
cancers

Article

Colorectal Tumour Mucosa Microbiome Is Enriched in Oral
Pathogens and Defines Three Subtypes That Correlate with
Markers of Tumour Progression

Barbora Zwinsová 1,2,3 , Vyacheslav A. Petrov 2, Martina Hrivňáková 1,2, Stanislav Smatana 2,4,
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Simple Summary: Dysbiosis of the gut microbiome may contribute to the heterogeneity of colorectal
cancer from phenotypic, prognostic and response to treatment perspectives. We analysed CRC
microbiome by 16S rRNA gene sequencing of paired tumour mucosa, adjacent visually normal mucosa
and stool swabs of 178 patients with stage 0–IV CRC. We observed that tumour mucosa is dominated
by pathogenic bacteria of oral origin and proposed a CRC tumour microbiome subtyping system.
The subtypes and tumour mucosa genera were associated with prognostic clinical covariates (tumour
grade, localisation, TNM, BRAF mutation and MSI). In contrast, changes in the stool microbiome
were associated with lymph node involvement and the presence of synchronous metastases. We
discovered new associations between microorganisms and CRC and clinical parameters. Our study
represents a step forward in understanding the role of the microbiome and its interactions with
factors involved in tumour progression, and it opens novel avenues for exploring new treatments
and biomarkers.

Abstract: Long-term dysbiosis of the gut microbiome has a significant impact on colorectal cancer
(CRC) progression and explains part of the observed heterogeneity of the disease. Even though the
shifts in gut microbiome in the normal-adenoma-carcinoma sequence were described, the landscape
of the microbiome within CRC and its associations with clinical variables remain under-explored. We
performed 16S rRNA gene sequencing of paired tumour tissue, adjacent visually normal mucosa and
stool swabs of 178 patients with stage 0–IV CRC to describe the tumour microbiome and its association
with clinical variables. We identified new genera associated either with CRC tumour mucosa or
CRC in general. The tumour mucosa was dominated by genera belonging to oral pathogens. Based
on the tumour microbiome, we stratified CRC patients into three subtypes, significantly associated
with prognostic factors such as tumour grade, sidedness and TNM staging, BRAF mutation and MSI
status. We found that the CRC microbiome is strongly correlated with the grade, location and stage,
but these associations are dependent on the microbial environment. Our study opens new research
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avenues in the microbiome CRC biomarker detection of disease progression while identifying its
limitations, suggesting the need for combining several sampling sites (e.g., stool and tumour swabs).

Keywords: colorectal cancer; 16S rRNA gene; tumour microbiome; microbial subtypes

1. Introduction

Colorectal cancer (CRC) is the third most frequent cancer worldwide and the second
leading cause of cancer mortality in Europe [1]. It is a heterogeneous disease, both from a
phenotypic and a prognostic and response to treatment perspective. The current standard
treatments are limited and remain ineffective for many CRC patients due to inadequate
patient selection, resulting in unneeded toxicity and high cost resulting from over-treating
of patients that do not benefit [2,3]. Recent research shows that gut microbiota may
significantly influence colorectal tumour initiation and progression [4–22].

Several studies showed that bacteria adherent to colorectal adenomas or carcinomas
were different from bacteria adherent to healthy gut mucosa [8,11,12] due to the altered
tumour environment with decreased pH and modified metabolic conditions resulting from
hypoxia and onset of necrosis [23]. Gut microbiota can promote colon cancer development
or change the tumour invasion potential through (i) immunomodulation [10,24–26] or (ii)
metabolic activity—via the production of specific toxins inducing DNA damage responses.
Overall, the evidence of microbiome importance in colon cancer development is so over-
whelming that a bacterial driver-passenger model for colorectal cancer development and
progression has been suggested [27] as an alternative to the universally accepted driver-
passenger mutational adenoma-carcinoma model. Additionally, gut microbiota seems to
play a crucial role also in response to anti-cancer therapy [28].

Previous studies associating gut dysbiosis with CRC were focused on comparing
the gut microbiome in the normal-adenoma-carcinoma sequence [4–22,29–32]. It is the
landscape of the microbiome within the ongoing disease and its associations with clinical
variables that remain under-explored. The published studies vary in techniques employed,
specimen origin and sample size, thus hampering any integrative analysis. Most studies
compared diseased and healthy subjects, and the few that tried to characterise microbial
composition within the CRC patients suffered from a small sample size. The specimens
used in most studies were stool [4,6,7,15,17,18,20–22] or mucosa samples from colonoscopy
biopsies [11,13,15] or post-resection [6,12,16,19]. Stool microbiota sampling has the advan-
tage of being non-invasive, allowing its use for screening and follow-up studies. Some
efforts combined information about the tumour-associated microbiome with existing prog-
nostic scores in an attempt to improve the prediction accuracy [18] or to develop a new
screening/prognostic model [33]. The results of two different meta-analyses showed that
the accuracy of predicting diseased state was about 0.8, such as occult blood test results,
the main non-invasive clinical test for this type of cancer [34,35]. However, the microbial
composition in stool only partially reflects the situation in tumour mucosa, a trend con-
sistent across different nationalities of the patients, sampling techniques or sequencing
methodology [36].

The microbiota adherent to the mucosal tissue differs from the faecal microbiota in its
needs for oxygen and nutrient types [37,38]. Therefore, the information derived from stool
may be insufficient for capturing tumour-microbe interactions consistent with the disease
prognosis. The relevance of the tumour mucosa microbiome assessment for screening
purposes is dependent not only on the co-presence of the bacteria in both tumour mucosa
and stool but also on its association with relevant clinical parameters in both sample
types. Additionally, studying the (dis)similarity of bacterial composition between tumour
and visually normal mucosa from the same individual may provide hints regarding the
changes in microenvironment which have occurred favouring the growth of certain species
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and shed some light on the underlying tumour-immune system-microbe interactions and
metabolic pathways.

Recently, two studies provided a comparison of bacterial composition in both tumour
tissue and visually normal tissue and the bacterial composition of stool samples from the
same patients [34,35]. Liu et al. [34] showed that the bacterial communities in both tumour
tissue and visually normal tissue were similar. Still, the study was vastly underpowered
(n = 8 individuals) and did not explore the clinical relevance of this similarity. Other studies
associated microbiome on tumour or in stool with clinical variables [35,39,40] but had a
similar disadvantage in terms of statistical power (n = 25, n = 30, n = 53, individuals,
respectively).

The studies mentioned were species-centric because they compared the abundance of
individual microbial species between the groups of interest. However, a broader view is
needed to account for lesser-known species coupled with a larger sample size allowing
for capturing enough inter-tumour heterogeneity, thus better understanding the possible
effects of bacteria on tumour growth, aggressiveness or response to therapy. Our study
takes a microbial community-centric approach to provide a comprehensive description of
the CRC tumour microbiome based on 16S rRNA sequencing. We analyse three sample
types (tumour mucosa, visually normal mucosa, stool) from n = 178 individuals with stage
0–IV colorectal cancer.

Our study has a dual nature, both exploratory and confirmatory. We explore and
interpret the landscape of the tumour mucosa-associated microbiome with respect to
clinical variables and microbial composition of paired adjacent visually normal mucosa
and paired stool samples. Benefitting from a larger sample size, we advance the state-of-
the-art knowledge by reporting previously unseen associations. Most importantly, we
capture the tumour microbial heterogeneity and derive CRC tumour microbiome subtypes.

2. Materials and Methods
2.1. Patients and Specimens

All specimens were collected at Masaryk Memorial Cancer Institute (Brno, Czech
Republic) from 2015 to 2019. Patient inclusion criteria were (i) scheduled for resection based
on preliminary screening (such as a colonoscopy), (ii) no neoadjuvant treatment, (iii) no
previous CRC diagnosis (iv) with confirmed stage 0–IV CRC without multiplicities (single
tumour). The stool samples were collected from untreated patients before the scheduled
surgery. Patients performed the collection at home, the morning of their hospitalisation for
the surgery and brought the samples to the hospital, where they were immediately frozen at
−80 ◦C until further processing. Swabs from the tumour and visually normal mucosa were
collected within 30 minutes of the tumour resection at the pathology department. Whenever
possible, the swab from visually normal tissue was taken at least 20 cm proximally to the
tumour. The swabs were then stored immediately in a freezer at −20 ◦C and, without
unnecessary delay, transferred to −80 ◦C until further processing. All samples, including
stool, were collected using DNA free cotton swabs (Deltalab, Barcelona, Spain).

