J 2022

Novel 1,3,5-Triazinyl Aminobenzenesulfonamides Incorporating Aminoalcohol, Aminochalcone and Aminostilbene Structural Motifs as Potent Anti-VRE Agents, and Carbonic Anhydrases I, II, VII, IX, and XII Inhibitors

HAVRÁNKOVÁ, Eva, V. GARAJ, S. MASCARETTI, A. ANGELI, Zuzana SOLDÁNOVÁ et. al.

Basic information

Original name

Novel 1,3,5-Triazinyl Aminobenzenesulfonamides Incorporating Aminoalcohol, Aminochalcone and Aminostilbene Structural Motifs as Potent Anti-VRE Agents, and Carbonic Anhydrases I, II, VII, IX, and XII Inhibitors

Authors

HAVRÁNKOVÁ, Eva (203 Czech Republic, guarantor, belonging to the institution), V. GARAJ, S. MASCARETTI, A. ANGELI, Zuzana SOLDÁNOVÁ (203 Czech Republic, belonging to the institution), M. KEMKA, J. MOTYČKA, Marie BRÁZDOVÁ (203 Czech Republic, belonging to the institution), Jozef CSÖLLEI (203 Czech Republic, belonging to the institution), J. JAMPÍLEK and C.T. SUPURAN

Edition

International Journal of Molecular Sciences, Basel, Multidisciplinary Digital Publishing Institute, 2022, 1422-0067

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

30104 Pharmacology and pharmacy

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 5.600

RIV identification code

RIV/00216224:14160/22:00125425

Organization unit

Faculty of Pharmacy

UT WoS

000751345900001

Keywords in English

vancomycin-resistant enterococci; carbonic anhydrase; inhibition; triazine; benzenesulfonamide; stilbene; chalcone

Tags

Tags

International impact, Reviewed
Změněno: 23/2/2022 14:08, JUDr. Sabina Krejčiříková

Abstract

V originále

A series of 1,3,5-triazinyl aminobenzenesulfonamides substituted by aminoalcohol, aminostilbene, and aminochalcone structural motifs was synthesized as potential human carbonic anhydrase (hCA) inhibitors. The compounds were evaluated on their inhibition of tumor-associated hCA IX and hCA XII, hCA VII isoenzyme present in the brain, and physiologically important hCA I and hCA II. While the test compounds had only a negligible effect on physiologically important isoenzymes, many of the studied compounds significantly affected the hCA IX isoenzyme. Several compounds showed activity against hCA XII; (E)-4-{2-[(4-[(2,3-dihydroxypropyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (31) and (E)-4-{2-[(4-[(4-hydroxyphenyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (32) were the most effective inhibitors with K(I)s = 4.4 and 5.9 nM, respectively. In addition, the compounds were tested against vancomycin-resistant Enterococcus faecalis (VRE) isolates. (E)-4-[2-({4-[(4-cinnamoylphenyl)amino]-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]benzenesulfonamide (21) (MIC = 26.33 mu M) and derivative 32 (MIC range 13.80-55.20 mu M) demonstrated the highest activity against all tested strains. The most active compounds were evaluated for their cytotoxicity against the Human Colorectal Tumor Cell Line (HCT116 p53 +/+). Only 4,4'-[(6-chloro-1,3,5-triazin-2,4-diyl)bis(iminomethylene)]dibenzenesulfonamide (7) and compound 32 demonstrated an IC50 of ca. 6.5 mu M; otherwise, the other selected derivatives did not show toxicity at concentrations up to 50 mu M. The molecular modeling and docking of active compounds into various hCA isoenzymes, including bacterial carbonic anhydrase, specifically alpha-CA present in VRE, was performed to try to outline a possible mechanism of selective anti-VRE activity.

Links

MUNI/A/1202/2020, interní kód MU
Name: Syntéza nových potenciálních inhibitorů CA
Investor: Masaryk University