J 2021

Higher-order immunoglobulin repertoire restrictions in CLL: the illustrative case of stereotyped subsets 2 and 169

GEMENETZI, K., F. PSOMOPOULOS, A. A. CARRILES, M. GOUNARI, C. MINICI et. al.

Basic information

Original name

Higher-order immunoglobulin repertoire restrictions in CLL: the illustrative case of stereotyped subsets 2 and 169

Authors

GEMENETZI, K., F. PSOMOPOULOS, A. A. CARRILES, M. GOUNARI, C. MINICI, Karla PLEVOVÁ (203 Czech Republic, belonging to the institution), LA SUTTON, M. TSAGIOPOULOU, P. BALIAKAS, K. PASENTSIS, A. ANAGNOSTOPOULOS, R. SANDALTZOPOULOS, R. ROSENQUIST, F. DAVI, Šárka POSPÍŠILOVÁ (203 Czech Republic, belonging to the institution), P. GHIA, K. STAMATOPOULOS, M. DEGANO and A. CHATZIDIMITRIOU (guarantor)

Edition

Blood, Washington DC, USA, American Society of Hematology, 2021, 0006-4971

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

30205 Hematology

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 25.476

RIV identification code

RIV/00216224:14740/21:00124275

Organization unit

Central European Institute of Technology

UT WoS

000646123500011

Keywords in English

CLL; subsets 2 and 169; immunoglobulin

Tags

International impact, Reviewed
Změněno: 28/2/2022 16:45, Mgr. Pavla Foltynová, Ph.D.

Abstract

V originále

Chronic lymphocytic leukemia (CLL) major stereotyped subset 2 (IGHV3-21/IGLV3-21, similar to 2.5% of all cases of CLL) is an aggressive disease variant, irrespective of the somatic hypermutation (SHM) status of the clonotypic IGHV gene. Minor stereotyped subset 169 (IGHV3-48/IGLV3-21, similar to 0.2% of all cases of CLL) is related to subset 2, as it displays a highly similar variable antigen-binding site. We further explored this relationship through next-generation sequencing and crystallographic analysis of the clonotypic B-cell receptor immunoglobulin. Branching evolution of the predominant clonotype through intraclonal diversification in the context of ongoing SHM was evident in both heavy and light chain genes of both subsets. Molecular similarities between the 2 subsets were highlighted by the finding of shared SHMs within both the heavy and light chain genes in all analyzed cases at either the clonal or subclonal level. Particularly noteworthy in this respect was a ubiquitous SHM at the linker region between the variable and the constant domain of the IGLV3-21 light chains, previously reported as critical for immunoglobulin homotypic interactions underlying cell-autonomous signaling capacity. Notably, crystallographic analysis revealed that the IGLV3-21-bearing CLL subset 169 immunoglobulin retains the same geometry and contact residues for the homotypic intermolecular interaction observed in subset 2, including the SHM at the linker region, and, from a molecular standpoint, belong to a common structural mode of autologous recognition. Collectively, our findings document that stereotyped subsets 2 and 169 are very closely related, displaying shared immunoglobulin features that can be explained only in the context of shared functional selection.

Links

LQ1601, research and development project
Name: CEITEC 2020 (Acronym: CEITEC2020)
Investor: Ministry of Education, Youth and Sports of the CR