Overall, we analysed n = 483 samples from n = 178 CRC patients. There were
127 triplets (all three sample types from the same patient) and 51 mucosa duplets (swabs
from tumour and visually normal mucosa from the same patient).

The study was approved by the ethical committee of Masaryk Memorial Cancer
Institute. All patients gave written informed consent following the Declaration of Helsinki
prior to participating in the study.

2.2. DNA Extraction, PCR Amplification and Sequencing of 16S rRNA Gene

According to the manufacturer’s instructions, the DNA extraction was performed
using DNeasy® PowerSoil® Isolation kit (QIAGEN, Düsseldorf, Germany). Extracted DNA
was used as a template in amplicon PCR to target the V4 hypervariable region of the
bacterial 16S rRNA gene. The 16S metagenomics library was prepared according to the 16S
Metagenomic Sequencing Library Preparation protocol (Illumina, San Diego, CA, USA),
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with some deviations described below. Each PCR was performed with HotStarTaq Master
Mix Kit (QIAGEN, Hilden, Germany) in triplicate, with the primer pair consisting of
Illumina overhang nucleotide sequences, an inner tag, and gene-specific sequences [41,42].
The Illumina overhang served to ligate the Illumina index and adapter. Each inner tag,
i.e., a unique sequence of 7–9 bp, was designed to differentiate samples into groups.
Primer sequences and PCR cycling conditions are summarised in Table S3. After PCR
amplification, triplicates were pooled, and the amplified PCR products were determined
by gel electrophoresis. PCR clean-up was performed with Agencourt AMPure XP beads
(Beckman Coulter Genomics, Danvers, MA, USA). Samples with different inner tags
were equimolarly pooled based on fluorometrically measured concentration using Qubit®

dsDNA HS Assay Kit (Invitrogen™, Carlsbad, CA, USA) and microplate reader (Synergy
Mx, BioTek, Winooski, VT, USA). Pools were used as a template for a second PCR with
Nextera XT indexes (Illumina, USA). Differently indexed samples were quantified using
the qPCR kit KAPA Library Quantification Complete Kit (Roche, Indianapolis-Marion
County, IN, USA) and LightCycler 480 Instrument (Roche, USA) and equimolarly pooled
according to the measured concentration. The prepared libraries were checked with
a 2100 Bioanalyzer Instrument using the High Sensitivity D5000 Screen tape (Agilent
Technologies, Santa Clara, CA, USA), and concentration was measured with qPCR shortly
prior to sequencing. The final library was diluted to a concentration of 8 pM, and 20%
of PhiX DNA (Illumina, USA) was added. According to the manufacturer’s instructions,
sequencing was performed with the Miseq reagent kit V2 (500 cycles) using a MiSeq
instrument (Illumina, USA).

2.3. Data Analysis
2.3.1. Preprocessing and Quality Control

Forward and reverse pair-end reads were demultiplexed, and barcodes and primers
were trimmed. Denoising algorithm with DADA2 [43] was applied separately on for-
ward and reverse reads that passed the quality and length filter and did not contain N’s.
Reads were merged using the fastq-join method [44]. In the next step, chimaeras were
detected with the function removeBimeraDenovo in DADA2. Chimaera sequences were
subsequently excluded from the analysis, and Amplicon Sequence Variant (ASV) table was
created.

After quality filtering and chimaeras removing, the number of reads ranged from
2968 to 239,116, with a median of 44,371 and a mean of 53,074 reads per sample. The
number of reads did not differ between the sample types (paired Wilcoxon test, Figure S1).

2.3.2. Taxonomy Assignment and Metabolic Potential Prediction

Taxonomy was assigned to each ASV based on SILVA 123 reference database [45] using
the algorithm UCLUST [46] in QIIME [47]. BLAST algorithm [48] was used to identify the
species, and all taxa with the maximum identity and minimum e-value were selected for
each ASV. The observed species metric and the Chao1 and Shannon index were used to
estimate alpha diversity for each sample in QIIME. Beta diversity was computed in QIIME
using both weighted and unweighted UniFrac metrics [49].

We filtered out the ASVs unassigned at the phylum level and all the ASVs belonging
to the phylum Cyanobacteria. Only the taxa present in at least three samples of the same
sample type and at the same time represented by at least nine reads were kept for further
analysis to account for possible contaminations. The threshold of 9 reads represents 0.3%
taxa abundance in the sample with the least number of reads (2968).

This filtering step discarded 46–55% of taxa at each taxa level (Table S4).
Picrust 2 [50] was used to predict hypothetical abundances of KEGG orthologs in each

sample and to summarise them into higher functional processes.
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2.3.3. Statistical Analysis and Data Mining

All comparisons between the three sample types were performed on triplet samples
from 127 patients, totalling n = 381 samples for the analysis. For the analysis of tumour-
visually normal mucosa pairs, we used paired tumour and visually normal mucosa swabs
from 178 patients (totalling 356 samples). We used all the available samples for analyses
performed within each sample type (178 for tumour mucosa swabs, n = 178 for visually
normal tissue mucosa swabs and n = 127 for stool).

Data were analysed using appropriate corrections and approaches for compositional
data [51–54]. Zero multiplicative replacement [53] was applied prior to the centred log-ratio
(clr) transformation.

Non-metric Multidimensional Scaling (R vegan package [55]) over Aitchinson distance
matrices (R coda.base package [56]) was used to analyse tumour microbial heterogeneity
and β-diversity. To estimate the contribution of clinical traits in the microbiome, β-diversity
permutational multivariate analysis of variance for distance matrices (R adonis function
of vegan 2.5.4 package [55]) with 999 permutations were used. To assess the differences
between the sample types in alpha diversity, we used a paired non-parametric two-way
Mann-Whitney U test. We applied a non-parametric approach to identify differences
in microbial composition between sample types and the associations between relative
microbial abundance and clinical variables. For non-parametric analysis, the Friedman
test with paired Wilcoxon test and rank regression was used (R package Rfit [57]). A drop
in dispersion test was used to produce overall p-values for rank regression models. The
Cochran Q test was used to analyse differences in the presence of genera across sample
types (analysis of triplets). Benjamini-Hochberg correction for multiple hypothesis testing
was applied [58]. Results were considered significant at FDR <0.1. The adjusted p-values
are referred to as q-values. Visualisation was performed with gplots 3.0.1.1, ggplot2,
ComplexHeatmap 1.17.and circlize 0.4.8 packages [59–62].

For each clinical variable (or a combination thereof), we only tested genera present in
at least 10 samples in one clinical group (or a combination thereof). We do emphasise that
we approached this statistical testing from the point of view of a pilot discovery study.

Due to the known association between tumour grade and location [63] (also confirmed
in our data, p < 0.001, Fisher’s exact test), we investigated the associations of the micro-
biome with grade and tumour location in a model with the interaction between covariates
compared to a model without interaction. To ensure a more balanced design, we considered
three locations: right and transverse, left, rectosigmoid and rectum, respectively.

The threshold of false discovery rate was set to 0.1, as is customary in similar studies,
with the aim to identify potential candidates for further research. While we consider only
associations with FDR <0.1 to be statistically significant, we also report the unadjusted
results p < 0.05 for hypothesis confirmation by other studies.

2.4. Data Access

The data were uploaded to the European Nucleotide Archive under accession number
PRJEB35990.

2.5. Validation

We performed partial validation of our results on three publicly available datasets.
The association of the tumour microbiome with tumour localisation was validated in the
dataset of Dejea et al. [31], n = 23. No grade information was available, and hence in the
validation we did not use the grade*localisation interaction term. Publicly available fastq
files were analysed with QIIME pipeline with the appropriate approach for 454 Roche
sequencing. Taxonomy was assigned using SILVA 123 database to have comparable results
with our dataset.

The association of stool microbiome with AJCC staging and TNM staging was vali-
dated in two datasets (Zeller et al. [32] and Feng et al. [30]). The processed datasets with
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taxonomic information were used as available in R package curatedMetagenomicData [64]
and were normalised using the clr transformation before the analysis.

