the same time or place. We consider submissions to be in
the location proximity i f they originated from the same IP address,
w h i c h multiple hosts might share i n some networks [9].

4.4 Data Collection and Survey
To use the methods for cheating detection, we logged students'
correct and incorrect answers submitted to the submission server,
together w i t h timestamps and IP addresses.

In addition, we surveyed students about their opinions o n the
format of the homework assignment. Whi le the assignment was an
inherent part of the course, the survey after the assignment was
optional. A l l students who participated i n the survey provided their
informed consent to use the collected data for research purposes.
Table 1 lists the questions asked in the survey.

5 RESULTS AND DISCUSSION
Here we report the study results and summarize our experience
w i t h A P G and preventing cheating i n lab assignments. Out of 207
students enrolled, 195 students logged into the submission server.

Table 1: Wording of the survey questions.

No. Question

Qi W o u l d y o u rather complete a n assignment o f this format (lab
environment + submiss ion server) or t radi t ional h o m e w o r k as­
signments (writ ten report) i n y o u r future security courses?

Q2 H o w useful was the instant feedback o n y o u r submissions (the
server's response whether y o u r answer is correct or not)?

Q3 H o w stressful was the l imi ted number of five attempts per task?

Q4 H o w stressful w a s the poss ib i l i ty that y o u c o u l d be r a n d o m l y
selected to demonstrate your solution approach to the instructor?

Q5 Have y o u experienced a n y technical issues w i t h y o u r personal­
ized lab environment?

Q6 D o y o u have any comments or thoughts related to the previous
questions or any other feedback?

In total, 178 students solved at least one task. A l l eight tasks were
solved by 160 students.

5.1 Suspicious Submissions
We analyzed the students' answers to identify suspicious submis­
sions, w h i c h may indicate cheating.

5.7.7 Someone else's answers. We discovered three cases.

Case 1. The most conclusive was the f o l l o w i n g case. Student
A submitted the correct answer 41 247 for A l o n M a y 9th, 22:39.
Student B submitted the incorrect flag 41 247 twice, several days
later: first o n M a y 13, 23:23, and then on M a y 14, 11:21. However,
Student B generated his personalized lab environment for the first
time o n M a y 14, 11:00. That means the first incorrect submission
of Student B occurred before his first interaction w i t h the lab en­
vironment. W h e n questioned, the students replied that Student B
used a laptop of Student A w i t h the already running personalized
lab environment of Student A due to technical issues of a laptop of
Student B. To avoid similar situations, instructors should communi­
cate to students what constitutes cheating together w i t h concrete
examples of violations of homework rules.

Case 2. A l involved using the nmap tool to discover a network
service r u n n i n g on a personalized network port. Student C sub­
mitted an incorrect answer 16278 on M a y 11, 16:16:55. Student D
submitted his correct answer 16278 only 90 seconds later. Then, Stu­
dent C submitted his correct answer 26569 4 minutes after Student
D. We asked Student C w h y he had first submitted the incorrect
answer 16278. H e replied he " typed a random number". A more
l ikely explanation is that Student D solved the task first and shared
his correct answer w i t h Student C who submitted it first. The sub­
miss ion server replied that the answer was incorrect for Student
C. H e then asked Student D for the command to r u n i n his en­
vironment and later submitted the correct answer. The network
service discovery lasted only a few seconds, so Student C could
have completed the task i n 4 minutes.

Case 3. Student E submitted the correct answer asd for A 4 o n
M a y 8,11:39. Student F submitted an incorrect answer asd for the fa­
miliarization question six days later. Since one of the tasks involved
was the familiarization question and asd is a common testing string
composed from three neighboring letters on a keyboard, we do not
consider this case cheating.

5.7.2 Task chains. We discovered two cases where students sub­
mitted their answers incredibly quickly.

Case 4. The m i n i m a l possible solve time of A 3 was 45 seconds.
The assignment text consists o f 102 words. The task requires cap­
turing the network traffic using the t s h a r k tool to intercept the
secret content of the file. The tool has to be configured to analyze
packets at a non-standard network port discovered i n A l . Three
students G , H , and I completed the task in 58 seconds. These solve
times contrast w i t h other tasks, w h i c h they completed i n near to
median time compared to the other students. W e consider their
submissions suspicious since reading the assignment text, thinking,
and performing al l the actions take considerably longer than the
m i n i m a l possible solve. However, the students may not have fo l ­
lowed the assignment text (i.e., have not intercepted the network
traffic) but s imply pr inted out the file content as another student
confessed during one demonstration session (see Section 5.2).

