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Abstract

Main conclusion The entire process of embryo development is under the tight control of various transcription fac-
tors. Together with other proteins, they act in a combinatorial manner and control distinct events during embryo
development.

Abstract Seed development is a complex process that proceeds through sequences of events regulated by the interplay of
various genes, prominent among them being the transcription factors (TFs). The members of WOX, HD-ZIP III, ARF, and
CUC families have a preferential role in embryonic patterning. While WOX TFs are required for initiating body axis, HD-ZIP
III TFs and CUC:s establish bilateral symmetry and SAM. And ARFS5 performs a major role during embryonic root, ground
tissue, and vasculature development. TFs such as LEC1, ABI3, FUS3, and LEC2 (LAFL) are considered the master regula-
tors of seed maturation. Furthermore, several new TFs involved in seed storage reserves and dormancy have been identified
in the last few years. Their association with those master regulators has been established in the model plant Arabidopsis.
Also, using chromatin immunoprecipitation (ChIP) assay coupled with transcriptomics, genome-wide target genes of these
master regulators have recently been proposed. Many seed-specific genes, including those encoding oleosins and albumins,
have appeared as the direct target of LAFL. Also, several other TFs act downstream of LAFL TFs and perform their function
during maturation. In this review, the function of different TFs in different phases of early embryogenesis and maturation is
discussed in detail, including information about their genetic and molecular interactors and target genes. Such knowledge
can further be leveraged to understand and manipulate the regulatory mechanisms involved in seed development. In addition,
the genomics approaches and their utilization to identify TFs aiming to study embryo development are discussed.
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Introduction cell to generate the triploid endosperm (Baroux and Gross-

niklaus 2019). Subsequently, the single cellular zygote

In most angiosperms, the seed is an outcome of a double
fertilization process, in which one of the two sperm nuclei
fuses with the egg cell to produce a diploid zygote, and
the second sperm nucleus fuses with the binucleate central
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undergoes highly coordinated cell divisions and cellular
differentiation to develop into a multicellular embryo in a
process termed embryogenesis (Verma et al. 2021). In many
dicots, including Arabidopsis, the endosperm develops as a
coenocyte (series of mitosis without cytokinesis) followed
by endosperm cellularization (Fig. 1; Brown et al. 1999; Li
and Berger 2012; Batista et al. 2019). Later, in Arabidopsis,
the endosperm is absorbed in part by the growing embryo.
The seed coat is developed from the ovule’s integuments
and consists of five cell layers. Two cell layers are derived
from the outer integuments (OI): OI2 and OI1, and three cell
layers are derived from the inner integuments (II): 112, IT1’
and II1 (Fig. 1). During the development of the seed, cells
of the outermost layer, i.e., OI2, produce mucilage which
accumulates specifically at the outer corners of the cell.
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Fig.1 Overall depiction of Arabidopsis seed development. The
development of three components of the seed (seed coat, endosperm,
and embryo) is illustrated. All five layers of the seed coat derived
from ovules integuments are shown in different colors. Polymers
accumulated in the seed coat layers are shown. Endosperm develop-
ment is defined by the syncytial stage, followed by cellularization
and absorption. Differentiation of the three mitotic domains of the

Besides, both outer integument cell layers (OI1 and OI2)
produce starch granules, flavanols, and suberin (a lipophilic
polymer) (Golz et al. 2018; Francoz et al. 2018). In contrast,
cells of the innermost layer accumulate proanthocyanidins
(PAs) which later oxidize and give the characteristic brown
colour to the seed coat. In the end, the mature seed contains
a filial embryo, a single-cell endosperm layer, and a protect-
ing covering, i.e., a seed coat developed from the ovule's
integuments.

