C 2021

Visualization of Student-Item Interaction Matrix

EFFENBERGER, Tomáš and Radek PELÁNEK

Basic information

Original name

Visualization of Student-Item Interaction Matrix

Authors

EFFENBERGER, Tomáš (203 Czech Republic, guarantor, belonging to the institution) and Radek PELÁNEK (203 Czech Republic, belonging to the institution)

Edition

Cham, Visualizations and Dashboards for Learning Analytics, p. 439-456, 18 pp. Advances in Analytics for Learning and Teaching, 2021

Publisher

Springer

Other information

Language

English

Type of outcome

Kapitola resp. kapitoly v odborné knize

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

References:

RIV identification code

RIV/00216224:14330/21:00123675

Organization unit

Faculty of Informatics

ISBN

978-3-030-81221-8

Keywords in English

exploratory data analysis; learning environment; heat map; dotted chart

Tags

International impact, Reviewed
Změněno: 12/1/2022 13:25, RNDr. Tomáš Effenberger, Ph.D.

Abstract

V originále

One type of visualization of data from digital learning environments focuses on students’ interaction with the educational content. Students may, for example, answer questions, read texts, or solve problems. We can represent these interactions as a matrix, where rows correspond to students, columns to educational items, and values to some aspect of student activity (e.g., the correctness of answers, response times, the order of actions). Visualizing this matrix is useful for several purposes. For teachers, it can provide an understanding of the skill and behavior of their students. For system developers, it can provide insight into the behavior of both students and adaptive algorithms, and it can also help detect suspicious activity. For researchers, it can provide an understanding of the properties of datasets used in experiments and valuable warnings about biases that are present in data. However, suitable visualization of the student-item interactions is nontrivial. To facilitate the design of the visualization, we provide a systematic discussion of approaches to student-item matrix visualization. Using data from an introductory programming exercise, we also provide specific illustrations of different visualization designs.

Links

MUNI/A/1573/2020, interní kód MU
Name: Aplikovaný výzkum: vyhledávání, analýza a vizualizace rozsáhlých dat, zpracování přirozeného jazyka, umělá inteligence pro analýzu biomedicínských obrazů.
Investor: Masaryk University