Case 5. The m i n i m a l possible solve time of S2 was 33 seconds.
The assignment text of S2 consists o f 69 words. The task requires
disabling public key authentication at an SSH server. This involves
setting the right configuration opt ion and restarting the server.
Student J completed the task i n 46 seconds. Since the task involved
multiple actions i n the lab environment, it is unlikely to accomplish
them i n such a short time. Since the answer to this task was a short
text string same for all students, the student may have obtained it
f r o m another student or found the answer i n the documentation
without apply ing it i n the environment. One opt ion for person­
al iz ing this task w o u l d be to insert a commented string into the
configuration file on a random line and ask for a line number that
must be uncommented.

5.7.3 Submission proximity. We found one confirmed case of stu­
dents' collaboration using the locat ion p r o x i m i t y and the least
conclusive case using time proximity.

Case 6. Four groups of students used the same IP address. Stu­
dents from three groups submitted their correct answers at different
times. However, two students K and L i n one group submitted their
answers to T2 w i t h i n 68 seconds. Student K confessed he had coop­
erated w i t h student L . H e told us they share the same dormitory
room and shared only the steps for T2, not the answer.

Case 7. Assuming the homework was open for 14 days, and the
students worked individually, it is improbable that they submitted
the correct answer at the almost same time. We found that students
M and N submitted their answers for A 3 w i t h i n 13 minutes, for
A 4 w i t h i n 2 minutes, for SI w i t h i n 13 minutes, and for S2 w i t h i n 4
minutes (all at midnight of M a y 16). They submitted the other tasks
w i t h i n one hour. Still , it might be a coincidence since they worked
the last day before the deadline, so there was a higher chance of
submissions i n close time proximity.

5.2 Findings from Demonstration Sessions
One of the demonstration sessions after the homework deadline
revealed that one student did not complete A 3 as required. H e only
s imply pr inted out the content of a file at the server instead of
capturing the network traffic using the t s h a r k tool. The point he
had earned for submitting the correct answer for this particular task
was deducted. The other three sessions did not reveal any issues.

5.3 Results from the Post-Homework Survey
The optional survey after the assignment was answered by 45 stu­
dents. Forty students (89%) reported they w o u l d prefer the provided
format of complet ing assignments i n security courses. O n l y one
student w o u l d prefer the tradit ional homework assignment, and
the remaining four were not sure.

Q2 Q3 Q4 Q5
Useful Stressful Stressful Technical

feedback l imit demonstration issues

Figure 3: Answers to Q2-Q5 in the survey from 45 students.

The answers to questions Q 2 - Q 5 are summarized i n Figure 3.
The students highl ighted that the immediate feedback of correct­
ness or incorrectness of their answers was much useful (Q2). Next,
most students considered the limited number of attempts to answer
the tasks to be stressful sl ightly or not at a l l (Q3). A n s w e r s to Q4
show the students were stressed a bit more about the possibil i ty
to be chosen for the solution demonstration. This may indicate (i)
students attempted cheating, or (ii) students were not sure whether
the instructor w o u l d approve of their approach (not the answer).
Answers to Q5 show that the A P G toolset worked wel l .

Open-ended Q6 yielded diverse answers. N i n e students elabo­
rated their answer to Q l that they enjoyed the homework format.
Three students rated this homework as one of the best assignments
i n the course. Four students rated the difficulty of the particular
tasks and sometimes suggested improvements. Two students men­
tioned not having sufficient system resources for a smooth run of
the lab environment. T w o other students reported other technical
issues w i t h running the environment at their o w n hosts. T w o stu­
dents elaborated answers to Q3 about the submission l imit . One
student "wasn't really w o r r i e d about l imited attempts because it
was clear what we are supposed to submit". A n o t h e r student re­
ported: ' A t first, I thought those 5 attempts w i l l be very l imi t ing ,
but after solving it, I realized, it wasn't l imit ing at all" .

5.4 Limitations
Our study involved a single exercise in one course. Still, the number
of participants who interacted w i t h our tool is considerably larger
than i n the vast majority of works reported in Section 2.

The cheating detection methods analyze only students' actions
at the submission server. We do not capture any other data, such as
commands typed i n the lab environment. We can confront students
wi th our findings, but we cannot be entirely sure whether students
actually cheated or not (see Case 1).

Estimating the location proximity using the same IP address of
the submission is a double-edged sword. W h i l e our study shows
that one IP address may be shared by roommates, i n other cases it
might be shared by students w h o work independently.