Overall, embryo development can be classified into
two distinct phases, (i) morphogenesis and (ii) maturation
(Fig. 1; Goldberg et al. 1994; O'Neill et al. 2019; Jo et al.
2019). The morphogenesis phase begins immediately after
fertilization and lasts until the late-heart stage. This phase is
characterized by highly coordinated cell divisions and dif-
ferentiation, during which the basic body organization of the
embryo is established. By contrast, cell division and prolif-
eration are ceased during embryo maturation. However, cell
expansion occurs along with the accumulation of seed stor-
age reserves such as carbohydrates, proteins, and fatty acids
(Jo et al. 2019). Embryo maturation partially overlaps with
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endosperm (micropylar, peripheral, and chalazal) is depicted with
nuclei in different colors in the globular stage. Embryo development
stages are shown from one-cell to mature stages. At the top of the
figure, bars represent the major events that occur during embryo and
endosperm development. MEN, micropylar endosperm nuclei; PEN,
peripheral endosperm nuclei; CEN, chalazal endosperm nuclei

the morphogenesis phase. It begins around the early-heart
stage and lasts until the seed is filled with nutrients, becomes
dry, and acquires a dormant state (e.g., seed maturation). It
has been observed that the developmental stage, not the time
elapsed since fertilization, determines the onset of matura-
tion (O'Neill et al. 2019).

Seed development depends on the spatiotemporal
expression of various genes involved in different processes
occurring during this period, including cell division, dif-
ferentiation, seed filling, desiccation, and dormancy (Le
et al. 2010). Therefore, control of the spatiotemporal pat-
tern and expression levels of such genes is crucial, which
results from the regulation of their transcription by differ-
ent transcription factors (TFs). TFs are critical regulatory
proteins that act in a combinatorial manner together with
other proteins to orchestrate this transcriptional regulation
(Agarwal et al. 2011). They work through binding to specific
DNA sequences (cis-regulatory elements) present over the
promoters of their target genes (Spitz and Furlong 2012).
These regulatory proteins are themselves regulated by other
TFs, miRNAs, hormones, etc., thereby creating multiple
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Fig.2 Transcription factors involved in embryo patterning. A In
the zygote, WRKY2 activates the expression of WOX8 to promote
the polarization of the nucleus (brown) and vacuoles (light yellow)
and asymmetric division of the zygote. B In the resulting asymmet-
ric embryo, WRKY2-WOX8/9 non-cell-autonomously regulates the
development of the embryo proper by activating WOX2 expression
(green) in the apical region. C At the early globular stage, the WOX2
module (WOX1/2/3/5) is required for the initiation of SAM. The
WOX2 module activates the expression of HD-ZIP III TFs to protect
the shoot meristem stem cells from differentiation. The HD-ZIP III

layers and networks of regulation to control a particular
developmental aspect. Over the last few years, several TFs
regulating seed and/or embryo development have been iden-
tified using genetics and genomics approaches in different
plant species (Wu et al. 2020; Ren et al. 2021; Hofmann
et al. 2019). However, the mechanisms through which they
perform their function, including their interacting partners,
target promoters, etc., are still not clear for most of them.
This review aims to enhance our understanding of tran-
scriptional regulation of the distinct events of embryo mor-
phogenesis and maturation by different classes of TFs in
Arabidopsis seed development. Additionally, the identifi-
cation of novel TFs using genome-wide approaches will
be discussed, and how this will improve future research in
studying the transcriptional landscape of seed development.

TFs are targeted by miRNA165/166. These TFs act with HD-ZIP II
TFs to regulate apical patterning during embryogenesis. The upper-
most suspensor cell is specified as hypophysis via auxin-dependent
activation of TMO5 and TMO7 by MP/ARF5. D Other targets of
ARF5 such as NTT, WIP4/5, and PLTs are required for asymmet-
ric division of the hypophysis and correct specification of the QC at
the late globular stage. E CUC TFs regulate the boundary formation
between the developing cotyledons and act synergistically with STM
to control SAM formation

Transcriptional control of early
embryogenesis (morphogenesis)

Embryogenesis begins when the zygote undergoes an
asymmetric division that generates a small apical cell and
a large basal cell (Capron et al. 2009). The apical cell
gives rise to the spherical embryo proper (proembryo) that
will create most of the mature embryo. Two rounds of
longitudinal and one round of transverse divisions con-
vert the apical cell into an eight-celled embryo. In this
stage, two domains, termed the upper tier and lower tier,
are distinguished. The basal cell divides transversely and
gives rise to a 7-9 celled filamentous suspensor. Later, the
uppermost suspensor cell is specified as hypophysis, which
ultimately protrudes into the embryo. The upper tier gives
rise to the cotyledons and shoot apical meristem (SAM).

