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Abstract
Hands-on cybersecurity training allows students and professionals to
practice various tools and improve their technical skills. The training
occurs in an interactive learning environment that enables complet-
ing sophisticated tasks in full-fledged operating systems, networks, and
applications. During the training, the learning environment allows col-
lecting data about trainees’ interactions with the environment, such as
their usage of command-line tools. These data contain patterns indica-
tive of trainees’ learning processes, and revealing them allows to assess
the trainees and provide feedback to help them learn. However, auto-
mated analysis of these data is challenging. The training tasks feature
complex problem-solving, and many different solution approaches are
possible. Moreover, the trainees generate vast amounts of interaction
data. This paper explores a dataset from 18 cybersecurity training ses-
sions using data mining and machine learning techniques. We employed
pattern mining and clustering to analyze 8834 commands collected from
113 trainees, revealing their typical behavior, mistakes, solution strate-
gies, and difficult training stages. Pattern mining proved suitable in
capturing timing information and tool usage frequency. Clustering under-
lined that many trainees often face the same issues, which can be
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addressed by targeted scaffolding. Our results show that data mining
methods are suitable for analyzing cybersecurity training data. Educa-
tional researchers and practitioners can apply these methods in their
contexts to assess trainees, support them, and improve the training
design. Artifacts associated with this research are publicly available.

Keywords: cybersecurity education, security training, data science,
educational data mining, learning analytics

1 Introduction
Cybersecurity professionals are needed across the globe to counter the ubiq-
uitous cyber threats. To meet the increasing demand for cybersecurity
experts ((ISC)2, 2021), effective training is essential. Such training must
include hands-on components and provide practical experience in authentic
settings. This includes using a variety of tools for cybersecurity operations,
such as host configuration, hardening, and penetration testing.

Cybersecurity experts use tools with graphical user interfaces as well as
command-line tools. Within the scope of our research, we focus on the latter,
since command-line tools represent an important component of cybersecurity
practice. Cyber attackers use them to perform sophisticated attacks, which
cyber defenders need to understand to mitigate advanced threats. In addition,
various command-line tools are used to configure computer systems securely.

1.1 Research Problem Statement
Our research focuses on supporting automated assessment in the context of
hands-on cybersecurity training. Here, we explain the motivation for our
research, illustrate the problem with a simple example, justify why the problem
is hard to address, and summarize the gaps in the current literature.

Why Is Student Assessment Necessary?

Educational assessment is a crucial aspect of training (Lancaster, Robins,
& Fincher, 2019). It enables teachers (instructors) to better understand the
actions of their students (trainees). Specifically, in-depth assessment shows
what each student did well, what could be improved, and whether the student
progressed through the training as expected.

Based on insights from the assessment, teachers can adapt their class, pro-
vide students with feedback to support their learning, or evaluate their level of
knowledge. The assessment also shows potential issues in the training design,
enabling to fix them and further improve the effectiveness of the training.

How Can Students Be Assessed?

Like most applied computing skills, cybersecurity is usually practiced hands-on
in computer-supported interactive learning environments. These are physical
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or virtual platforms that provide computer hosts with full-fledged operating
systems, networks, and applications for training.

Advanced interactive learning environments allow collecting data about the
students’ actions, such as their usage of command-line tools. These student
interaction data authentically capture learning processes. Therefore, they can
be transformed into educational insights and exploited for assessment.

As an example, consider the two command histories from cybersecurity
training shown in Figures 1 and 2. They belong to two students who attempted
to crack a password to a ZIP archive using the fcrackzip utility in Linux.
Each command is prefixed by the timestamp of its execution. Based on the
analysis of these student data, the instructor can see that each student needs
help with a specific and different aspect of the training.

12:27:41 fcrackzip -b -u file.zip
12:28:25 fcrackzip -b -D -u file.zip
(repeated 5 times)
12:29:17 fcrackzip -b -u /file.zip
12:29:24 fcrackzip -b -u
12:29:34 fcrackzip -b -u /file.zip
12:30:13 fcrackzip -D -u -v file.zip
12:30:51 fcrackzip -D -u -v file.zip
12:30:55 fcrackzip -b -u -v file.zip
12:31:18 fcrackzip -c -u -v file.zip
(9 more executions with different argument combinations)
12:33:02 fcrackzip -b -u -v file.zip
12:37:22 fcrackzip -v -u -D fasttrack.txt file.zip

Fig. 1 The first student ran the cracking tool 24 times within an approximately 5-minute
time frame, with various combinations of arguments, often repeating the previous (incorrect)
combinations. After that, the student stopped for 4 minutes, probably to find help, and
executed a correct command.

20:48:49 fcrackzip.exe-help
20:48:55 fcrackzip.exe -help
20:49:02 fcrackzip.exe --help
20:49:04 fcrackzip
20:49:08 --help
20:49:13 fcrackzip --help
20:50:44 sudo apt-get install fcrackzip
20:52:51 fcrackzip -u -D -p fasttrack.txt file.zip

Fig. 2 The second student assumed that the tool had the .exe suffix of Windows OS
executables, which does not apply to Linux OS. The student was apparently unfamiliar
with Linux or the cracking tool but then instantly executed a correct command without any
previous incorrect tries. We can assume that they received outside help.
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Why Is Assessment Difficult?

In-depth assessment of cybersecurity training is difficult for four main reasons.

1. The training is complex. The tasks require high-order problem solving and
may have many different correct solutions. Therefore, the assessment is
much more complex than assessing simple tasks such as memorizing facts.

2. Each student is unique. Every student has different previous knowledge,
experience, motivation, and approach to learning. As a result, students
adopt different strategies to solve the tasks. This is natural, but it further
complicates the conditions for automatically assessing hands-on tasks.

3. Students generate a lot of data. During the training, even a class that is
relatively small (10–20 students) and time-constrained (1–2 hours) can gen-
erate hundreds of data records. As a result, manually processing these data
becomes quickly infeasible.

4. The assessment process is not straightforward. It is unclear how to transform
the raw data from training into educational insights useful for assess-
ment. As the examples in Figures 1 and 2 demonstrated, even a relatively
constrained assignment can generate various data for assessment.

The Need for Research

Traditionally, educational researchers and practitioners assessed student
data manually. However, due to the difficulties described above, a man-
ual transformation of hands-on training data into educational insights is
not viable (Fournier-Viger, 2017; Romero & Ventura, 2020). It is highly
time-consuming, ineffective, and error-prone.

Automated assessment is more scalable and accurate. Therefore, it can
be fruitful to leverage automated techniques, such as machine learning and
data mining, for analyzing data from hands-on training (Palmer, 2019). These
techniques should transform the data from their raw form to an understandable
representation, such as an overview of highlights or a visualization.

However, the review of current literature (see Section 3 for details)
identified several gaps in state of the art in this area:

• As Weiss, Locasto, and Mache (2016) argued, current automated assessment
is often superficial, judging only the (in)correctness of the solution. Only
a few papers, such as by Mirkovic et al. (2020), have explored an in-depth
assessment of student learning.

• To the best of our knowledge, no published research attempted to com-
pare and evaluate the applicability of two different data mining methods on
cybersecurity training data. Student assessment in cybersecurity has been
explored from other perspectives, such as using numerical scoring metrics
(see Maennel, Ottis, and Maennel (2017) for an example).