All associations were tested using rank regression (R package Rfit [57]). The dataset of
Feng et al. only contained one M1 sample; hence we only analysed associations with AJCC
staging, T stage and N stage.

3. Results

In our effort to describe tumour microbial landscape, we explored the differences in
microbiome abundance, diversity, the presence/absence of the species and the proportion
of samples with the respective genera in different sample types across patient groups
defined by clinical variables (Table 1).

Table 1. Table of clinical variables and their distribution in the complete set of 178 patients, the subset of 127 patients and
in the CRC tumour microbial subtypes, respectively. (For categorical variable, Fisher exact test was performed and for
continuous data, Kruskal-Wallis test was used.).

Clinical
Variables

Data Subset Comparison Tumour Microbiome Subtypes

All Tumours
(n = 178) Triplets (n = 127) p-Value TMS1 (n = 46) TMS2 (n = 55) TMS3 (n = 77) p-Value

age at diagnosis Mean (SD) Mean (SD) 0.804 Mean (SD) Mean (SD) Mean (SD) 0.887
66.92 (10.66) 66.61 (10.61) - 66.89 (9.88) 67.47 (11.39) 66.55 (10.69) -

gender n (%) n (%) 1 n (%) n (%) n (%) 0.729
male 99 (55.6) 70 (55.1) - 25 (54.3) 33 (60.0) 41 (53.2) -

female 79 (44.4) 57 (44.9) - 21 (45.7) 22 (40.0) 36 (46.8) -

tumour
localisation n (%) n (%) 0.597 n (%) n (%) n (%) <0.001

right 64 (36.0) 48 (37.8) - 28 (60.9) 11 (20.0) 25 (32.5) -
transverse 19 (10.7) 13 (10.2) - 6 (13.0) 5 (9.1) 8 (10.4) -

left 44 (24.7) 36 (28.3) - 4 (8.7) 17 (30.9) 23 (29.9) -
rectosigmoideum 32 (18.0) 23 (18.1) - 6 (13.0) 10 (18.2) 16 (20.8) -

rectum 19 (10.7) 7 (5.5) - 2 (4.3) 12 (21.8) 5 (6.5) -

grade n (%) n (%) 0.998 n (%) n (%) n (%) <0.001
NA, in situ 7 (3.9) 5 (3.9) - 0 (0.0) 3 (5.5) 4 (5.2) -

1 18 (10.1) 12 (9.4) - 1 (2.2) 5 (9.1) 12 (15.6) -
2 102 (57.3) 73 (57.5) - 18 (39.1) 37 (67.3) 47 (61.0) -
3 51 (28.7) 37 (29.1) - 27 (58.7) 10 (18.2) 14 (18.2) -

AJCC stage n (%) n (%) 0.968 n (%) n (%) n (%) 0.136
0 8 (4.5) 6 (4.7) - 0 (0.0) 3 (5.5) 5 (6.5) -
I 31 (17.4) 26 (20.5) - 2 (4.3) 12 (21.8) 17 (22.1) -
II 66 (37.1) 45 (35.4) - 21 (45.7) 19 (34.5) 26 (33.8) -
III 48 (27.0) 34 (26.8) - 16 (34.8) 12 (21.8) 20 (26.0) -
IV 25 (14.0) 16 (12.6) - 7 (15.2) 9 (16.4) 9 (11.7) -

tumour
pathologic stage n (%) n (%) 0.979 n (%) n (%) n (%) 0.007

pTis 8 (4.5) 6 (4.7) - 0 (0.0) 3 (5.5) 5 (6.5) -
pT1 11 (6.2) 10 (7.9) - 0 (0.0) 5 (9.1) 6 (7.8) -
pT2 32 (18.0) 24 (18.9) - 2 (4.3) 12 (21.8) 18 (23.4) -
pT3 115 (64.6) 79 (62.2) - 42 (91.3) 30 (54.5) 43 (55.8) -
pT4 12 (6.7) 8 (6.3) - 2 (4.3) 5 (9.1) 5 (6.5) -

regional lymph
nodes pathologic

stage
n (%) n (%) 0.618 n (%) n (%) n (%) 0.041

pN0 109 (61.2) 79 (62.2) - 23 (50.0) 36 (65.5) 50 (64.9) -
pN1 46 (25.8) 36 (28.3) - 13 (28.3) 10 (18.2) 23 (29.9) -
pN2 23 (12.9) 12 (9.4) - 10 (21.7) 9 (16.4) 4 (5.2) -

synchronous
distant

metastasis
n (%) n (%) 0.846 n (%) n (%) n (%) 0.722

M0 153 (86.0) 111 (87.4) - 39 (84.8) 46 (83.6) 68 (88.3) -
M1 25 (14.0) 16 (12.6) - 7 (15.2) 9 (16.4) 9 (11.7) -
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Table 1. Cont.

Clinical
Variables

Data Subset Comparison Tumour Microbiome Subtypes

All Tumours
(n = 178) Triplets (n = 127) p-Value TMS1 (n = 46) TMS2 (n = 55) TMS3 (n = 77) p-Value

MSI/MSS n (%) n (%) 1 n (%) n (%) n (%) <0.001
MSI 27 (15.2) 19 (15.0) - 16 (34.8) 4 (7.3) 7 (9.1) -
MSS 110 (61.8) 81 (63.8) - 22 (47.8) 37 (67.3) 51 (66.2) -
NA 41 (23.0) 27 (21.2) - 8 (17.4) 14 (25.4) 19 (24.7) -

BRAF n (%) n (%) 1 n (%) n (%) n (%) 0.022
BRAF wt 77 (43.3) 53 (41.7) - 17 (37.0) 27 (49.1) 33 (42.9) -

BRAF mut 12 (6.7) 9 (7.1) - 7 (15.2) 1 (1.8) 4 (5.2) -
NA 89 (50.0) 65 (51.2) - 22 (47.8) 27 (49.1) 40 (51.9) -

KRAS n (%) n (%) 1 n (%) n (%) n (%) 0.839
KRAS wt 24 (13.5) 17 (13.4) - 7 (15.2) 8 (14.5) 9 (11.7) -

KRAS mut 13 (7.3) 9 (7.1) - 5 (10.9) 4 (7.3) 4 (5.2) -
NA 141 (79.2) 101 (79.5) - 34 (73.9) 43 (78.2) 64 (83.1) -

NRAS n (%) n (%) 1 n (%) n (%) n (%) 0.553
NRAS wt 37 (20.8) 26 (20.5) - 11 (23.9) 12 (21.8) 14 (18.2) -

NRAS mut 2 (1.1) 1 (0.8) - 1 (2.2) 1 (1.8) 0 (0.0) -
NA 139 (78.1) 100 (78.7) - 34 (73.9) 42 (76.4) 63 (81.8) -

CRC—colorectal cancer, TMS—tumour microbial subtypes, SD—standard deviation, NA—not available, pT—tumour pathologic stage,
pTis—tumour in situ, pN—regional lymph nodes pathologic stage, M—synchronous distant metastasis, MSI—microsatellite instability
MSS—microsatellite stable, wt—wild type, mut—mutation.

3.1. Microbial Categorisation According to Sample Type

There was no significant difference between the read counts across different sample
types (paired analysis of sample triplets, see Methods).

The analysis of the 127 triplet samples revealed that the microbial diversity was
significantly decreased in mucosal samples (both tumour mucosa and visually normal
mucosa swabs) compared to stool, as measured by the number of observed species, Chao 1
and Shannon index (Figure S1). No differences were found between the tumour mucosa
swabs and visually normal mucosa swabs.

Overall, in all the 483 samples, we identified 5449 ASVs: of these, 4800 ASVs in
the 127 triplet samples. The QIIME assigned species only to 48 ASVs. Hence, we also
performed a manual BLAST search to the SILVA database (Table S5).

For further analysis, however, we operated on higher taxonomic levels. After the taxa
filtering step (Table S4), 13 phyla, 25 classes, 43 orders, 75 families and 264 genera were
identified in the 127 triplets, most of which in all three sample types (Table S6). Inclusion
of the additional 51 duplets (tumour mucosa and visually normal mucosa swabs) resulted
only in slight differences at the genus level—the identified taxa remained the same. What
changed was their unique presence in some sample types (Text S1).