@ Springer
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Table 1 TFs involved in embryo morphogenesis

TF family Involved TF Function References

WRKY WRKY2 Zygotic polarity Ueda et al. (2011)

WOX WOX2 Controls apical fate; development of SAM Breuninger et al. (2008) Haecker et al. (2004),

Zhang et al. (2017)
WOXS8/9 Zygotic polarity; controls basal cell lineage Breuninger et al. (2008), Haecker et al. (2004),
Ueda et al. (2011)
WOX1/3/5 Together with WOX2 regulate apical pattern- Breuninger et al. (2008), Haecker et al. (2004),
ing and establishment of SAM Zhang et al. (2017)

HD-ZIPIII ATHBS, CNA, PHB, PHV, REV SAM initiation and establishment of bilateral Emery et al. (2003), Prigge et al. (2005), Smith
symmetry and Long (2010)

PHB, PHV, REV Adaxial patterning Emery et al. (2003), McConnell et al. (2001)

HD-ZIP II HAT3, ATHB2, ATHB4 Establishment of bilateral symmetry Turchi et al. (2013)

GARP/KAN KANI1, 2, 4 Abaxial patterning Eshed et al. (2004), Izhaki and Bowman (2007),

Kerstetter et al. (2001)

AP2/ERF DRN/DRNL Interact with HD-ZIP III TFs and regulate Chandler et al. (2007), Cole et al. (2009)
cell patterning and cotyledon development

NAC CUCL 2,3 Cotyledon boundary formation; act synergis-  Aida et al. (1999), Takada et al. (2001), Vroe-
tically with STM to control SAM formation ~ men et al. (2003)

KNOX STM SAM formation Aida et al. (1999), Takada et al. (2001), Vroe-

men et al. (2003)

B3 ARF5 Embryonic root formation; vascular tissue Berleth and Jurgens (1993), Crawford et al.
establishment and maintenance; ground (2015), De Rybel et al. (2013), De Rybel et al.
tissue initiation (2014), Hamann et al. (1999), Hamann et al.

(2002)

bZIP GBF2 Cooperate with ARF5 during vascular tissue ~ Smit et al. (2020)
specification

bHLH TMOS, TMO7 Act downstream of ARFS5 and control hypo-  Schlereth et al. (2010)
physis specification

TMOS5/T5L1, LHW Vascular tissue establishment and mainte- De Rybel et al. (2014)
nance
AP2 PLTI, PLT2 Act downstream of ARF5 and ARF7, and Aida et al. (2004)
regulate asymmetric division of hypophysis
(QC specification)
Zinc-finger NTT, WIP4/5 Act downstream of ARFS5 for QC specifica- Crawford et al. (2015)
tion
GRAS SHR, SCR QC identity and stem cells maintenance Aida et al. (2004), Helariutta et al. (2000),
Nakajima et al. (2001), Wysocka-Diller et al.
(2000)

HD-ZIPIV AtMLI1, PDF2 Protoderm differentiation Abe et al. (2003), Iida et al. (2019), Lu et al.
(1996), Ogawa et al. (2015)

YABBY FIL, YAB2, YAB3 Abaxial patterning Siegfried et al. (1999)

The lower tier and hypophysis generate the cotyledons'
abaxial part, hypocotyl, root apical meristem (RAM), and
embryonic root. After a periclinal division, a 16-celled
embryo results from the first visible cell differentiation
when the outermost layer is specified as protoderm. Sub-
sequent divisions give the embryo a globular appearance.
At this stage, precursor cells of ground tissue and vascular
tissue are specified. Later, with the development of coty-
ledon primordia, the embryo takes the shape of a heart.
At this stage, SAM is established, cotyledons are formed,
and they begin to elongate, marking the beginning of the
maturation phase.