• Data mining algorithms have been used for assessment in other domains,
such as programming (Gao, Marwan, & Price, 2021), but it is unclear how
to generalize these previous results to the cybersecurity context.



Springer Nature 2021 LATEX template

Student Assessment in Cybersecurity Training Automated by Pattern Mining and Clustering 5

1.2 Goals of This Research Paper
We seek to support automated assessment of students in hands-on training.
In order to address the gaps in the literature, the assessment must satisfy the
following criteria:

• enable an in-depth understanding of students’ actions,
• use methods that have not been researched in this context previously, and
• be evaluated on an authentic dataset from realistic training sessions.

The domain of data mining offers many methods for the automated extrac-
tion of insights from raw data (Fournier-Viger, 2017). Two methods that
satisfy the criteria above and will be explored in this paper are pattern
mining and clustering. Pattern mining techniques, such as association rule
mining and sequential pattern mining, can reveal interesting relationships
in datasets (Fournier-Viger, 2013b). Clustering, on the other hand, forms
groups of data based on their similar characteristics (Romero, Ventura, Pech-
enizkiy, & Baker, 2010). Evaluating these two techniques represents an original
contribution to cybersecurity education and beyond.

Research Questions

Our research is framed by two research questions related to student assess-
ment in cybersecurity: What insights can we gather from command histories
using pattern mining (RQ1) and clustering (RQ2)? By insights, we mean the
following educational findings to support assessment:

• trainees’ approaches and strategies to solving the training tasks,
• common mistakes, misconceptions, and tools problematic for trainees,
• distinct types of trainees based on their actions and behavior, and
• issues in the training design and execution.

Expected Contributions of This Research

Answering the research questions will be valuable for various stakeholders.

• Cybersecurity instructors can use the researched methods in their classes to
gain new insights for assessing their students. Specific assessment use cases
are detailed in Section 5.3 and Section 5.5.

• Researchers can build upon this work by evaluating other data mining meth-
ods on similar datasets. This will contribute to the body of knowledge on
assessment in cybersecurity training.

• Developers of cybersecurity training platforms can integrate the researched
methods of data collection and analysis into the interactive learning
environments. This will support the goals of instructors and researchers.

Educational stakeholders from outside the cybersecurity domain can ben-
efit from this research as well. Students of related computing disciplines,
such as networking and operating systems administration, can generate simi-
lar data for assessment in hands-on classes. For students of other disciplines,
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the researched methods can be extended to process different data, such as
clickstreams.

1.3 How to Read This Paper
Above, we defined three target groups who may be interested in this paper.
Although we aim to address readers from a broad audience, we acknowledge
that some sections of the paper are not relevant for everyone. Section 2 provides
a brief background and therefore aims at researchers who seek to understand
the theory of the used methods. Other readers who are satisfied with a more
high-level understanding may skip it. Section 3 reviews related studies, which is
relevant for researchers and instructors interested in how the previous research
results were applied to support teaching practice. Section 4 details the used
methods for the data collection and analysis. It is aimed mainly at researchers
and developers, since it also includes technical details about the training plat-
forms and data collection. Section 5 presents the findings and answers the
research questions. Finally, Section 6 concludes, summarizes our contributions,
and proposes future work. These two sections are suitable for all readers.

2 Background and Terminology of Data Mining
This section defines the key terms to familiarize the readers with basic data
mining concepts. Data mining is a field of computing that deals with extract-
ing knowledge from data. Its purpose is to enable understanding of the data,
gather new insights from them, and support decision-making based on this
understanding (Fournier-Viger, Lin, Kiran, Koh, & Thomas, 2017; Han, Kam-
ber, & Pei, 2011). Out of the many data mining methods, we will focus on two
of them: pattern mining (Section 2.2) and clustering (Section 2.3).

2.1 Educational Data Mining and Learning Analytics
Educational data mining (EDM) (Romero et al., 2010) and Learning ana-
lytics (LA) (Lang, Siemens, Wise, & Gašević, 2017) are two inter-related
research areas that aim to understand and improve teaching and learning.
The research in these areas focuses, for example, on student behavior, learning
processes, assessment, and interactive learning environments. To achieve their
aims, EDM/LA researchers collect and analyze data from educational settings.

2.2 Pattern Mining
Pattern mining automatically extracts previously hidden patterns in data. Its
objective is to discover patterns that are easily interpretable by humans. We
concentrate on two well-established pattern mining techniques: association rule
mining (ARM) and sequential pattern mining (SPM) (Fournier-Viger, 2013b;
Fournier-Viger et al., 2017).
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Association Rule Mining

Association rules are patterns with the form of an if-then statement. A rule
𝑋 → 𝑌 says that if an item 𝑋 occurs in a transaction (a set of items),
then so does 𝑌 (Fournier-Viger et al., 2017; Han et al., 2011; Romero et al.,
2010). In our case, an item may be a command submitted by a student, and a
transaction may be a whole set of commands of that student. An association
rule mined from a set of students’ transactions may indicate that if a student
used a command 𝑋, then they also used a command 𝑌 .

For each association rule 𝑋 → 𝑌 , we are typically interested in two met-
rics: its support (relative occurrence among all the examined transactions) and
confidence (relative occurrence among the transactions that contain 𝑋).

Algorithms for mining association rules consider only rules that satisfy the
user-defined thresholds for the minimal support and confidence, MinSup and
MinConf. Since this process can extract a vast amount of rules, additional
measures such as lift are applied to filter out irrelevant rules (Fournier-Viger
et al., 2017; Han et al., 2011; Romero et al., 2010).

Sequential Pattern Mining

Sequential pattern is a frequently occurring subsequence in a given set of
sequences (Fournier-Viger et al., 2017; Romero et al., 2010). For example, it
can be a progression of certain commands that many students used. Contrary
to ARM, SPM can analyze data in which the ordering of items is relevant.

Again, sequential patterns are mined based on a MinSup threshold. To find
a manageable amount of patterns, it is recommended to use algorithms that
mine closed sequential patterns (Fournier-Viger, Gomariz, Campos, & Thomas,
2014; Fournier-Viger et al., 2017; Fumarola, Lanotte, Ceci, & Malerba, 2016).

2.3 Clustering
Clustering is the process of assigning data points into groups called clusters
based on their similarity. Data in one group are similar to each other and
dissimilar to data from other groups (Madhulatha, 2012). For example, in our
context, we can group students based on the similarities in their command-line
usage. Clustering is an unsupervised machine learning technique, so it does not
use previously labeled data to assess new data. Instead, it organizes unlabeled
data into “bundles”.

We focus on density-based clustering, which defines a cluster as an area
with a high density of data points; low-density areas separate individual
clusters. Unlike partitional clustering methods, such as the popular 𝑘-means
clustering (Lloyd, 1982), density-based approaches are better at recognizing
arbitrarily shaped clusters and filtering noise or outliers. However, not all data
points may end up in a cluster (Aggarwal, Hinneburg, & Keim, 2001; Beyer,
Goldstein, Ramakrishnan, & Shaft, 1999).
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3 Related Work
This section reviews the publications related to the analysis of educational
data. It also explains how our research differs from state of the art.