While most of the genera were found in all three sample types, their incidence and
abundance across sample types varied greatly between mucosal samples and stool, both in
overall and pairwise comparisons (Text S1, Figure S16). In this case, 14 genera (Stomatobac-
ulum, Pseudoramibacter, Pelomonas, Pasteurella, Mycoplasma, Kingella, Johnsonella, Helicobacter,
Deinococcus, Centipeda, Bergeyella, Actinobacillus, Abiotrophia and an unassigned genus from
order Comamonadaceae) were detected only in mucosal (tumour and visually normal) sam-
ples (Figure S2).

We further analysed the pairwise incidence of the 264 genera across sample types.
We found that 104 genera varied significantly across sample types (analysis of 127 triplets,
Text S1, Table S7).

To categorise the microbial genera based on their preferred environment: we compared
their abundance across sample types. Of the 264 genera, 121 differed significantly in
abundance across the sample types (Tables S8 and S9, Figure S3). Based on these results, we
defined five microbial categories (Figure 1). The first is based solely on the results of tumour
vs stool comparison: tumour genera (57 genera, more abundant in tumours than stool).
Additionally, within the category of tumour genera, we defined mucosa genera (52 genera,
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also enriched in visually normal mucosa compared to stool) and tumour-specific genera
(16 genera of tumour category, additionally enriched in tumours compared to visually
normal mucosa). In this case, 49 genera were significantly more abundant in stool than
tumours and visually normal mucosa from the group of stool genera. The fifth category
was defined as the no-difference genera (143 genera, no difference across any of the sample
types) (Text S1).
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3.2. The Landscape of CRC Tumour Microbiome

For the description of tumour mucosa microbial heterogeneity without stool contami-
nants, we only considered species that were statistically significantly enriched in tumour
mucosa compared to stool. We hence investigated the group of 57 tumour genera with a
special focus on the subgroup of 16 tumour-specific genera (Gemella, Granulicatella, Parvi-
monas, Hungatella, Peptoclostridium, Flavonifractor, Selenomonas 3, Fusobacterium, Leptotrichia,
Eikenella, Campylobacter, Slackia, Streptococcus, Howardella, Solobacterium, Defluviitaleaceae
UCG-011, Figure 2A).

We performed the analysis of co-occurrence and observed significantly increased
co-occurences between 20 tumour genera (of which 13 tumour-specific) (Text S1, Figure S4,
Table S10). We also observed 14 significantly decreased co-occurrences between genera
(Text S1, Figure S4, Table S10).

Tumour genera incidence ranged from 1.1% to 99.4% (median 26.4%) of tumours with
the median abundance of the individual genera in the samples with the genus detected
ranging from 0.01% to 29.8% (median 0.15%) (Figure 2A). Overall, tumour genera consti-
tuted 1.1% to 97% (median 59.6%) while the tumour-specific genera constituted between
0.0–62.3% (median 3.1%) of the microbiome found on tumour mucosa (Figure 2C).
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Figure 2. Tumour genera. (A) (left) Proportion of tumours with the genera detected and distribution of their respective
relative abundances (in %) in the samples where they were detected (middle) and association of the bacteria with clinical vari-
ables (right). The vertical dashed line represents the median relative abundance of all 264 detected genera (median = 0.24%).
The boxplot middle vertical line represents median, the box represents the interquartile range (IQR), the whiskers extend to
+/−1.5 IQR. The black dots refer to outliers. (B) Overall proportion of the 57 tumour genera in the three sample types (n
= 127) (C) Overall proportion of the 16 tumour-specific genera in the three sample types (n = 127). (Tis—Tumour in situ,
pT—tumour pathologic stage, pN—regional lymph nodes pathologic, T—tumour swabs, VN—visually normal mucosa
swabs, S—stool, NaN—not a number). * p < 0.05.

We performed a detailed literature search (Table S11) which revealed that tumour
genera consisted predominantly of oral bacteria, many known as oral pathogens.

Some of the tumour genera of (possible) oral origin identified in our study, while previ-
ously associated with CRC, were never reported on tumour mucosa, namely Solobacterium
(increased in CRC faecal samples [35]), Slackia and Pseudomonas (decreased [12,19] in CRC
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faecal samples), and Treponema (the presence of which in the oral cavity was associated
with increased risk of CRC [33]).

We newly identified many genera of both oral and gut origin, not previously associated
with CRC, with increased abundance in the tumour lesions: Selenomonas 3, Selenomonas 4,
Aggregatibacter, Actinobacillus, Bergeyella, Phocaeiola, Defluviitaleaceae UCG-011, Abiotrophia,
Johnsonella, Stomatobaculum, Kingella, Shewanella, Tatumella, Senegalimassilia, Aeromonas,
Prevotellaceae UCG-003, Incertae Sedis genus from family Erysipelotrichaceae, an uncultured
species from Veillonelaceae family, and an uncultured species from boneC3G7 at the family
level (BLAST hit Fusobacterium necrophorum) (oral origin) and Tyzzerella 4, Massilia and an
unassigned genus from Peptostreptococcaceae family (gut origin).

Amongst tumour genera of gut origin, Lachnoclostridium, Flavonifractor [65,66], Sut-
terella and Hungatella (ex-Clostridium hathewayi) [67] were previously only reported in-
creased in the stool of patients with CRC.

3.3. Microbiome and Clinical Variables

Prior to the subtype derivation, we assessed the association of bacterial genera from all
the sampled environments with the clinical parameters and interpreted the results based on
our microbial categorisation. We performed partial validation on three publicly available
datasets.

β-diversity analysis by NMDS performed on each sample type separately showed that
tumour location was the factor with the highest influence on total microbiome composition
for all sample types, while tumour histological grade affected only tumour samples (Text S1,
Table S12, Figures S5 and S6).

The results of regression analysis for each clinical variable are summarised in Table 2
and Table S13, and Figures S7–S10; the detailed results of partial validation are presented
in Text S2, Tables S1, S2 and S14.

Increased abundance of Fusobacterium, Campylobacter and Leptotrichia in tumour mu-
cosa appeared to be independent predictors of tumour’s higher grade (p < 0.01, FDR < 0.1).
Leptotrichia was significantly increased on visually normal mucosa adjacent to grade 3
left-sided tumours (p < 0.05, FDR < 0.1).

The mucosa of grade 3 right-sided tumours was enriched in Prevotella, Selenomonas and
Selenomonas 3 (p < 0.01, FDR < 0.1). Prevotella was also increased in the stool of patients with
grade 3 rectosigmoid/rectum tumours (p < 0.01, FDR < 0.1). The mucosa of grade 3 tumours
of the rectosigmoid/rectum and visually normal mucosa adjacent to left, rectosigmoid and
rectal tumours, regardless of the grade, were enriched in Lachnospira (p < 0.05, FDR < 0.1).

The mucosa of left-sided (for some including rectosigmoid/rectum) low-grade tu-
mours was enriched in Ruminiclostridium 6, Coprococcus 2, [Eubacterium] ventriosum group,
Clostridiales Vadin BB60 group, Ruminococcaceae UCG-010 and an uncultured species and an
Incertae Sedis genus from the Lachnospiraceae family (p < 0.01, FDR < 0.1). Ruminoclostridium
6 remained enriched also in the stool of patients with grade 2 left-sided, rectosigmoid
and rectal tumours (p < 0.01, FDR < 0.1). Methanobrevibacter, Victivallis were significantly
enriched in the mucosa of low-grade tumours of rectosigmoid and rectum (both p < 0.01,
FDR < 0.1).

Christensenellaceae R-7 group, Bifidobacterium and Ruminococcaceae UCG-013 were in-
creased in mucosa of the left-sided, rectosigmoid and rectal tumours (p < 0.01, FDR < 0.1).
Similar associations were found for visually normal mucosa for Christensenellaceae R-7
group, Coprococcus 1, Lachnospira and Bifidobacterium (p < 0.01, FDR < 0.1). The increased
abundance of the Christensenellaceae R-7 group in tumour mucosa of left-sided tumours
was also validated in an independent dataset (p = 0.0047) (Text S2, Table S14). When
comparing early (0–II) and advanced (III–IV) stages, we identified an increased abundance
of Akkermansia in the stool of advanced stage tumours (p < 0.01, FDR < 0.1) (Table S13,
Figures S11 and S12).
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Table 2. Summary of rank regression results (p < 0.05) associating microbiome of the three different sample types with the clinical variables. Bold text denotes genera significant at FDR
< 0.1, text underlined by a solid line denotes that the association was validated in an independent dataset, marked by the superscript number (1 Feng et al. [30]; 2 Dejea et al. [31], *
previously published association [40,66,68–72], see Discussion and Table S11). Up and down arrows denote increase or decrease in abundance, respectively.