@ Springer

Transcription factors for initiating body axis

The first asymmetric division of the zygote lays the foun-
dation for apical-basal patterning in the embryo. Mem-
bers of the WUSCHEL-RELATED HOMEOBOX (WOX)
TFs play key roles during embryo patterning. Different
WOX genes exhibit distinct expression patterns through-
out embryogenesis. For instance, WOXS8/STIMPY is
expressed in the zygote, where another TF, i.e., WRKY?2,
regulates its expression. This WRKY2-WOXS interaction
is required for the polar distribution of the cell organelles
in the zygote, creating the zygotic polarity required to
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make the first division asymmetric (Fig. 2A; Ueda et al.
2011). WOX2, co-expressed with WOXS in the zygote,
expresses in the apical cell after the asymmetric zygotic
division. WOX2 is required to regulate the apical pat-
terning and development of SAM during embryogenesis.
In contrast, WOXS is expressed in the basal cell along
with its closest homolog WOX9/STIMPY-LIKE after the
zygotic division, redundantly regulating the basal cell lin-
eage (Fig. 2B). They also regulate the embryo proper by
activating WOX2 expression in the apical region (Bre-
uninger et al. 2008). A shift of WOX9 expression from
hypophysis to the embryo proper's basal region indicates
its function in establishing the lower tier domain identity
(Haecker et al. 2004). Additionally, other WOX TF family
members, such as WOX1, WOX3, and WOXS5, expressed
in cotyledon primordia, vascular primordia, and hypophy-
sis, respectively, contribute to embryo patterning (Haecker
et al. 2004; Breuninger et al. 2008).

Transcription factors in regulating apical patterning

Members of the class III homeodomain-leucine zipper (HD-
ZIP IIT) TF family are known regulators of apical patterning
during embryogenesis (Fig. 2C; Emery et al. 2003; Prigge
et al. 2005; Smith and Long 2010). This family consists of
five genes that encode PHABULOSA (PHB), PHAVOLUTA
(PHV), REVOLUTA (REV), ARABIDOPSIS THALIANA
HOMEOBOX-8 (ATHBS), and INCURVATA4/CORONA/
CNA/ATHBI5. All five have been predicted as the targets of
miRNA165/166 (Smith and Long 2010; Floyd and Bowman
2004; Mallory et al. 2004). They perform an overlapping
function in establishing bilateral symmetry and shoot apical
meristem, as demonstrated by the phenotypes of their mutant
combinations (Emery et al. 2003; Prigge et al. 2005). For
instance, rev phb double mutant embryos occasionally dis-
play patterning defects such as single or radially symmetric
cotyledon. Such defects are more severe when combined
with phv and/or cna. However, athb8 mutation does not
affect these patterning defects (Prigge et al. 2005). Besides,
members of HD-ZIP II TFs, i.e., HOMEOBOX ARABI-
DOPSIS THALIANA 3 (HAT3), ARABIDOPSIS THALI-
ANA HOMEOBOX 2 (ATHB2), and ATHB4, respond to
changes in light conditions and regulate cotyledon develop-
ment, thus the establishment of bilateral symmetry during
embryogenesis (Turchi et al. 2013). In contrast to single
mutants where defects are not obvious, hat3 athb4 double
mutants display aberrantly developed cotyledons such as
fused or single, and/or vasculature-less cotyledons. These
defects are attenuated by a gain-of-function mutation in
ATHB?2, suggesting that ATHB?2 is redundant to HAT3 and
ATHB4. Moreover, most hat3 athb2 athb4 mutant seedlings
lack an active SAM. The defects in cotyledon development

and SAM activity are enhanced when hat3 athb4 is com-
bined with mutations in HD-ZIP III genes. This indicates
that HD-ZIP II and HD-ZIP III proteins act in the same
genetic pathway to establish bilateral symmetry in the
embryo and control SAM activity in seedlings. The direct
interaction of REV on the ATHB2 promoter indicates that
HD-ZIP III proteins control HD-ZIP II proteins' expression.
These findings suggest that HD-ZIP II and HD-ZIP III TFs
act in a combinatorial manner to regulate apical patterning
during embryogenesis (Turchi et al. 2013).