3.1 Pattern Mining in Educational Data
Association rule mining (ARM) or sequential pattern mining (SPM) has been
employed to investigate various aspects of education. These include learner
difficulties, correlations between learning behaviors and performance, and
teaching strategies that lead to better learning (Bienkowski, Feng, & Means,
2012; Romero & Ventura, 2020).

García, Romero, Ventura, de Castro, and Calders (2010) applied ARM
on data capturing students’ usage of a learning management system, discov-
ering relationships between students’ activities and final grades. Instructors
can use this information to adjust the course or identify struggling students
early. Kobayashi (2014) also used ARM to uncover the errors that frequently
co-occurred at various proficiency levels when learning spoken English. The
pattern mining revealed types of mistakes that distinguish lower-level and
upper-level students.

Malekian, Bailey, and Kennedy (2020) applied SPM on data represent-
ing students’ actions and task submissions in an online learning environment.
The researchers wanted to discover the behavior patterns that lead to success-
ful or unsuccessful assessment outcomes. Therefore, they split the sequences
of actions into two categories depending on the outcome of the sequence’s
final submission. The failed sequences contained mainly repeated assessment
submissions and discussion forum views. In contrast, the passed sequences
included multiple reviews of lecture materials. This information can be used
to modify the learning environment to discourage unproductive behavior.

Gao et al. (2021) mined sequential patterns from programming logs to
identify struggling students. Timely recognizing these students is essential for
promoting their learning. To establish ground truth, the researchers again split
the logs of high- and low-performing students. Then, they mined patterns that
either dominated in one group to discover its specifics, or occurred in both
groups to reveal similarities. After that, they used the patterns as features in
a classifier algorithm to predict student performance.

3.2 Clustering of Educational Data
Vellido, Castro, and Nebot (2010) motivate the usage of clustering in educa-
tional contexts. In addition, they also provide a brief overview of literature
where clustering was applied to solve educational problems. Next, Romero
and Ventura (2010) and Dutt, Ismail, and Herawan (2017) performed litera-
ture reviews of EDM papers. Clustering has been used to provide feedback to
instructors, detect undesirable or unusual student behavior, analyze and model
student behavior, and group students by various characteristics, such as their
learning approaches.
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Yin, Moghadam, and Fox (2015) used the OPTICS algorithm to cluster
students’ programming assignments, aiming to support autograding based on
the type of solution. Student source code was represented as an abstract syn-
tax tree, with the normalized tree edit distance as the similarity measure for
clustering. The researchers discovered clusters corresponding to distinct types
of solutions (canonical, correct but longer code, complex solution, and so on).

McBroom, Jeffries, Koprinska, and Yacef (2016) mined submission logs
from an autograding system for program code. They clustered weekly submis-
sions to find approaches to each assignment while also analyzing the long-term
behavior to learn how students develop. The researchers detected common
behavioral patterns as early as in week three of the semester, and students’
behavior largely remained the same. Teachers can use the gained insight to
intervene when a student belongs to the cluster with a higher risk of failure.

The goal of Piech, Sahami, Koller, Cooper, and Blikstein (2012) was to
study how students learn to program. To do so, the researchers captured and
clustered temporal traces of student interactions with a compiler. They applied
a hidden Markov model to the temporal traces and visualized it as a state
machine for the cluster. The model then predicted student performance.

Emerson et al. (2020) explored novices’ misconceptions in block-based
programming. The researchers used logs of unsuccessful student attempts at
programming assignments. The students’ programs were represented by three
families of features: basic block features, counts of specific block sequences,
and the number of interactions with the system. The results revealed three
clusters of students: exploratory, disorganized, and near-miss.

In their follow-up work, Wiggins et al. (2021) analyzed novices’ hint
requests in block-based programming. When a student asked for a hint, the
time elapsed from the assignment’s start and the percentage of code comple-
tion were recorded. Clustering of this data revealed five different groups of
students based on their hint-taking strategies. For example, those that asked
for a hint early and had low code completeness probably needed a “push” to
start. Instructors can use this information to target the students’ needs specific
to the given group.

3.3 Using Data for Student Assessment in Cybersecurity
Maennel (2020) performed a thorough literature review of data sources that
can serve as evidence of learning in cybersecurity exercises. These data sources
include timing information, command-line data, counts of events, and input
logs. Our paper investigates the applicability of command-line data in educa-
tional assessment. Such data are collected in multiple state-of-the-art learning
environments for cybersecurity training (Andreolini, Colacino, Colajanni, &
Marchetti, 2019; Labuschagne & Grobler, 2017; Tian et al., 2018; Weiss,
Turbak, Mache, & Locasto, 2017).

Weiss et al. demonstrated that command-line data from cybersecurity
training are valuable for student assessment. They incorporated information
about the students’ exact steps, rather than just a numerical score indicating
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success or failure. They analyzed the students’ work processes and the utilized
command-line tools. Based on the command histories, they generated progress
models of student approaches (Švábenský, Weiss, et al., 2022; Weiss et al.,
2016, 2017) and predicted their success (Vinlove, Mache, & Weiss, 2020).

Mirkovic et al. (2020) collected and analyzed command-line input and out-
put from participants in hands-on cybersecurity exercises. The analysis system
automatically compared the collected data with pre-defined exercise milestones
and produced statistics about the participants’ progress. It helped identify dif-
ficult sections of the exercises and students needing assistance, providing useful
information to instructors.

Abbott et al. (2015) parsed a dataset of logs from cybersecurity training
into meaningful blocks of activity and statistically analyzed them. McClain et
al. (2015) further explored this dataset combined with questionnaires measur-
ing the participants’ experience in cybersecurity. They discovered that more
experienced participants used specialized and general-purpose tools, while the
less experienced participants focused only on specialized cybersecurity tools.

Finally, several works investigated the assessment of teams in sophisticated
cyber defense exercises. Granåsen and Andersson (2016) collected network and
system logs to study the performance of teams. Similar data sources were used
by Henshel et al. (2016) to assess and predict team performance. Maennel et
al. (2017) proposed a systematic approach: a methodology to employ exercise
data for team assessment. In contrast, we focus on individual assessment during
exercises in the scope of classroom teaching.

3.4 Summary of the Related Work
Pattern mining and clustering were applied in educational contexts with inter-
esting results. They can reveal students’ misconceptions, approaches to solving
the tasks, and behavioral patterns. These insights can improve educational
assessment and feedback and target instruction to support students’ needs.

The novelty of our paper is exploring these methods in the context of cyber-
security training. Previously, command-line data from cybersecurity training
were analyzed using other methods, such as statistics, regular expression
matching, and classifiers. We seek to discover insights gathered from cybersecu-
rity training data using pattern mining and clustering, as well as demonstrate
their usefulness for assessment. Moreover, we aim to uncover in-depth insights,
not only assess the correctness of the student solution.

4 Research Methods
This section explains the methods chosen to answer the research questions
posed in Section 1.2. A visual overview of these methods is provided in Figure 3.
In previous projects (Popovič, 2021; Tkáčik, 2020), we prototyped the methods
on smaller datasets, yielding initial results that we updated for this paper.
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Fig. 3 The command logs collected from students act as input for pattern mining and
clustering. The results are visualized and interpreted in Section 5.