Since the personalized answers were generated at students' com­
puters, advanced students may reverse-engineer the environment
generator and obtain the answers even wi thout interaction w i t h
the personalized lab environment. However, we agree w i t h [4] that
doing so w o u l d be more difficult than completing the assignment.

The optional survey was answered by 45 students out of 195 who
started solving the homework assignment. The answers may not en­
tirely represent the opinions of al l students solving the homework,
particularly the critical voices. Nevertheless, we have not received
any negative feedback from other formal or informal channels.

6 CONCLUSIONS AND FUTURE WORK
We presented an open-source toolset for creating and marking
personalized hands-on assignments i n v o l v i n g v i r tua l machines
and networks. The toolset was used for preventing and detecting
cheating i n individual homework i n an introductory security course
enrolled by 207 students. Each student received tasks w i t h the same
assignment text but different answers to be found by interacting
w i t h the lab environment. We discovered seven suspicious cases
using three different cheating detection methods. A t the same time,
students enjoyed the assignment and its format and did not perceive
cheating prevention disruptively.

Our approach is l ightweight and privacy-preserving. Students
were not under surveillance when solving their homework. Still, we
discovered suspicious submissions only from minimal data collected
(submitted answers, timestamps, IP addresses). Logging additional
student actions w o u l d increase the precision of cheating detection.
We plan to integrate a command-line logging toolset [18] into the
personalized lab environment. The ability to analyze the students'
commands w o u l d allow to reconstruct the problem-solving process
and timeline better.

To conclude, we showed that prevention and detection of cheat­
ing i n hands-on assignments involving the lab environment is pos­
sible i n large and remote classes. The key components are: au­
tomated provis ioning of the lab environment w i t h personalized
values generated locally at students' computers, task chains, sub­
mission limits, and a demonstration session. We provide the toolset
and an exemplary assignment i n a public repository [8]. Since a l l
used components are free and open-source, other instructors can
immediately use them in their classes as we d id or adapt only the
components that fit their needs.

Our future w o r k w i l l focus o n automatic problem generation
preserving tasks' difficulty and fidelity of the lab environment for
teaching networking, operating systems, and cybersecurity skills.
A n example of a challenging project is the automatic generation
of a network w i t h several hosts, each w i t h a random yet v a l i d IP
address, able to communicate w i t h other hosts i n the network.

ACKNOWLEDGMENTS
This research was supported by E R D F project CyberSecurity, Cyber­
crime and Critical Information Infrastructures Center of Excellence
(No. CZ.02.1.01/0.0/0.0/16_019/0000822). We also thank Daniel Kosc
for developing the toolset.

REFERENCES
[1] Isaac Agudo, Ruben Rios, and Ana Nieto. 2019. Personalized Computer Security

Tasks with Automatic Evaluation and Feedback. In Proceedings of the 2019 SIGED
International Conference on Information Systems Education and Research. Associ­
ation for Information Systems (AIS), 10 pages, https://www.nics.uma.es/pub/
papers/1835.pdf

[2] Jonathan Burket, Peter Chapman, Tim Becker, Christopher Ganas, and David
Brumley. 2015. Automatic Problem Generation for Capture-the-Flag Competi­
tions. In 2015 USENIX Summit on Gaming, Games, and Gamification in Security
Education (3GSE 15). USENLX Association, Washington, D.C., 8 pages, https:
//www.usenix.org/conference/3gsel5/summit-program/presentation/burket

[3] Wu chang Feng. 2015. A Scaffolded, Metamorphic CTF for Reverse Engineering.
In 2015 USENIX Summit on Gaming, Games, and Gamification in Security Education
(3GSE 15). USENLX Association, Washington, D.C., 8 pages. https://www.usenix.
org/conference/3gse 15/summit- program/presentation/feng

[4] Tom Chothia and Chris Novakovic. 2015. A n Offline Capture The Flag-Style
Virtual Machine and an Assessment of Its Value for Cybersecurity Education. In
2015 USENIX Summit on Gaming, Games, and Gamification in Security Education
(3GSE 15). USENLX Association, Washington, D.C., 8 pages. https://www.usenix.
org/conference/3gse 15/summit- program/presentation/chothia

[5] Kevin Chung. 2017. Live Lesson: Lowering the Barriers to Capture The Flag
Administration and Participation. In 2017 USENIX Workshop on Advances in
Security Education (ASE 17). USENIX Association, Vancouver, BC, 6 pages, https:
//www.usenix.org/conference/asel7/workshop-program/presentation/chung

[6] Max Fowler and Craig Zilles. 2021. Superficial Code-Guise: Investigating the
Impact of Surface Feature Changes on Students' Programming Question Scores. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education.
Association for Computing Machinery, New York, NY, USA, 3-9. https://doi.
org/10.1145/3408877.3432413

[7] HashiCorp. 2021. Vagrant. Retrieved October 28, 2021 from https://www.
vagrantup.com/

[8] Daniel Kosc and Jan Vykopal. 2021. A toolset for automatic problem generation
(APG)for hands-on labs. Retrieved October 28, 2021 from https://gitlab.fi.muni.
cz/cybersec/apg

[9] Gregor Maier, Fabian Schneider, and Anja Feldmann. 2011. N A T Usage in Resi­
dential Broadband Networks. In Passive and Active Measurement, Neil Spring and
George F. Riley (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 32-41.