Besides, PHB, PHV, and REV are thought to be involved
in defining the adaxial fate of the embryo. Their expres-
sion in the adaxial regions of the cotyledons and vasculature
in heart-stage embryos supports this notion (Emery et al.
2003; McConnell et al. 2001). Moreover, phb phv rev triple
mutant embryos appear to be fully abaxialized (Emery et al.
2003). In addition, KANADI (KAN) genes that encode the
members of the GARP TFs family are found to be involved
in embryo patterning along the abaxial side of the coty-
ledons and hypocotyl (Eshed et al. 2004; Kerstetter et al.
2001; Izhaki and Bowman 2007). Their mutant combina-
tion (kanl kan?2 kan4) displays abnormal phenotypes in the
region that will generate the abaxial side of the respective
tissues. Further genetic analysis indicates that HD-ZIP III
and KAN act antagonistically to establish abaxial-adaxial
identity in the embryo (Izhaki and Bowman 2007; Emery
et al. 2003). Furthermore, the YABBY (YAB) gene fam-
ily members (FILAMENTOUS FLOWER (FIL), YAB2,
YAB3) are expressed in the abaxial domain of cotyledons at
the mid-heart stage indicating its role in specifying abaxial
cell fate (Siegfried et al. 1999). Despite all this, a detailed
mechanism of adaxial-abaxial polarity during embryogen-
esis is still lacking and needs to be addressed. AP2/ERF-type
TFs, DORNROSCHEN (DRN), and its paralogues DORN-
ROSCHEN-LIKE (DRNL) interact with HD-ZIP III TFs.
They act redundantly to regulate embryonic cell pattern-
ing and cotyledon development (Chandler et al. 2007; Cole
et al. 2009). DRN and DRNL exhibit overlapping expres-
sion patterns till the early-heart stage (Chandler et al. 2007).
DRN is expressed throughout the embryo proper from the
2 to 16-cell stage. Later, it becomes restricted to the api-
cal domain at the site of cotyledon development (globular
stage), then to the cotyledon tips at the heart stage (Chandler
et al. 2007; Cole et al. 2009). The drn and drn drnl mutants
are also defective in the hypophysis division, which gives
rise to the embryonic root meristem. However, this function
appears inconsistent with their expression, suggesting their
non-cell-autonomous action in embryonic root formation
(Cole et al. 2009).

The transition from radial to bilateral symmetry appears
when the two distinct cotyledon primordia arise from the
apical part of the globular embryo. Boundary formation
between the developing cotyledons is essential for the
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establishment of SAM which is regulated by a gene regula-
tory network involving NAC (NAM/ATAF1/ATAF2/CUC)
family TFs, i.e., CUP-SHAPED COTYLEDONT1 (CUC1),
CUC2, and CUC3 (Fig. 2D, E; Aida et al. 1999; Takada
et al. 2001; Vroemen et al. 2003). CUC TFs act synergisti-
cally with another TF of class 1| KNOTTED1-LIKE HOME-
OBOX (KNOX) TF family, SHOOT MERISTEMLESS
(STM), to control SAM formation. Consistent with their
function, CUC and STM genes are expressed in the central
strip by the late globular or heart stage. Furthermore, the
expression of the three CUC genes is differentially regulated
by WOX2 and WOX8 TFs during the establishment of the
cotyledon boundary (Lie et al. 2012). It has been shown
that WOX2 collectively with its redundant paralogs (i.e.,
WOX1, WOX3, and WOXJ5) is essential for the initiation of
shoot meristem stem cells (Fig. 2C; Zhang et al. 2017). This
module protects stem cells from differentiation by activating
the expression of HD-ZIP III TFs in the presumptive SAM
region. In addition, the WOX2 module reduces auxin activ-
ity by downregulating PIN1 expression in that region. This
reduced auxin activity contributes to the initiation of stem
cells therein.