Regression
Covariate Effect/Contrast Tumour Mucosa Visually Normal Mucosa Stool

grade increasing grade

↑ Fusobacterium *, Campylobacter *,
Leptotrichia, Peptoclostridium,

Mogibacterium *
- -

- ↓ Unassigned genus from order Opitutae
vadin HA64 -

location

right-sided/transverse vs left-sided
and rectum/rectosigmoid

↑ Holdemania, Selenomonas 4, Clostridium
sensu stricto 1, Alloprevotella

↑ Selenomonas 3, Selenomonas,
Treponema 2 -

↓ Bifidobacterium *,
Christensenellaceae R-7 group 2,

Ruminococcaceae UCG-013,
Fusicatenibacter

↓ Lachnospira, Bifidobacterium,
Coprococcus 1, Christensenellaceae R-7

group
-

right-sided/transverse vs left-sided ↑ Campylobacter, Alloprevotella - -
↓ Family XIII AD3011 group, Coprococcus 1 -

right-sided/transverse vs
rectosigmoid/rectum

↑ Oribacterium, Fretibacterium - -
- ↓ [Eubacterium] ventriosum group

grade*location
interaction

low-graded; right-sided/transverse
↑Ruminococcaceae UCG-010, uncultured
bacterium from Clostridiales vadinBB60

group
-

↑ Unassigned genus from order
Opitutae vadin HA64,

Porphyromonas

grade 2; left-sided
↓Coprococcus 2, Ruminiclostridium 6,

[Eubacterium] ventriosum group, Incertae
Sedis from Lachnospiraceae family

↓ Gemella, Corynebacterium 1 ↓ Ruminiclostridium 6, Coprococcus 2

grade 2; rectosigmoid/rectum

- ↑ Veillonella ↑ Veillonella

↓Methanobrevibacter, Dielma, Victivallis ↓Methanobrevibacter, an uncultured
genus from the Peptococcaceae family

↓ Victivallis, Ruminiclosridium 6,
Lachnospiraceae UCG-005, an
unassigned genus from order

Mollicutes RF9

grade 3; right-sided/transverse ↑ Prevotella, Selenomonas, Selenomonas 3 - -
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Table 2. Cont.

Regression
Covariate Effect/Contrast Tumour Mucosa Visually Normal Mucosa Stool

grade*location
interaction

grade 3; left-sided

- ↑ Eisenbergiella, Leptotrichia,
Escherichia-Shigella, Veillonella ↑ Veillonella, Prevotella 7

↓ Coprococcus 2, Ruminiclostridium 6,
[Eubacterium] ventriosum group, Incertae

Sedis from Lachnospiraceae family,
Odoribacter

↓ Gemella, Corynebacterium 1 ↓ Coprococcus 2

grade 3; rectosigmoid/rectum

↑ Lachnospira ↑ Veillonella ↑ Prevotella, Prevotella 7

↓Methanobrevibacter, Dielma, Victivallis
↓Methanobrevibacter, Eisenbergiella, an

uncultured genus from the
Peptococcaceae family

↓ Lachnospiraceae UCG-005,
unassigned genus from order

Mollicutes RF9

AJCC stage III–IV vs 0–II
↑ Peptoclostridium - ↑ Akkermansia

- ↓ Gelria -

Tumour pathologic
stage

pT 3–4 vs pTis-2

↑ Peptoclostridium, Gemella,
Campylobacter, Parvimonas

↑ Peptoclostridium,
Escherichia-Shigella, an unassigned

species from Ruminococcaceae
↑ Escherichia-Shigella

↓ Coprobacter, Intestinimonas,
Ruminococcaceae UCG-009, Oscillospira,

Cloacibacillus

↓ Intestinimonas, Ruminococcaceae
UCG-009, Holdemanella, Coprobacter,
Gelria, an uncultured genus from the

Christensenellaceae family

↓ Prevotella 6,
Ruminococcaceae UCG-0111

Regional lymph
nodes stage N1–2 vs N0

↑ Peptoclostridium -

↑ Peptococcus, Campylobacter,
Akkermansia *, Selenomonas,

Porphyromonas *, Streptococcus,
Oscillospira

↓ Prevotellaceae UCG-001, uncultured
Fusobacterium sp. from family boneC3G7 ↓ [Eubacterium] hallii group

↓ Faecalibacterium,
Ruminiclostridium, Dorea *,

Lachnospiraceae FCS020 group

Synchronous
distant metastasis

present vs absent

↑ Porphyromonas, Streptococcus,
Ruminococcaceae UCG-005 ↑ Akkermansia

↑ uncultured genus from
Erysipelotrichaceae family,
Akkermansia, Coprococcus 1,

Solobacterium

-
↓ Gelria, [Eubacterium] brachy group,

uncultured genera from Christensenellaceae
family, Gordonibacter, Fretibacterium

↓ Selenomonas, Ruminococcaceae
UCG-004

FDR-false discovery rate.
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Patients with advanced T stages (pT 3–4) were characterised by a significant increase
in abundance of Gemella, Campylobacter, Peptoclostridium and Parvimonas (p < 0.01, FDR < 0.1)
on tumour mucosa, and increased Peptoclostridium, Escherichia-Shigella (p < 0.01, FDR < 0.1)
in the adjacent visually normal mucosa. Early T stage tumours (pTis-2) were associated with
an increase in Coprobacter, on tumour mucosa, increased Intestinimonas, Ruminococcaceae
UCG-009, Holdemanella and Coprobacter on the adjacent visually normal tissue (p < 0.05,
FDR < 0.1) and Prevotella 6 (p < 0.01, FDR < 0.1) and Ruminococcaceae UCG-011 (p < 0.05,
FDR > 0.1) in the stool (Table S13, Figures S11 and S13). We validated the decrease of
Ruminococcaceae in the stool of patients with pT 3–4 stage (p = 0.00113, Feng et al.) (Text S2,
Table S14).

The presence of metastases (local or distant) at the time of diagnosis was predomi-
nantly associated with changes in the stool microbiome. Except for the increased abundance
of Akkermansia in stool of patients with N1–2 stage tumours (p < 0.01, FDR < 0.1) and of
the uncultured genus from the Erysipelotrichaceae family in the stool of patients with syn-
chronous distant metastases (p < 0.01, FDR < 0.1), none of these associations were significant
after FDR correction (Table S13, Figures S11, S14 and S15). Nevertheless, we validated
the decrease of Dorea in the stool of patients with N1–2 stage tumours (p = 0.00011) in an
independent dataset (Feng et al.) (Text S2, Table S14).

3.4. Tumour CRC Microbial Subtypes

We continued our characterisation of tumour microbial heterogeneity by performing
hierarchical clustering of patients based on the relative abundance of the 57 tumour genera
in the tumour mucosa samples (See Methods). Once the subtypes were identified, we
performed between-subtype differential abundance analyses of microbiome profiles in all
three sampling environments.

Based on the tumour genera profiles, we observed three major subtypes of tumours
(TMS1–TMS3), that could further be divided into two groups each (Figures 3 and 4). The
bacteria were clustered into six groups B1–B6 (Figure 3, Table S12).

The B1 group and B2 group are represented by typical gut microbiome members.
The B1 group consists of the five most common and most abundant genera Fusobacterium,
Lachnoclostridium, Bacteroides, Escherichia-Shigella and one uncultured genus from the family
Lachnospiraceae. All tumours contain at least three of these bacteria, most tumours (78.7%) all
five. These bacteria have high co-occurrence across the sampled environments (Figure 2A,
fourth panel), except for Fusobacterium, predominantly found in mucosa samples. The
B4 group contains exclusively oral microbiome genera, and we named it the Selenomonas
group due to its enrichment in the Selenomonas genera. B3 and B5 groups include mostly
oral microbiome genera. These genera have significantly different incidence across the
sampled environments, with 45.7–94.1% of patients missing these genera in the stool if
present on tumour mucosa. Group B6 consists of 27 less common species with incidence
ranging from 0% to 37% (median 11.1%).