4.1 Cybersecurity Training
Our research analyzes data from cybersecurity training. Specifically, we focus
on offensive security skills training in a sandboxed network emulated within
an interactive learning environment. The following text introduces essential
aspects of the training to provide context for the research.

Interactive Learning Environment

The virtual machines for the training were hosted in KYPO Cyber Range
Platform (Masaryk University, 2021; Vykopal, Čeleda, Seda, Švábenský, &
Tovarňák, 2021), which is a cloud-based infrastructure for emulating complex
networks. For some training sessions, we alternatively used Cyber Sandbox
Creator (Masaryk University, 2022a; Vykopal et al., 2021): a tool for creating
lightweight virtual labs hosted locally on the trainees’ computers. This choice
of the underlying infrastructure did not affect the training content, and the
data collection was also equivalent.

Both platforms are open-source (Vykopal et al., 2021), and cybersecurity
instructors can freely deploy them for their purposes.

Training Format

The trainees worked with the interactive learning environment either remotely
via a web browser or locally on their computers. Each trainee accessed their



Springer Nature 2021 LATEX template

12 Student Assessment in Cybersecurity Training Automated by Pattern Mining and Clustering

own isolated sandbox containing a virtual machine with Kali Linux (Offensive
Security, 2022a): an operating system distribution tailored for penetration
testing that provided the necessary tools. The trainees completed a sequence
of assignments presented via a web interface. Almost all the assignments were
solved using command-line tools, which are described below.

The participants were allowed to use any sources on the Internet. Moreover,
the interactive learning environment offered optional hints, which the trainees
could reveal to get help with the current task. The usage of hints and outside
help was allowed since the trainees were not evaluated summatively (that is, the
training was not a graded exam). Instead, we focused on formative assessment
and helping the students explore new cybersecurity skills.

Training Content

Each trainee participated in exactly one of two types of training. Both trainings
involved attacking an intentionally vulnerable virtual host using well-known
security tools, but the trainings slightly differed in their content. In Training A
(72 participants), the following tools were crucial: nmap for network scanning,
Metasploit for exploitation, john for password cracking, and ssh for remote
connection. Training B (41 participants) used nmap and ssh as well, but not
Metasploit or john. Instead, it featured fcrackzip for cracking passwords to
ZIP files (see Figures 1 and 2). None of the trainees was previously familiar
with any of these two trainings.

Again, the training content is publicly available (Masaryk University,
2022b). Training A corresponds to the cybersecurity game Secret laboratory
and its derivatives, while Training B corresponds to the game Junior hacker
training. Cybersecurity instructors can freely deploy these games in their
classes and recreate the conditions for our research.

Training Participants

From August 2019 to February 2021, we hosted 18 cybersecurity training ses-
sions for a total of 113 trainees. Each training session usually took two hours to
complete, and most of them were held remotely due to COVID-19 restrictions.
The participants included:

• undergraduate and graduate students of computer science from various
European universities,

• high school students attending the national cybersecurity competition, and
• cybersecurity professionals.

They all attended voluntarily because of their interest in cybersecurity and
were not incentivized. Although the participants do not form a random sample,
we argue that it is practically infeasible to recruit a randomized population for
this type of research. Therefore, we instead worked with the representatives of
the target group for this cybersecurity training.
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Ethical and Privacy-Preserving Measures for Research

Since we carried out research with human participants, we ensured that the
trainees would not be harmed in any way. We minimized the extent of data
collection to gather only the data necessary for the research. We also received
a waiver from our institutional ethical board since we do not collect any
personally identifiable information.

The participants provided informed consent to the collection and usage
of their data for research purposes. The collected data were thoroughly
anonymized not to reveal the trainee’s identity. As a result, it is impossible to
track the trainee throughout future training sessions.

4.2 Data Collection
While the trainees solve the assignments, our infrastructure (Švábenský,
Vykopal, Tovarňák, & Čeleda, 2021) automatically collects their submitted
commands and the associated metadata. We gathered data from command-
line tools in the Linux Bash terminal and Metasploit shell, which is software
for penetration testing (Offensive Security, 2022b). These data, which are pub-
lished (along with other training data) in an open-source article (Švábenský,
Vykopal, Seda, & Čeleda, 2021), serve as the input for pattern mining and
clustering. We did not collect data from tools with a graphical user interface.

Data Format

The command history of each trainee is captured in a single JSON file. The
file consists of dozens of log records (78 per trainee on average), such that each
record represents a single command executed by the trainee. Figure 4 shows
an example of such a log record.

{
"timestamp" : "2020-07-03T08:09:25+01:00",
"username" : "root",
"hostname" : "attacker",
"ip" : "10.1.135.83",
"sandbox_id" : "1",
"wd" : "/home",
"cmd" : "nmap --help",
"cmd_type" : "bash-command"

}

Fig. 4 A single log record from a command history of one trainee.

Each log record has a fixed number of attributes. For our purposes, the
most significant are:

• timestamp, representing the time of the command’s execution in the ISO
8601 format,
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• cmd, which represents the full command (the tool and its arguments)
submitted by the trainee, and

• cmd_type, the application used to execute the command: either “bash-
command” for the tools executed within Linux Bash terminal, or “msf-
command” for Metasploit shell.

Data Properties

We collected 8834 commands, which constitute the dataset for this research,
over the period of 1.5 years. Although this sample is not massive in vol-
ume, it captures the trainees’ interactions deeply and over prolonged periods.
Therefore, it fulfills the prerequisites of the chosen data mining methods.

Hands-on cybersecurity training is usually held in a group of lower tens
of participants. Therefore, we consider the 8834 commands to be sufficient
for evaluating the two data mining methods. On average, this dataset corre-
sponds to 78 commands per trainee within the 1–2-hour time frame, which is
appropriate for the chosen training format.

For this research paper, we focus on data processing after the training ends.
Nevertheless, the used methods are applicable during the training for real-time
assessment as well.

4.3 Pattern Mining
To enable mining patterns from the command-line data, our analysis scripts
written in Python automatically transformed the input data into the transac-
tion and sequence databases described below. These databases are an internal
representation of the input data, and they serve as the input for ARM and
SPM algorithms, respectively. A key advantage of pattern mining is that the
data preparation is the same for assessing any task from the training.

Transaction Databases

We parsed the dataset of commands to create two transaction databases
used as input for ARM. The command transaction database represents each
submitted command as a separate transaction, and its goal is to reveal differ-
ent properties of command usage. Each transaction contains four items that
represent the attributes of the command:

• tool, the name of the submitted command (e.g., nmap or ssh),
• args, the command-line arguments supplied to the tool,
• app, either Bash shell (Linux terminal) or Metasploit,
• gap, the time difference between the current and the following command.

For example, the command from Figure 4 can become a single transaction
{tool = nmap, args = --help, app = bash, gap = low}. To achieve better
interpretability, the gap attribute was automatically discretized (Romero et al.,
2010, p. 102): divided into categorical classes from the set {low, medium, high,
undefined}, since the exact value in seconds is not too important. We followed
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the method previously published by McCall and Kölling (2019). First, the gap
value in seconds was computed for each command. Then, gaps exceeding the
arbitrary maximum of 20 minutes were discretized to “undefined”. This resolved
the cases of long periods of trainee inactivity. The interval cut-off points for
“low”, “medium”, and “high” categories were computed based on the mean gap
from all gaps not exceeding the maximum.