Transcription factors in embryonic root formation

The establishment of RAM is initiated with the specification
of the extraembryonic/uppermost suspensor cell as hypophy-
sis (Fig. 2C, D). It divides asymmetrically and generates the
quiescent centre (QC), which functions in maintaining stem
cells (Capron et al. 2009). The monopteros (mp) mutants
that lack the activity of the gene encoding the ARF5 TF,
fail to initiate root meristem (Berleth and Jurgens 1993;
Hamann et al. 1999, 2002). ARFS5 is a downstream compo-
nent of the auxin response pathway. It forms a complex with
AUX/TAA12 (BODENLOS). In response to auxin, ARF5
releases from this complex and regulates the expression of
its target genes by binding to the auxin response element
(AuxRE) containing the core sequence TGTCTC. Two
genes encoding bHLH TFs, i.e., TARGET OF MONOP-
TEROSS5 (TMOS5) and TMOY7, have been identified as the
direct targets of ARF5/MP that function in MP-mediated
embryonic root formation (Schlereth et al. 2010). Other tar-
gets of ARF5/MP such as the gene encoding the zinc finger
TF, NO TRANSMITTING TRACT (NTT), and its paral-
ogs WIP domain protein 4 (WIP4) and WIPS5 are required
for root meristem initiation (Crawford et al. 2015). AP2
domain-containing TFs PLETHORA1 (PLT1) and PLT2
are redundantly required for the correct specification of
QC, leading to the maintenance of the stem cells in the root
meristem (Aida et al. 2004). Their basal embryonic expres-
sion requires ARF5 and ARF7/NPH4. Besides, the TFs that
belong to the GRAS family, i.e., SHORT-ROOT (SHR) and
SCARECROW (SCR), are required for QC identity and stem

@ Springer

cell maintenance (Aida et al. 2004). Both SCR and SHR
have different expression domains in the embryo. SCR is
expressed in the hypophysis and ground tissue precursors
at the globular stage. Later, after the asymmetric division
of the hypophysis, SCR is expressed in the QC and nearby
ground tissue (Helariutta et al. 2000; Wysocka-Diller et al.
2000). In comparison, SHR is expressed in the precursors
of the vasculature (stele) but not in the hypophysis and
QC (Helariutta et al. 2000). Nevertheless, in contrast to its
expression region, SHR proteins were found in the QC in
the postembryonic root, suggesting that SHR proteins move
from the stele to adjacent cells, including the QC (Naka-
jima et al. 2001). Furthermore, it was observed that SHR
protein is required for SCR activity in determining QC fate.
It indicates a non-cell-autonomous function of SHR, also
in the embryo, promoting the expression of SCR in the pre-
sumptive QC to determine its fate and maintain the stem
cell niche (Aida et al. 2004). Notably, the expression of SHR
and SCR does not depend on the PLTs (Aida et al. 2004).
Further genetic analysis suggests that PLTs and SHR/SCR
independently specify QC and stem cell niche.

Transcriptional regulation of radial patterning

Radial patterning begins with a periclinal division that
generates the protoderm, the outermost layer visible at
the 16-celled embryo. TFs of the HD-ZIP class IV family,
i.e., ARABIDOPSIS THALIANA MERISTEM LAYER1
(AtML1) and PROTODERMAL FACTOR?2 (PDF2), are
thought to control this cell differentiation. The process is
marked by their expression as early as in the two-celled
embryo, then later confined to the outermost layer in the
subsequent developmental stages (Abe et al. 2003; Lu et al.
1996; Takada and Jiirgens 2007; lida et al. 2019). Whereas
the single mutants have no apparent phenotypes, the dou-
ble mutant (atmll-1 pdf2-1) embryos display defects in cell
layer differentiation at the embryonic apex and a lack of epi-
dermis in the leaves of their germinated seedlings (Abe et al.
2003). Moreover, the embryo development arrests around
the globular stage in mutant combination with a strong allele
of AtMLI (atmll-3) (Ogawa et al. 2015). It indicates that
AtML1 and PDF?2 act redundantly for protodermal cell dif-
ferentiation during embryogenesis.