Tumour microbial subtype 1 (TMS1) represents 26% (46) of tumours and is defined by
the presence of B1–B4 microbial groups, and overall contains most of the high-grade associ-
ated genera (Fusobacterium, Campylobacter, Leptotrichia, Peptoclostridium and Selenomonas, see
Table 2). This subtype is enriched in right-sided (60.9%), grade 3 (58.7%), pT3 or pT4 stage
(95.6%) tumours and is depleted of stage 0 and stage I tumours (0% and 4.3%, respectively)
(Table 1, Figure 4). In addition, TMS1 contains significantly more tumours with MSI-H
(34.8%) and BRAF mutation (15.2%) compared to other tumour microbial subtypes. TMS1
differs from TMS2 and TMS3 by the presence of the Selenomonas group (B4), Solobacterium
and Howardella species, and Clostridium sensu stricto 1. In contrast to other subtypes, this
subtype shows a significantly decreased abundance of typical faecal commensals such as Bi-
fidobacterium, Ruminococcus 2, Anaerostipes and Coprococcus 1 on tumour mucosa (Table S15).
In stool samples, we observed a higher abundance of Prevotella and Clostridium sensu stricto
1 (Table S16).
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Tumour microbial subtype 1 (TMS1) represents 26% (46) of tumours and is defined by
the presence of B1–B4 microbial groups, and overall contains most of the high-grade associ-
ated genera (Fusobacterium, Campylobacter, Leptotrichia, Peptoclostridium and Selenomonas, see
Table 2). This subtype is enriched in right-sided (60.9%), grade 3 (58.7%), pT3 or pT4 stage
(95.6%) tumours and is depleted of stage 0 and stage I tumours (0% and 4.3%, respectively)
(Table 1, Figure 4). In addition, TMS1 contains significantly more tumours with MSI-H
(34.8%) and BRAF mutation (15.2%) compared to other tumour microbial subtypes. TMS1
differs from TMS2 and TMS3 by the presence of the Selenomonas group (B4), Solobacterium
and Howardella species, and Clostridium sensu stricto 1. In contrast to other subtypes, this
subtype shows a significantly decreased abundance of typical faecal commensals such as Bi-
fidobacterium, Ruminococcus 2, Anaerostipes and Coprococcus 1 on tumour mucosa (Table S15).
In stool samples, we observed a higher abundance of Prevotella and Clostridium sensu stricto
1 (Table S16).

Tumour microbial subtype 2 (TMS2) comprises 31% (55) of tumours and is defined
mainly by the absence of B4 bacteria (the Selenomonas group). This subtype can be fur-
ther divided into two groups by the increased incidence of Leptotrichia, Granulicatella,
Aggregatibacter and Neisseria (TMS2a) or Tyzzerella 4, Hungatella (ex-Clostridium hathewayi),
Solobacterium, Pseudomonas and Porphyromonas (TMS2b). TMS2 tumours are predominantly
from the left side, rectosigmoid or rectum (70.9%) (Table 1, Figure 4). The mucosa of TMS2
tumours shows a significantly higher abundance of Haemophilus, Sutterella, Veillonella and
Streptococcus and a lower abundance of Alloprevotella (Table S15). Alloprevotella was also
significantly decreased in stool samples (Table S16).

Finally, the largest subtype, TMS3, represents 43% (77) of tumours and is mostly
missing the B3–5 bacterial groups and most of the high-grade related species. TMS3
is characteristic by an increased proportion of grade 1 tumours (15.6%). In the TMS3
microbial subtype, right-sided and left-sided tumours are equally represented (Table 1,
Figure 4). The subtype can be further divided by increased incidence of Incertae sedis from
the Erysipelotrichaceae family and Tyzzerella 4 (TMS3a) or Clostridium sensu stricto 1, Ru-
minococcaceae UCG-013 and Incertae sedis from Lachnospiraceae family (TMS3b). Interestingly,
subtype TMS3 contains all the tumours that lack Fusobacterium species (most of them in
TMS3a) both in their mucosa and in the patients’ stool.

Most importantly, the subtypes differed significantly in the proportion of the oral
genera with TMS1 median of 15.8%, TMS2 median of 12.3% and TMS3 median of 5.3%
(p < 0.001). We then explored the estimated metabolic potential of the microbial communi-
ties specific to the tumour subtypes (Table S17). TMS1 is characterised by functional shifts
in bacterial composition, including the increase in gene content specific for nucleotide
metabolism, metabolism of terpenoids and polyketides and energy metabolism (p < 0.05,
FDR < 0.1), reduction in lipid metabolism and xenobiotics biodegradation and metabolism
(p < 0.05, FDR < 0.1). At the lower functional level, TMS1 subtype was characterised by
increased peptidoglycan biosynthesis, novobiocin biosynthesis and ansamycin biosynthe-
sis (p < 0.05, FDR < 0.1). The TMS2 subtype exhibited the highest score of xenobiotics
biodegradation and metabolism. TMS3 subtype showed enhanced biosynthesis of other
secondary metabolites, carbohydrate metabolism and amino acid metabolism and reduced
metabolism of other amino acids (p < 0.05, FDR < 0.1).

4. Discussion

Carcinogenesis of colorectal cancer is a complex process with a unique set of somatic
molecular changes. Considerable efforts have been dedicated to understanding the het-
erogeneity of CRC and deriving clinically applicable molecular markers of the disease
progression and patients’ response to therapy. Approaching the problem from the molecu-
lar perspective in supervised analyses led to identifying several molecular markers and
signatures with limited clinical use [73]. The unsupervised approach led to the definition of
four consensus molecular subtypes [74], which, surprisingly, bear some prognostic value.
The CRC heterogeneity puzzle, however, is far from being solved. One of the reasons is
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that the tumour microenvironment, especially the microbiome, seems to play a much more
critical role than imagined. Many studies correlated the dysbiosis of the gut microbiome
with the development of colorectal cancer in the healthy mucous-adenoma-carcinoma
sequence or focused on elucidating the concrete role of selected bacterial species in the gut
(colorectal) pathogenesis progression [4–22].

In contrast, our study aimed to use an unsupervised approach to characterise the
heterogeneity of the CRC gut microbiome in the ongoing disease to discover unforeseen
patterns. The comparison of microbial communities of stool, tumour mucosa and adjacent
visually normal mucosa provided us with insights into the preferred environment of the
observed species. The resulting microbial categorisation served to focus downstream
analyses and to interpret our findings. We based the characterisation of the CRC tumour
microbial landscape by performing subtyping of patients on bacteria with increased abun-
dance in tumour mucosa compared to the stool to filter out potential stool contaminants.
With a median of 59.6%, the tumour genera represented an essential fraction of the total
microbiome found on tumour mucosa. Interestingly, the tumours of different microbial
subtypes differed in the on-mucosa abundance of typical faecal genera (both pathogenic
and commensal) that were not used for their definition. The analysis of microbial com-
position between sample types confirmed previously reported observations [8,11,34] that
mucosa-associated bacteria dominate the tumour mucosal microbiome and that these
species are associated also with visually normal mucosa. It is debatable to what extent
the non-cancerous tissue (however distant from the tumour) from the surgically removed
segment is already influenced by the bacteria initiating CRC development. Consistent with
the bacterial driver-passenger model as proposed by Tjalsman et al. [27] our mucosa genera
could be bacterial drivers, while tumour-specific genera could be bacterial passengers. We
observed that tumours harbour a diverse community of opportunistic pathogens of oral
origin (31 of 57 tumour genera) as previously reported [29,31,75].