The second database, called the tool transaction database, contains trans-
actions with only two attributes: tool and gap. We merged the consecutive
uses of the same tool (regardless of the arguments) into a single transaction.
The gap represents the time difference between the first use of a tool and the
next use of a different tool; the values were discretized as before. The motiva-
tion for creating this database was to determine the difficulty of using different
tools. If a tool is associated with long gaps, it may indicate that the trainees
were unfamiliar with this tool and had difficulties using it.

Sequence Databases

Three sequence databases were created as input for SPM. All three had 113
sequences (corresponding to the number of trainees and the command log files),
differing only in the contained items.

The first database, called command sequence database, consists of sequences
of executed commands. Each item represents a single command, both the tool
and its arguments. For example, a sequence from this database can look like
this: nmap --help, nmap 1.2.3.4, nmap -p 1000 1.2.3.4.

The second database, tool sequence database, contains sequences of tools
only. Data from both Bash and Metasploit applications are included in the first
two databases. This allows discovering longer patterns, which more accurately
reflect the trainees’ progress.

The third database, application sequence database, stores sequences of
applications utilized by the trainees to execute commands. Its goal is to reveal
a high-level overview of alternating between applications. This database con-
tains only two unique items: terminal, which includes all the commands
executed in the Bash shell, and metasploit. Table 1 shows the number of
transactions/sequences and unique items in each of our databases.

Table 1 The number of transactions or sequences and unique items contained in each
database (DB) for pattern mining, separated for both Training A and B.

Database Transactions or seqs Unique items
(Training A / B) (Training A / B)

Command transaction DB 5700 / 3134 1932 / 1092
Tool transaction DB 4167 / 2062 369 / 155

Command sequence DB 72 / 41 2076 / 1155
Tool sequence DB 72 / 41 365 / 151

Application sequence DB 72 / 41 2 / 1
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Association Rule Mining

For ARM, we used Apyori (Mochizuki, 2019), the Python implementation of
the Apriori algorithm. The MinSup threshold was manually tuned for each
database since there is no simple method to determine it. The threshold was
initially set to higher values and then gradually lowered to 0.01–0.04 until we
reached a sufficient number of patterns manageable for interpretation. This
approach is suggested by Fournier-Viger (2013a) since finding suitable values
depends on the data and specific use case.

The MinConf threshold is generally easier to set, because the database’s
properties influence MinSup more heavily than MinConf (Fournier-Viger, Wu,
& Tseng, 2012). Since we were interested in rules with higher confidence,
we used higher MinConf thresholds of 0.5. In contrast, MinSup needed to be
much lower to extract a sufficient amount of rules. This was probably because
our transaction databases contained many unique items relative to the total
amount of transactions. If there were fewer unique items, MinSup could have
been increased.

Sequential Pattern Mining

For SPM, we used an open-source data mining library SPMF (Fournier-
Viger et al., 2016). It provides optimized and documented implementations of
more than 190 data mining algorithms (Fournier-Viger, 2021b) often used as
benchmarks in research papers (Fournier-Viger et al., 2016). We selected Clo-
Fast (Fumarola et al., 2016), an efficient algorithm for mining closed sequential
patterns. The MinSup threshold was experimentally set from 0.3 to 0.7.

4.4 Clustering
A popular density-based algorithm is OPTICS (Ordering Points To Identify
the Clustering Structure) (Ankerst, Breunig, Kriegel, & Sander, 1999), an
improved extension of a widely-used DBSCAN algorithm (Tang, Pi, & He,
2016). For a data point to belong in a cluster, it must have at least MinPts
points within its radius.

The result of OPTICS clustering is a reachability plot. On the x-axis, it
sorts all data points in the order of processing based on their similarity. Values
on the y-axis represent the distance of a point from a previous one. Several
similar points form a valley representing a cluster, while spikes represent noise
or outliers (Ankerst et al., 1999).

In our research, we first represented each command as a Python object with
the following attributes: tool, arguments, application type, and timestamp, sim-
plifying the record in Figure 4. Then, we used the commands in two different
feature matrices that later act as an input for clustering.

Bag of Words Matrix

Bag of words model is a standard technique for obtaining features from
text (Pelánek, Effenberger, Vaněk, Sassmann, & Gmiterko, 2018). Each text
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document is represented by a set of words it contains and their count. In our
case, the “document” is a command history, and each tool is a “word”. We dis-
regarded the command’s arguments since we would obtain too many unique
features and impair the performance of the clustering algorithm.

Matrix of Selected Features

While the bag of words model captures the used commands, it does not consider
other information available in the logs. Therefore, we selected five custom
features to capture other insights into how the trainees progressed:

• bash-count, the number of submitted Bash commands. A small number
may suggest that a trainee did not progress far in training. The high number
may indicate using a trial and error approach.

• msf-count, the number of Metasploit commands a trainee used. Metasploit
may be new for some trainees, and the high number of executed commands
may indicate difficulties with this part of the training.

• avg-gap, the average delay between two commands. Large gaps between
commands may suggest the trainee did not understand how to use a tool
and possibly looked for the information online. Small delays may indicate
brute-force guessing.

• opt-changes, the number of times trainee used the same tool twice in a row
but changed the options or arguments. A high count may show the trainee’s
unfamiliarity with the tool or inability to use it.

• help-count, the number of times trainee displayed help information or man-
ual page for any tool. It may also indicate the trainees’ unfamiliarity with
the tool.

All features were standardized, namely scaled by their maximum absolute
value (scikit-learn developers, 2021). We also checked the Pearson correlation
between features, as a high value may make them redundant. While there was a
correlation of 0.85 between bash-count and opt-changes, we preserved both
because they capture different properties. All other features were correlated
less (the absolute values ranged from 0.20 to 0.66).

Clustering Analysis

We chose the OPTICS algorithm to cluster our data. For calculating the
distance between data points, we selected cosine similarity. This measure
performs well on high-dimensional data and is often used to compute text
similarity (Shirkhorshidi, Aghabozorgi, & Wah, 2015). For example, the
command nmap -sn -PS22 10.1.26.9 has the similarity of 0.6 with the com-
mand nmap --script=vuln 10.1.26.9 and approx. 0.32 with the command
nmap --help.

During the setup, OPTICS takes only one parameter MinPts: the minimum
number of points required for cluster formation. Theory suggests setting the
number to ln(n), where n is the number of points in the dataset (Birant & Kut,
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2007). For our dataset, the recommended value should be close to 𝑙𝑛(113) ≈ 5,
which we selected.

5 Results and Discussion
This section answers the two research questions (RQ) about insights gathered
from pattern mining and clustering. We visualize and interpret the findings
from specific training sessions and subsequently compare the two approaches.

5.1 RQ1: Pattern Mining
We now describe and discuss the results revealed by ARM and SPM.

Transaction Databases

The command transaction database revealed 51 association rules for Training A
and 50 for Training B. Table 2 presents the selected rules marked as interesting
by measures such as lift. The first row shows that in Training A, 64% of
commands executed in Metasploit had small gaps (delay times). This can mean
that using Metasploit involved a rapid sequence of simple commands, or that
the trainees experimented with a trial and error approach. The high support
of the rule (23%) can also indicate the overuse of Metasploit because it was
needed only for one task in this training.

