2022
Functional plasma-polymerized hydrogel coatings for electrochemical biosensing
LEVIEN, Monique; Zdeněk FARKA; Matěj PASTUCHA; Petr SKLÁDAL; Zahra NASRI et. al.Základní údaje
Originální název
Functional plasma-polymerized hydrogel coatings for electrochemical biosensing
Autoři
LEVIEN, Monique; Zdeněk FARKA; Matěj PASTUCHA; Petr SKLÁDAL; Zahra NASRI; Klaus-Dieter WELTMANN a Katja FRICKE
Vydání
Applied Surface Science, Elsevier, 2022, 0169-4332
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10406 Analytical chemistry
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 6.700
Kód RIV
RIV/00216224:14310/22:00125397
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000773715400002
EID Scopus
2-s2.0-85123761915
Klíčová slova anglicky
Hydrogel coating; Functional surface; Atmospheric pressure plasma polymerization; Electrochemical biosensor; Amperometry; Glucose oxidase; Acetylcholinesterase
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 12. 1. 2023 11:50, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
Acrylate-based hydrogels with multifunctional properties have proven to be suitable candidates for the development of sensor systems. They gained popularity especially in combination with bioelectronics, as there is a need to understand and control the interactions of bionic devices with the human body and other environments. In this study, we present results on the biointeraction capability of plasma-polymerized (pp) hydrogels made of hydroxyethyl methacrylate (HEMA) and 2-(diethylamino)ethyl methacrylate (DEAEMA) mixtures on gold screen-printed electrodes (SPE). The hydrogels were generated by an atmospheric pressure plasma jet, and their chemical composition was characterized via FT-IR. The FT-IR analysis revealed several functional groups suitable for biomolecule immobilization, whereas the amount of -C-N, –OH, and -C-O-C groups differs depending on the mixture ratios. The pp HEMA:DEAEMA (HD) hydrogel coatings provide alternative interfacing materials for electrochemical biosensing. The enzymes glucose oxidase (GOx) and acetylcholinesterase (AChE) were coupled to the hydrogel-based surfaces, and the effects of the mixture ratios on the biomolecule immobilization were investigated. It is possible to address different functional groups of the mixtures with different immobilization strategies; thus, the sensor response can be optimized. Finally, glucose as GOx substrate and eserine as AChE inhibitor were detected by amperometry to demonstrate the practical biosensing applicability of the coatings.
Návaznosti
| LQ1601, projekt VaV |
|