Multiple factors make the CRC tumour niche a favourable environment for oral
bacteria, in particular, for oral pathogens. Some of the bacteria can bind to specific proteins
overexpressed on tumour cells [76–78]. Inflammation in the oral tissue niche selects for
those species that are most adapted to the new environment, producing specific molecules
such as microbial proteolytic enzymes [79] that break down the host’s extracellular matrix
and soluble factors to get nutrients and invade the tissue. In the digestive tract, some
oral bacteria can change their oxygen requirements from facultative anaerobic to strict
anaerobic and their metabolism from asaccharolytic to proteolytic [80]. Oral pathogens
gaining a more favourable niche on colon tissue may shift the balance on their behalf,
producing proteins playing a key role in biofilm formation [81]. Some of the oral genera
detected in our study were previously never associated with CRC tumour mucosa (e.g.,
Selenomonas 3, Selenomonas 4, Aggregatibacter, Johnsonella, Abiotrophia, Defluviitaleaceae UCG-
011). Most importantly, we newly associate 22 genera of both oral and gut origin with
CRC overall. Some of these genera contain species that are known human pathogens
causing infections of mucosal or other tissues such as: periodontal disease (Selenomonas,
Phocaeiola Aggregatibacter) [82–84] infections in humans through animal bites (Bergeyella and
Actinobacillus) [85,86]; endocarditis (B. cardium) or respiratory infections (A. hominis) [87,88].
For other genera, their potential involvement in CRC is not so obvious. The tumour-specific
genera of Defluviitaleaceae might influence CRC through the metabolism of butyrate [89].
The association of Tyzzerella 4 from the Lachnospiraceae family with CRC may be due to its
increased occurrence in patients with higher cardiovascular risk (CVR) factor scores [90],
which are also associated with CRC [91]. Massilia was detected in patients with pancreatic
cancer [92].

Correlating the tumour microbiome with clinical variables of tumour progression,
such as grade or stage, bears the promise of offering viable hypotheses on the role of
bacteria in the progression of the disease. Currently, the associations between clinical
variables and gut microbial composition in an ongoing disease are understudied, and only
a few efforts addressed the topic on limited cohorts.
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The sample size of our study allowed for the study of the interaction of grade and
tumour location, thus providing a finer estimation of the differences in the microbiome com-
position. We report 59 associations of 43 genera with tumour grade and/or location for all
sample types studied. We confirmed previously reported high-grade tumour associations
of Fusobacterium, Campylobacter and Mogibacterium, in CRC tumour mucosa [40,68]. We
newly observed potentially beneficial effects of the increased abundance of 13 stool genera
significantly associated with left location, namely decreasing tumour grade with increasing
abundance, e.g., of Bifidobacterium, Ruminococcaceae UCG-010 and Victivallis in tumour
mucosa; and of Porphyromonas and Lachnospiraceae UCG-005, in the stool. Bifidobacterium
was previously shown to have anti-cancerogenic effects [66,69–72].

We also found location-dependent grade-predictive genera. Remarkably, while in the
right colon a higher grade was associated with an increase in pathogenic genera (Prevotella,
Selenomonas) on tumour mucosa, in the left colon a higher grade was associated with a
depletion in possibly beneficial (commensal) genera (Methanobrevibacter, Coprococcus 2,
Ruminiclostridium 6, Odoribacter, Dielma, Victivallis) on tumour mucosa or in the stool. We
can only speculate whether the prolonged exposure of tumour mucosa to predominantly
stool bacteria that is mechanistically related to tumours in a distant part of the colon (left-
sided or with onset in rectosigmoid and rectum) can have potentially harmful or beneficial
effects or whether any associations are mostly due to the well-known molecular differences
in the right vs left-sided tumours [36,93,94]. The increased abundance of pathogens on the
high-grade right-sided tumours might be the result of increased permeability of proximal
gut mucosa [95], but the relevance of the animal models was questioned [96].

We confirmed a previously published increase of Akkermansia and Porphyromonas in
the stool of patients with local metastases [72], and newly associated increased Akkermansia
in stool in patients with stage III–IV CRC. We noted that the occurrence of synchronous
local and distant metastases was mainly associated with shifts in stool microbiome, while
tumour specific variables such as grade or location were associated with changes in tumour
microbiome. On one side, this observation raises the possibility of microbiome-based
non-invasive metastasis diagnostics in colorectal cancer or monitoring the patients at risk.
On the other hand, the alteration of the stool microbial community might only reflect
changes in the overall health status in the presence of metastasis and cancer progression
itself similarly to non-colonic malignancies [97–99].

Pairwise analysis of the incidence of all genera across sample types helped us to assess
their screening potential. On-tumour microbes with significant clinical associations and no
difference in incidence across sample types are perfect candidates for stool-based screening
studies or stool-based prognostic and predictive classifiers. Most of the tumour-specific
genera, if present on tumour mucosa, were not identified in stool of the same patients in
more than 50% of cases. Given that these genera prefer the mucosal environment over the
stool, such associations are not entirely surprising. Consequently, these genera are better
candidates for colonoscopy biopsy sample screening.

We then compared how the previously suggested stool-based predictive microbial
markers of CRC (compared to healthy and adenomas) [29] behave with respect to the
progression of an ongoing disease (associations with grade or stage) as a result of tumour
microenvironment changes. Some retained their predictive potential of progression of the
disease as stool predictors of the presence of local metastases (increase in Campylobacter,
Porphyromonas, Streptococcus and decrease in Lachnospiraceae and Faecalibacterium). Some
showed no significant clinical associations in stool, but their increased abundance on
tumour mucosa was predictive of high pT stage (Parvimonas) or grade (Fusobacterium).

The three tumour–mucosa-based microbial subtypes we derived on patterns of simi-
larity of the abundance of the tumour genera represent the first attempt to systematically
describe microbial heterogeneity of CRC tumour environment. We were intrigued to see
that compared to subtyping efforts based on gene expression [74,100], also microbial profil-
ing identified one subtype (TMS1) enriched in BRAF mutant, MSI-H, right-sided tumours.
An interesting observation was that the tumour microbial subtypes differ not only in the
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type of the tumour genera they host but also in the count of potentially pathogenic micro-
biome correlated with high grade and stage and the proportion of oral pathogens within
the tumour genera. Of the 10 high grade or high stage-related genera, TMS1 tumours
had a median of 8 (80%), TMS2 of 6 (60%) and TMS3 of 4 (40%), differing thus in what
we could call “microbial pathogens burden”. This subtyping could reflect differences in
tumour biological properties linked with cancer progression: malignant tumours with
active growth, cell and tissue atypia because of disruption of the mucus layer and dysreg-
ulation of local immunity provide more comfortable conditions to aggressive microbial
consortia expansion and unconventional (oral) species homing. Moreover, with respect
to the bacteria-supported model of carcinogenesis, proved in animal models [10,101], the
pathogenic bacteria growth leads to additional dedifferentiation of tumour cells forming
the pathogenetic loop. The differences in the proportion of oral pathogens and metabolic
potential lead us to the hypothesis that the TMS1 subtype is enriched in tumours with
microbial biofilms. This subtype is enriched in right-sided tumours and compared with
the other two subtypes, is enriched in the presence of oral bacteria. Recently, biofilms
have been associated with right-sided CRC [31]. Drewes et al. [102] identified several
biofilm-associated shifts, including the functional alteration in peptidoglycan biosynthesis,
novobiocin biosynthesis and ansamycin biosynthesis, which were significantly increased in
the TMS1 subtype. Studies show that the commensal and the pathogenic periodontal bacte-
ria (Fusobacterium, Porphypomonas) produce proteins such as gingipains [81] and RadD [103],
which can play a key role in biofilm formation. Koliarakis et al. [75] proposed a new outlook
on CRC pathogenesis driven by gut mucosa biofilm created by periodontopathic bacteria
translocated into the colorectum. Tomkovich et al. [104] successfully demonstrated that
polymicrobial biofilms are carcinogenic. Transcriptomic studies of periodontal tissues show
that many organisms can fulfil gaps in metabolism, therefore the pathogenic community is
more important as one unit than the virulence of one species [105].

It remains to be investigated whether the microbial subtypes could improve the
prediction of patients’ survival and prognosis. We can speculate that the high microbial
pathogen burden could worsen not only the tumour progression but also potentially the
patient’s condition after the surgical resection and during and after the chemotherapy
treatment. Given the fact that tumour-related genera reside also on visually normal
mucosa, they could initiate CRC tissue dysplastic changes and malignisation. There is
limited evidence of linkage between mucosal microbiota and metachronous adenomas
growing demonstrated by Liu et al. [106]. On the other side, it is shown that the microbiome
could interact and metabolise chemotherapeutic medicine, which leads to modulation of its
activity and toxicity [107]. In the light of the above, modification of gut microbiome after
colorectal cancer surgical removal might be considered as an additional step of treatment
to prevent tumour recurrence and modulate chemotherapy effectiveness and toxicity.