[10] Oracle.2021. VirtualBox. Retrieved October 28,2021 from https://www. vir tualbox.
org/

[11] Ruixiang Qi and Davide Fossati. 2020. Unlimited Trace Tutor: Learning Code
Tracing With Automatically Generated Programs. In Proceedings of the 51st
ACM Technical Symposium on Computer Science Education (Portland, OR, USA)
(SIGCSE '20). Association for Computing Machinery, New York, NY, USA, 427-433.
https://doi.org/10.1145/3328778.3366939

[12] RedHat. 2021. Ansible. Retrieved October 28,2021 from https://www.ansible.com/
[13] Dorsa Sadigh, Sanjit A . Seshia, and Mona Gupta. 2012. Automating Exercise

Generation: A Step towards Meeting the MOOC Challenge for Embedded Systems.
In Proceedings of the Workshop on Embedded and Cyber-Physical Systems Education
(Tampere, Finland) (WESE '12). Association for Computing Machinery, New York,
NY, USA, Article 2, 8 pages, https://doi.org/10.1145/2530544.2530546

[14] Z. Cliffe Schreuders, Thomas Shaw, Mohammad Shan-A-Khuda, Gajendra
Ravichandran, Jason Keighley, and Mihai Ordean. 2017. Security Scenario Gener­
ator (SecGen): A Framework for Generating Randomly Vulnerable Rich-scenario
VMs for Learning Computer Security and Hosting CTF Events. In 2017 USENTX
Workshop on Advances in Security Education (ASE 17). USENIX Association, Van­
couver, BC, 10 pages, https://www.usenix.org/conference/asel7/workshop-
program/presentation/schreuders

[15] Jan Vykopal, Valdemar Švábenský, and Ee-Chien Chang. 2020. Benefits and
Pitfalls of Using Capture the Flag Games in University Courses. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education (Portland, OR,
USA) (SIGCSE '20). Association for Computing Machinery, New York, NY, USA,
752-758. https://doi.org/10.1145/3328778.3366893

[16] Jan Vykopal, Pavel Čeleda, Pavel Šeda, Valdemar Švábenský, and Daniel Tovarňák.
2021. Scalable Learning Environments for Teaching Cybersecurity Hands-on. In
Proceedings of the 51st IEEE Frontiers in Education Conference (Lincoln, Nebraska,
USA) (FIE '21). IEEE, New York, NY, USA, 1-9. https://www.muni.cz/en/research/
publications/1783808

[17] Christian Willems and Christoph Meinel. 2012. Online assessment for hands-on
cyber security training in a virtual lab. In Proceedings of the 2012 IEEE Global
Engineering Education Conference (EDUCON). IEEE, New York, NY, USA, 1-10.
https://doi.org/10.1109/EDUCON.2012.6201149

[18] Valdemar Švábenský, Jan Vykopal, Daniel Tovarňák, and Pavel Čeleda. 2021.
Toolset for Collecting Shell Commands and Its Application in Hands-on Cyber­
security Training. In Proceedings of the 51st IEEE Frontiers in Education Con­
ference (Lincoln, Nebraska, USA) (FIE '21). IEEE, New York, NY, USA, 1-9.
https://www.muni.cz/en/ research/publications/1783801

https://www.nics.uma.es/pub/
http://www.usenix.org/conference/3gsel5/summit-program/presentation/burket
https://www.usenix
https://www.usenix
http://www.usenix.org/conference/asel7/workshop-program/presentation/chung
https://doi
https://www
http://vagrantup.com/
https://gitlab.fi.muni
https://www
https://doi.org/10.1145/3328778.3366939
https://www.ansible.com/
https://doi.org/10.1145/2530544.2530546
https://www.usenix.org/conference/asel7/workshop-
https://doi.org/10.1145/3328778.3366893
https://www.muni.cz/en/research/
https://doi.org/10.1109/EDUCON.2012.6201149
https://www.muni.cz/