Table 2 Association rules mined from command transaction database for Training A (rules
A𝑥) and Training B (rules B𝑥). The antecedent and consequent of each rule are separated
by “→”. Sup and Conf stand for support and confidence rounded to two decimal places.

# Rule Sup Conf
A1 APP=metasploit → GAP=low 0.23 0.64
A2 ARGS=[] → APP=terminal 0.20 0.66
A3 ARGS=[] → GAP=low 0.20 0.64
A4 ARGS=[] GAP=low → APP=terminal 0.15 0.74
A5 ARGS=[] APP=terminal → GAP=low 0.15 0.71
A6 GAP=medium → APP=terminal 0.12 0.64
A7 GAP=high → APP=terminal 0.11 0.69
B1 APP=terminal → GAP=low 0.64 0.64
B2 ARGS=[] → GAP=low 0.21 0.69

Generally, tools without arguments were associated with small gaps and
often with Bash terminal commands. This most likely implies that tools with-
out arguments are easier and faster to use. On the other hand, if a tool had
medium or large gaps, it was used in the Bash terminal as well. This is because
Bash offers many tools with various difficulty levels, some of which offer a
multitude of options.

The tool transaction database provides further insight into the tool usage.
Tools such as cd, ls, and cat, as well as Metasploit commands (use, set,
show) were associated with small gaps. However, nmap was associated with
large gaps in 72% of cases. This can indicate its difficulty of use or the long
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duration of the scan, which depends on the used arguments, as previously
observed by Weiss et al. (2016).

Sequence Databases

The command sequence database in Training A revealed that trainees per-
formed the Metasploit exploitation in various ways. Some steps were optional
or performed in arbitrary order. When multiple approaches to a solution are
possible, instructors can use this insight to show different examples in class,
assess all the correct sequences as passed, or even discover novel solutions.
Alternatively, when unsuitable subsequences are found, the trainees can be
notified, corrected, or even penalized.

In Training B, SPM showed that most trainees established an SSH connec-
tion only on the second or third try. When students learn error-prone actions,
instructors should leave room for trial and error and not penalize the students
for repeated tries. On the other hand, about a third of the trainees excessively
used the ls tool (as much as 17 times within a single sequence, interleaved by
other tools). Instructors should discourage unproductive behavior and maybe
offer hints to students when such sequences are observed.

The patterns from the tool sequence database show that in Training A, the
participants usually progressed as instructors expected. They started with an
nmap scan and proceeded with the Metasploit exploitation. This is visualized in
Figure 5 using a Sankey diagram. Nodes represent the items of the discovered
patterns. Edges between the nodes represent subsequences of the patterns. The
thicker the edge, the higher the support of the pattern in which the subsequence
occurs.

The canonical solution featured these steps in the following order:

• nmap <target> – scan the target IP address to discover available services;
• search <keyword> – find Metasploit exploits suitable for the discovered

service based on the provided keyword;
• use <exploit> – select the correct exploit;
• show options – display parameters of the exploit that need to be set;
• set <option> – configure the exploit parameters (used three times to set

three mandatory options);
• run or exploit – execute the exploit script.

Figure 5 shows that most trainees did not use search, which suggests they
received a hint about which exploit to use. This hint was available in the train-
ing platform. Moreover, few of them used show to display the exploit options.
Instead, they started configuring them immediately, which again suggests they
received a hint about which parameters the exploit has and how to configure
them. Since the training offered an option to take hints, these actions were
legitimate in our context.
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In Training B, the longest patterns feature sequences of ls and cd tools.
This can indicate that the trainees struggled to find the files necessary to
advance in the task. Again, instructors can provide hints to help the students
who become stuck.

Finally, the application sequence database confirms our intuition that in
Training A, the trainees did not often alternate between Bash and Metasploit.
Instead, they used them in longer sequences. For example, the longest discov-
ered pattern features 7 Bash commands, then 8 Metasploit commands, and
then 5 Bash commands. The support of this pattern is 0.71, meaning that 71%
of trainees behaved this way.

In Training B, the sequence of 12 Bash commands has the support of
0.98, meaning that all but one trainee executed at least 12 commands. If a
trainee uses too few commands, it may indicate issues with the assignment, a
surprisingly effective solution, outside help, or even cheating.

Limitations of Pattern Mining

Setting the MinSup and MinConf parameters must often be done by trial
and error, since there is no universal guide. Also, pattern mining algorithms
extracted relatively many patterns, many of which were trivial, for example,
TOOL=cd → APP=terminal.

Defining the importance of patterns can address this problem. For example,
a pattern describing relationships between tools would be more important
than the usage of the terminal (app) itself. Alternatively, additional postpro-
cessing can remove trivial patterns to save the analyst’s time. A text-based file
defining uninteresting patterns can be used to filter the patterns.

Finally, it can be difficult to interpret why certain patterns occur. Addi-
tional information and context are needed to maximize the usefulness of
extracted patterns.

Summary of RQ1

ARM and SPM are suitable for uncovering the following educational insights:

• Approaches to solving the tasks, namely typical associations of tools and
their arguments (for ARM) or sequences of commands (for SPM).

• Mistakes and errors based on incorrectly used tools or unknown commands
and sequences.

• Problematic tasks within the training, such as when a student attempts to
use a tool several times in a row (for SPM).

• Novel solutions, such as when unexpected but correct tools appear in a rule
or a sequence.

• Tools used at the beginning or toward the end of the task, based on whether
the sequences often begin or end with a certain tool (for SPM).

• Frequency of tools’ usage, such as the commands utilized by most trainees or
overuse of a tool, which is proportional to the rule’s or sequence’s support.
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• Timing information, namely small or large gaps between two submissions of
commands associated with certain tools (for ARM).

The results of pattern mining can be tabulated (see Table 2) or visualized in
a Sankey diagram, such as the one in Figure 5.

5.2 RQ2: Clustering
Now, we continue with the results of clustering the bag of words and selected
features matrices.

Bag of Words Cluster Ordering

When clustering the 72 trainees from Training A, 31 trainees form Cluster 1, 14
trainees constitute Cluster 2, 5 trainees form Cluster 3, and 22 were designated
as outliers. Cluster 2 is the most compact because of low reachability distance
between the points. This implies that the trainees progressed strongly similarly.

When visualizing the most common combinations of tools and arguments
(see Figure 6), we discovered that Cluster 1 trainees used nmap and ssh with
certain arguments slightly more often. For example, they executed a correct
nmap scan multiple times, maybe to assure themselves of the results.

Trainees from Clusters 1 and 3 also experimented much more with setting
the Metasploit exploit options, and attempted to search for and use several
different exploits. Cluster 2 trainees selected and configured the suitable exploit
on fewer tries. A relatively low number of Metasploit commands and the lack of
option variety suggest that Cluster 2 trainees did not struggle with Metasploit.
Instructors can use this information to check in with Cluster 1 and 3 trainees
and ask them whether they are stuck or need assistance.

Cluster 2 trainees used more Bash commands on average, and they used
commands for changing and listing directories (cd and ls) overwhelmingly
more often. They probably had trouble locating the files crucial for the task.
Based on this insight, instructors can again provide targeted help to trainees
in this cluster.

