

HTTPS Event-Flow Correlation: Improving Situational Awareness in Encrypted Web Traffic

Stanislav Špaček, Petr Velan, Pavel Čeleda, Daniel Tovarňák

Motivation

- Web traffic is currently mostly encrypted
- Analysis of encrypted traffic is inaccurate and costly
 - Unecrypted handshakes
 - Statistical features
 - Reencryption proxies
- Enrich network monitoring by data from host-based monitoring

Host-Based and Network Monitoring I

Flows							
start_t	end_t	src	dst	bytes	proto	application data	
10:21:00	10:21:25	10.0.0.5	10.0.0.1	1643	TLS		
10:21:19	10:24:03	10.0.0.2	10.0.0.1	1554	TLS		

Events					
timestamp	server	message			
10:21:01.154	10.0.0.1	GET example.com 200 Mozilla/5.0+iPhone+OS			
10:21:13.278	10.0.0.1	GET edu.example.com 200 Mozilla/5.0+iPhone			
10:21:21.004	10.0.0.1	POST example.com 200 Mozilla/5.0+iPhone+O			
10:21:22.152	10.0.0.2	GET example.com 200 Chromium/64.2+Windo			

Host-Based and Network Monitoring II

	Flows							
	start_t	end_t	src	dst	bytes	proto	application data	
1	10:21:00	10:21:25	10.0.0.5	10.0.0.1	1643	TLS		
2	10:21:19	10:24:03	10.0.0.2	10.0.0.1	1554	TLS		

Events					
timestamp	server	message			
10:21:01.154	10.0.0.1	GET example.com 200 Mozilla/5.0+iPhone+OS	Α		
10:21:13.278	10.0.0.1	GET edu.example.com 200 Mozilla/5.0+iPhone	В		
10:21:21.004	10.0.0.1	POST example.com 200 Mozilla/5.0+iPhone+O	С		
10:21:22.152	10.0.0.2	GET example.com 200 Chromium/64.2+Windo	D		

Event-Flow Correlation: 1ABC, 2D

Benefits and Restrictions

- Benefits of event-flow correlation
 - Enrichment of encrypted network traffic monitoring
 - Consistency check for event logs
 - Improvement of situational awareness for incident handlers
- Restrictions of event-flow correlation
 - Time synchronization of monitoring infrastructure
 - Monitoring of custom features necessary
 - Usable only for "internal" web services

Research Topic

- Correlation of the HTTPS events and network flows
- Research questions
 - How accurately can be events recorded on a web server correlated to the network flows that caused them?
 - What impact will future web traffic encryption technologies have on the accuracy of the correlation process?

Common Features

	НТТР				
Event	Event Flow		TLS 1.2	TLS 1.3	QUIC
time-generated	[START_NSEC, END_NSEC]	1	4	1	1
s-ip	L3_IPV4_DST	1	4	1	1
s-port	L4_PORT_DST	1	4	1	1
c-ip	L3_IPV4_SRC		4		
c-port	L4_PORT_SRC	1	4	1	\checkmark
cs-host	HTTP_REQUEST_HOST		4	X	X
cs-uri-stem	HTTP_REQUETS_URL		×	X	X
cs-user-agent	r-agent HTTP_USER_AGENT		X	X	X

Correlation Methods

- Four methods based on different sets of common features:
 - All-params for TLS 1.2 encrypted flows
 - No-sni TLS 1.3 and QUIC encrypted flows
 - No-port environment does not allow custom features monitoring
 - No-port-sni scenario with the least available data

Dataset

- Seven days of web traffic from a large campus network
- Approximately 3 000 000 flows and 6 000 000 events
- TLS 1.2 network flows and Windows Server events
- All devices time-synchronized with millisecond precision
- Webservers unable to log client port disqualified
- Dataset and all tools are public

Evaluation

	All-params	No-sni	No-port	No-port-sni
Accuracy	1,0000	0,9999	0,9999	0,9999
Precision	1,0000	0,9999	0,4055	0,3555
Recall	1,0000	1,0000	1,0000	1,0000
F1-Score	1,0000	0,9999	0,5770	0,5245

Conclusion

- Event-flow correlation may enrich encrypted web traffic monitoring with content and client data
- How accurately can be events recorded on a web server correlated to the network flows that caused them?
 - Event-flow correlation is suitable if client port can be monitored
- What impact will future web traffic encryption technologies have on the accuracy of the correlation process?
 - Lack of SNI in TLS 1.3 and QUIC has only marginal effect on correlation accuracy

Contact

Research Institute CODE Carl-Wery-Straße 22 81739 Munich Germany

contact@concordia-h2020.eu

Follow us

www.concordia-h2020.eu

www.twitter.com/concordiah2020

www.facebook.com/concordia.eu

www.linkedin.com/in/concordia-h2020

www.youtube.com/concordiah2020