The probable presence of biofilm in the TMS1 subtype might make this subtype of
interest to potential prevention and treatment strategies. Importantly, although TMS1
is enriched in proximal tumours, it occurs in 9.1–18.8% of left, rectosigmoid and rectal
tumours. Remarkably, biofilm communities from the colon biopsies of healthy individuals
were as potent in inducing colon inflammation as the biofilm communities from CRC
hosts [104]. The inhibition or removal of such biofilms from patients with CRC could
represent a promising strategy for secondary CRC prevention and treatment but remains
an uneasy task due to inefficiency of traditional antimicrobial strategies such as antibiotic
treatment [108]. A recent study associated periodontitis with increased risk of high-grade
proximal colorectal cancer [109]. Based on this, our results suggest an intriguing hypothesis:
whether improving oral hygiene would impact the incidence of TMS1 tumours, or, more
importantly, would lower the recurrence rate or development of secondary tumours in the
TMS1 patients.

Another clinically relevant observation is the association of left-sided high-grade
tumours with the depletion in protective species rather than increase in bacterial pathogens.
This suggests that antibiotic treatment of patients with distal tumours may have a detri-
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mental effect on their prognosis. Coadministration of probiotics in this case could be highly
beneficial.

We believe that for certain patient populations, the inclusion of tumour mucosa
sampling during colonoscopy for analysis of microbial composition could help to efficiently
steer pre- and post-operative treatment decisions.

5. Conclusions

In our study, by analysis of 483 samples from n = 178 patients, we extended the
current characterisation of the colorectal cancer microbiome in several directions. Thanks
to the large sample size, we identified bacterial genera that were not previously associated
with CRC tumour mucosa, clinical variables or with colorectal carcinoma at all. These
genera should be studied in more detail to describe their mechanism of interaction with
the disease.

By focusing on microbial community analysis, in contrast to classical microbiome-
centred approaches, we were able to identify co-occurring species and three major tumour-
microbial subtypes that correlate with clinical variables, such as grade, location and TNM
staging. The subtypes also differ in what we describe as microbial pathogens burden—
the number of pathogenic species correlated with increased grade and stage present on
tumour mucosa, although the concept can be defined with respect to all three environments
(tumour mucosa, visually normal mucosa and stool).

An important limitation of our study is the lack of proper validation of all the results
since adequate data is unavailable, hence these results must be taken cautiously. Addi-
tionally, it is well known that the gut microbial composition changes with dietary patterns
and lifestyle, which could be region-based [98]. More studies of similar sample size or
larger from different geographical locations, are needed to derive robust and generalisable
patterns. We make the full data available, including clinical variables, as a first step towards
building a data corpus that could support such investigations. The nature of the samples
(mucosa) prohibited us from using more advanced whole-metagenomic sequencing due
to severe human DNA contamination issues [110–112]. The technology chosen was high
throughput, fitting the purpose of microbial community-based analysis. We did perform
the sequence matching for the identified ASVs against the SILVA database, however, being
aware of the limitations, we provide these results solely as supplementary information
without discussing them here in detail.

Having sampled the microbiome at three different complementary sites allowed the
study of several environments leading to the definition of novel microbial categories with
multiple implications. Our study shows that the associations with clinical variables found
for the tumour mucosal or adjacent visually normal mucosa microbiome are rarely pre-
served in the microbial composition of stool and vice versa. While tumour histological
grade, stage and location are reflected in the corresponding mucosal microbiome, the pres-
ence of lymph nodes or distant metastases influences mainly the stool microbiome. It seems
that the mucosa and stool microbiome are complementary with respect to the modulation
of their effects on disease progression. Tumour-mucosa biopsies from colonoscopy might
need to be coupled with stool sampling for efficient screening or diagnostic purposes.

Understanding the role of tumour-subtype specific microbial communities could lead
to tailored strategies of CRC patient gut microbiome management through lifestyle and
diet recommendations including probiotic and antimicrobial interventions.

Our study is a step forward in understanding the role of the microbiome and its
interactions with other factors involved in oncogenesis and tumour progression. Rather
than providing definite answers it opens new avenues for exploring new treatments and
biomarkers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13194799/s1, Figure S1: Number of reads and diversity comparison of three sample
types on 127 triplets, Figure S2: Genera which were detected only in some of the three sample
types, Figure S3: Differences in microbiome composition across the sample types, Figure S4: Co-
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occurrence analysis of 57 tumour genera, Figure S5: Microbial β-diversity analysis by NMDS on
178 tumour tissue swab, Figure S6: Microbial β-diversity analysis by NMDS performed on 127
triplets, Figure S7: Side-dependent associations between tumour histological grade and microbiota
composition, Figure S8: Boxplots of distribution of clr transformed abundance of genera associated
with tumour grade and/or location in 178 tumour mucosa samples in models with or without
interaction at p-value < 0.05, Figure S9: Boxplots of distribution of clr transformed abundance of
genera associated with tumour grade and/or location in 178 visually normal mucosa samples in
models with or without interaction at p-value < 0.05, Figure S10: Boxplots of distribution of clr
transformed abundance of genera associated with tumour grade and/or location in 127 stool samples
in models with or without interaction at p-value < 0.05, Figure S11: Associations between tumour
stage, including TNM staging separately, gender and microbiota composition in all sample types and
sample sizes, Figure S12: Boxplots of distribution of clr transformed abundance of genera associated
with tumour stage in 178 tumour mucosa samples, 178 adjacent visually normal mucosa samples and
127 stool samples at p-value < 0.05, Figure S13: Boxplots of distribution of clr transformed abundance
of genera associated with tumour pathologic stage in 178 tumour mucosa samples, 178 adjacent
visually normal mucosa samples and 127 stool samples at p-value < 0.05, Figure S14: Boxplots of
distribution of clr transformed abundance of genera associated with the presence of lymph-node
metastases in 178 tumour mucosa samples, 178 adjacent visually normal mucosa samples and
127 stool samples at p-value < 0.05, Figure S15: Boxplots of distribution of clr transformed abundance
of genera associated with the presence of distance metastases in 178 tumour mucosa samples, 178
adjacent visually normal mucosa samples and 127 stool samples at p-value < 0.05, Figure S16: Results
of pairwise coincidence analysis of genera across sample types within the same patient, Table S1:
Results of validation of associations of microbiome with tumour location on the Dejea et al. dataset,
Table S2: Results of validation of associations of microbiome with tumour location on the Dejea et al.,
Zeller et al. and Feng et al. datasets, Table S3: List of primers and the length of PCR products, Table
S4: Results of the filtering steps based on ASV abundance and type of taxonomic assignment, Table
S5: Table of identified ASV’s in the three sample types (127 triplets) with taxonomy assigned by
BLAST and QIIME, Table S6: Number of taxa identified at respective taxonomic levels after the
filtering steps in 127 triplets (381 samples) and overall (483), in different sample types and their
combinations, Table S7: Results of Cochran’s Q test and McNemar’s test including the report of the
results as the co-occurence of specific event pairs: genera present in one sample type but not in the
second sample type and vice versa, Table S8: Total counts of genera found significantly differentially
abundant across the three sample types (127 triplets), divided into categories according to their
enrichment in different sample types (TtoS—tumour to stool, VNtoS—visually-normal to stool,
TtoVN—tumour to visually-normal.), Table S9: Results of the Friedman test across the three sample
types (127 triplets), Table S10: Results of microbial co-occurrence analysis, Table S11. Summary of
the 57 tumour genera. Overview of the current knowledge about the genera that we categorise as
associated with tumour mucosa, Table S12: Results of adonis testing of the associations between
β-diversity and clinical variables, Table S13: Results of rank regression associating microbiome
with the clinical variables, Table S14: Results of rank regression on publicly available validation
datasets, Table S15: Results of rank regression associating tumour microbiome abundance with
tumour microbiome subtypes, Table S16: Results of rank regression associating stool microbiome
abundance with tumour microbiome subtypes, Table S17: Results of rank regression of differences
between tumour microbiome subtypes in metabolic potential of the microbial communities, Text S1:
Extended results of differences in microbiome diversity and incidence across the sample type, Text
S2: Validation of results on publicly available data.
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