For the 41 trainees in Training B, the clustering was not too fruitful. 13
trainees formed a cluster, while the remaining 28 were designated as outliers.
The trainees in a cluster again used a lot of cd and ls tools, and experimented
with scp and fcrackzip more often than the remaining trainees.

Examining the trainees designated as outliers can also yield interesting
results. One of the outliers did not use nmap for network scanning, but
ike-scan and then zenmap. This shows that alternative tools are possible for
solving the tasks, and outliers can still be successful in the training. It is worth
noting that even small differences or deviations in a single task can be enough
for the trainee to be considered an outlier. However, these cases have to be
further investigated manually.

Finally, another outlier brute-forced the searching of argument combina-
tions for john. Therefore, outliers can also be trainees behaving problemati-
cally.
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Fig. 6 Bubble plot showing the most common tool and argument combination for Cluster 1.
The size of the bubble is correlated with the argument frequency. The color represents the
median tool frequency for the cluster.

Selected Features Cluster Ordering

Clustering of Training A data formed four clusters: with 6, 9, 14, and 6 mem-
bers, respectively. Cluster 1 had the largest count of Metasploit commands
and the smallest average time gap between their submitted commands. These
differences were also confirmed by pairwise t-tests statistically significant at
𝑝 ≤ 0.01. Since only a few Metasploit commands were needed to reach the
solution, this indicates a trial-and-error approach of trainees in this cluster.
Moreover, these trainees did not display the manual pages or the tools’ usage
help. Such unproductive behavior can be automatically recognized, along with
notifying the instructors. On the other hand, Cluster 4 trainees displayed
command help the most often, which can be suitable while learning.

Cluster 2 and Cluster 3 behaved in an almost opposite ways. The former
used the most Bash commands with relatively small gaps, and the latter used
the least Bash commands with the largest gaps. This suggests that Cluster 3
trainees did not progress far, perhaps due to lack of motivation or skill.

Two clusters emerged in Training B. The first had fewer submitted com-
mands with larger gaps. The second submitted many commands with small
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gaps and changed the command arguments often. These trainees probably
struggled to figure out the correct argument combination.

Overlaps with the bag of words clusters were minimal, suggesting that the
results largely depend on the chosen features. Both approaches can provide
useful insights; however, as in almost all machine learning approaches, it is
difficult to select the best features.

Limitations of Clustering

The main limitation of clustering is that determining relevant features is hard.
In addition, the relatively small sample size was problematic for the chosen
clustering algorithm. Sometimes, only one cluster was formed, or only a few
data points belonged to a cluster. Nevertheless, the format of the training
implies that massive amounts of command histories cannot be collected.

Summary of RQ2

Clustering can reveal the following educational insights:

• Similarities and differences between trainees’ approaches to the training, for
example, in typically used combinations of tools.

• Alternative solutions to training tasks based on examining outliers.
• Behavioral patterns, such as help-seeking or submitting many commands in

a rapid succession.

The results of clustering and the associated features can be easily visualized
or tabulated, which provides a straightforward overview (see, e.g., Figure 6).

5.3 Comparison of the Two Approaches
We used two approaches, pattern mining and clustering, to analyze data from
cybersecurity assignments completed via a command line. Table 3 summarizes
the different situations that can occur during the training and are of interest to
instructors. Then, Table 4 provides a grand overview of insights discoverable
with the two approaches. Not all of them were demonstrated by our data, but
they can be investigated by future research.

Table 3 The insights and situations that can arise during the training.

Positive or neutral observations Negative observations
P1 The trainee is proficient N1 The trainee lacks skill
P2 The trainee is motivated N2 The trainee is demotivated
P3 The trainee progresses smoothly N3 The trainee experiences difficulties
P4 The trainee received allowed help N4 The trainee received prohibited help
P5 The trainee corrected a mistake N5 The trainee uses a trial-and-error approach
P6 The trainee discovered a novel solution
P7 The trainee is taking a break
P8 The tool executes quickly N8 The tool executes slowly
P9 The tool is easy to use N9 The tool is difficult to use

N10 The tool is used too little
N11 The tool is used too much

P12 The task features simple commands
N13 The task is not designed clearly
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Table 4 The comparison of results of pattern mining (ARM, SPM) and clustering (C).
The column Explanations refers to possible causes in Table 3.

Method Insight category Result Explanations
ARM, C Solution approaches Typical combinations of tools task-dependent
SPM Solution approaches Typical sequences of tools task-dependent
all Tool use frequency Low rule support / use count P6, N1, N10

High rule support / use count N1, N5, N11, N13
ARM, C Timing information Low command delay P1, P4, P8, P9, P12, N4

High command delay P7, N1, N2, N3, N8
C Trainee similarities Common behavioral patterns task-dependent

These insights can also occur in combination. For example, a low frequency
of command usage combined with large gaps probably suggests demotivation
or lack of skill.

Similarities of Pattern Mining and Clustering

Both pattern mining and clustering can reveal trainees’ strategies utilized to
solve the tasks. These include desirable solutions, mistakes and errors, and
novel approaches. They can also highlight statistical properties of the solutions,
such as frequently used tools or their time gaps.

Methodically, the process of pattern mining and clustering is relatively
straightforward. As long as the input data format and constraints are
preserved, it is sufficient to use existing implementations of these algorithms.

Insights from both pattern mining and clustering can be targeted at spe-
cific trainees. Instructors can provide suitable feedback to the whole cluster
of students or all students whose logs matched a specific pattern. This way,
instructors can help the struggling trainees if they exhibit signs typical for
low-performing clusters or associated with undesirable patterns.

Differences of Pattern Mining and Clustering

Setting the initial parameters appears to be easier for the OPTICS clustering
algorithm compared to ARM and SPM. OPTICS recommends setting MinPts
approximately to the natural logarithm of the sample size. For pattern mining,
the MinSup and MinConf parameters need to be set experimentally. Neverthe-
less, clustering requires a careful selection of features, which can include the
collected data as well as properties derived from them.

Density-based clustering is more prone to small sample size. On the con-
trary, our dataset of thousands of commands was sufficient for pattern mining.
In fact, most public datasets previously used for ARM contain thousands
up to a million transactions, and datasets for SPM start with as little as
ten sequences up to ten thousand (Fournier-Viger, 2021a). (However, these
datasets come from other domains, such as word corpora or clickstream data
from websites.) As a result, educational researchers who have just begun to
collect data may experience the cold start problem. Especially when using clus-
tering, their early dataset will not be large enough to provide insights about
the first few students.
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Finally, the results of clustering are more easily interpretable. Pattern min-
ing can yield a large number of trivial patterns. Nevertheless, interpreting
the clustering results requires further investigation of the properties of the
discovered clusters. Patterns are readable directly.

5.4 Comparison With Related Work
Section 3 reviewed numerous approaches to student assessment and usage of
pattern mining and clustering to analyze educational data. We now compare
our methods and results with those presented in related work in order to
highlight our contributions.

One novel aspect of our research is the application domain of cybersecurity,
since most of the related work focused on other areas, such as programming
education (Emerson et al., 2020; Gao et al., 2021; McBroom et al., 2016; Piech
et al., 2012; Wiggins et al., 2021; Yin et al., 2015). Educational researchers and
practitioners in cybersecurity and related domains, such as operating systems
and networking, may benefit from the presented evaluation featuring authentic
cybersecurity training data.

Several learning environments for cybersecurity allow logging command-
line interactions (Andreolini et al., 2019; Labuschagne & Grobler, 2017;
Mirkovic et al., 2020; Tian et al., 2018; Švábenský, Vykopal, Tovarňák, &
Čeleda, 2021), although this practice is still relatively rare. Nevertheless, even
if interesting datasets are acquired, few methods have been explored for their
automated analysis (see Section 3.4).

Student assessment in cybersecurity was specifically reviewed in
Section 3.3. Based on inspecting the related work, we believe this is the first
study evaluating the applicability of pattern mining and clustering algorithms
on cybersecurity training data. Other works focused, for example, on gener-
ating progress models of students (Švábenský, Weiss, et al., 2022), predicting
their success (Vinlove et al., 2020), or assessing team performance (Granåsen
& Andersson, 2016; Henshel et al., 2016; Maennel et al., 2017).

5.5 Educational Implications
Our research demonstrated the automation of discovering educational insights.
Previously, these insights had to be revealed manually by the instructor,
which was time-consuming, or were even completely unavailable. In particu-
lar, the insights gained from pattern mining and clustering have the following
implications for teachers, educational researchers, and other stakeholders:

• Classroom-wide instruction – instructors can show the typical or rare solu-
tion approaches to the students and discuss them together. They can also
explain the erroneous or novel solutions. If students are aware of examples
of good or bad practices, they can follow or avoid them, respectively.

For example, in our data, nmap was often associated with high time gaps.
Instructors can revisit the explanation of this tool and stress how its
argument combinations affect the scan duration.
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• Targeted instruction – when a student exhibits patterns associated with
errors or unproductive behavior, the instructor can intervene appropriately.
This intervention can include providing tailored hints, feedback, scaffolding,
or suitably correcting the student. Identifying struggling students early and
helping them is crucial for supporting their learning.

For example, we discovered a cluster of trainees who adopted a trial-
and-error approach when using Metasploit. If this happened during class,
instructors could visit these students in real-time and provide suitable assis-
tance. By identifying specific students belonging to the cluster, the instructor
can save time by providing the same help to all students in that cluster.

• Marking/grading – knowing the common mistakes aids with both manual
and automated grading. Instructors can create a grading rubric based on
the observed errors and approaches. Moreover, an autograder can be set up
to grade specific actions as passed or failed.

For example, the trainees who used a correct sequence of Metasploit
commands to configure all exploit steps can be awarded a point.

• Task design – based on summarizing the common approaches of students
and discovering novel approaches to the solution, instructors can design more
suitable tasks. This includes fixing unclear or problematic tasks.

For example, we discovered that in Training B, participants excessively used
the cd and ls tools to traverse the filesystem. The assignment can specify
more clearly what type of file to look for and where. It can also feature hints.

• Machine learning – the patterns and their features (such as using a particular
command or making a specific mistake) can act as input in other machine
learning models for further analysis and student modeling.

For example, the discovered patterns could be used to train a classifier to
predict student success or failure.

• Curricular support – several policies and curricular guidelines in cyber-
security (CC2020 Task Force, 2020; Joint Task Force on Cybersecurity
Education, 2017; Parrish et al., 2018) prescribe what skills should be taught
and assessed. However, the information about how to perform this assess-
ment is left to the educators. Our paper demonstrates a possible solution
for assessing hands-on exercises in cybersecurity, which other educators can
adopt or adapt.

6 Conclusion
Automated student assessment in cybersecurity is becoming more and more
relevant. Finding better ways to analyze data from cybersecurity training is
needed to support more effective hands-on training. Yet, this research area is
still in its early stages.



Springer Nature 2021 LATEX template

28 Student Assessment in Cybersecurity Training Automated by Pattern Mining and Clustering

To contribute to the body of knowledge on student assessment, we inves-
tigated automated methods for analyzing log data from authentic educational
contexts. We mined 8834 commands from several-hours-long training sessions
with small groups of computing students. Then, we discussed the observations
relevant for instructors and researchers in cybersecurity and beyond.

Our results include the prototype implementation, evaluation, and com-
parison of two data mining approaches within specific cybersecurity training,
as well as general insights and lessons learned. Answering our two research
questions revealed that:

1. Pattern mining is suitable for revealing solution approaches of students,
their misconceptions, and difficult training tasks.

2. Clustering highlights similarities and differences between approaches of
students, grouping them based on their behavioral patterns.

Other educators can use these insights to improve cybersecurity training
in their context or adapt them to training in other domains. Pattern mining
and clustering are suitable for any problem-solving assignments that yield
interaction data. Instructors can exploit these data to identify and redesign
problematic sections of the training, reveal new solutions to the tasks, and
provide targeted instruction and feedback to trainees.

6.1 Practical Contributions and Supplementary Materials
In addition to educational implications described in Section 5.5, we share
numerous artifacts with the community of instructors, researchers, and devel-
opers. These artifacts enable replicating our study setup and advancing the
research in cybersecurity education. Moreover, the tools are applicable for
hands-on security classes. These artifacts are open-source and include:

• Cybersecurity training content (Masaryk University, 2022b), which can be
deployed in either of our learning environments: KYPO Cyber Range Plat-
form (Masaryk University, 2021) and Cyber Sandbox Creator (Masaryk
University, 2022a). Cybersecurity instructors can freely use them to host
cybersecurity training sessions (Vykopal et al., 2021).

• Logging infrastructure (Švábenský, Vykopal, Tovarňák, & Čeleda, 2021),
which enables researchers to collect command-line data like for this paper.

• The analyzed dataset, which has been published with records from other
trainings (Švábenský, Vykopal, Seda, & Čeleda, 2021). Since each record is a
command submitted by a person, accumulating these data is a challenge on
its own. Therefore, such datasets are rare and may help other researchers.

• The created software that applies pattern mining and clustering on the data.
It includes a Python implementation of extracting and visualizing the pat-
terns and clusters. This implementation can serve as a starting point for
the developers of learning environments when integrating the researched
methods (Švábenský, Vykopal, Čeleda, Tkáčik, & Popovič, 2022).

• Visualizations and the full results (Švábenský, Vykopal, et al., 2022).
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6.2 Future Work
This research offers many possibilities for extension. In pattern mining, trans-
action databases can include time-related information, such as the duration of
running a command. This would distinguish a difficult task from a command
that took a long time to execute. Sequential databases can include timestamps
to describe time gaps between sequences in a pattern. Additionally, the dataset
can be expanded with information about other actions of trainees, such as
asking for a hint. As a result, we would discover sequences that preceded help-
seeking. Finally, we can consider the whole command history of a student as
a single transaction to generate new types of insights.

Enhancements are possible for clustering as well. One is the clustering of
time series: each training would be represented as time series of commands
encoded as vectors. The other option is to use different algorithms, such as
hierarchical clustering.

Yet another extension is to incorporate live data mining during an ongoing
training. Online algorithms can provide relevant insights to instructors in real-
time. Their results could also be used as a basis for a recommender system
that would provide hints for stuck trainees. If a trainee needs help, the system
could recommend a hint that helped another trainee from the same cluster.
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