Vascular identity is specified in the 16-cell embryo (Smit
et al. 2020). A multigenic regulatory network, including
TF-encoding genes, controls vascular tissue specification
(Table 1). Among them, ARF5/MP and its interacting part-
ner GBF2, a G-class bZIP TF, regulate the expression of
many vascular-specific genes to specify the vascular tissue
identity. GBF2 modulates and/or stabilizes the ARFS bind-
ing to its target promoters (Smit et al. 2020). Subsequently,
vascular initial cells undergo periclinal divisions to increase
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the number of cell files. It has been shown that ARF5 is
also required for vascular tissue establishment and mainte-
nance (De Rybel et al. 2013). Its mutant embryos contain
fewer cell files due to abnormal periclinal divisions. ARF5
performs its function through its direct target, TMOS5, and
its closest homolog, TMOS5-LIKE1 (T5L1). Also, the heter-
odimer composed of TMOS5 and another bHLH TF, LONE-
SOME HIGHWAY (LHW), promotes periclinal divisions
and establishes the vascular tissue in the embryo. In addi-
tion, the TMOS/LHW dimer controls the growth and pat-
terning in the vascular tissue by regulating the expression
of LONELY GUY 4 (LOG4), required for the final step of
cytokinin biosynthesis (De Rybel et al. 2014). This TMOS5/
LHW-LOG4 module creates distinct cytokinin and auxin
response domains for growth and patterning (xylem and
cambium) of the vascular tissue during embryogenesis.

There has been significant research on ground tissue
patterning and maintenance in the postembryonic tissues
around the SHR network. However, the molecular mecha-
nisms for ground tissue initiation in the early embryo are still
ambiguous. It was observed that ARF5/MP initiates the first
ground tissue cells and controls their earliest asymmetric
division in the early embryo (Moller et al. 2017). This activ-
ity of ARF5 does not depend on the SHR network genes.
Also, it was observed that the SHR network is not required
for the initiation of embryonic ground tissue cells. However,
AREFS5 transcriptionally regulates the expression of SHR and
SCR in the early embryo, which indicates an unresolved role
of these well-known regulators of ground tissue patterning
in the embryonic ground tissue cells initiation (Moller et al.
2017). All TFs involved in embryo morphogenesis and men-
tioned in this review are compiled in Table 1.

Transcriptional regulation of seed
maturation

Seed maturation is a crucial phase of seed development as
it ensures reproductive success by accumulating nourish-
ment for the future seedling, helping to withstand des-
iccation, and promoting seed dispersal. In crop plants,
including cereals and legumes, this phase is crucial for
nutritional and economic purposes (Verma and Bhatia
2019; Gacek et al. 2018; Mathew et al. 2020). Maturation
begins with the increase in the numbers of chloroplasts
and chlorophyll accumulation (greening of the embryo),
followed by the synthesis and accumulation of seed stor-
age reserves (O'Neill et al. 2019; Baud et al. 2008). In
oilseeds, like Arabidopsis, embryo greening appears nec-
essary for photosynthesis and eventually accumulation
of storage lipids (Mansfield and Briarty 1991). In Arabi-
dopsis seeds, lipids as triacylglycerols (TAGs) and seed
storage proteins (12S globulins and 2S albumins) are the

miRNA 160
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ABI4 MFT - RGA ABI5 RGL3
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Fig.3 Regulatory network involving TFs in the regulation of seed
dormancy. The regulation of seed dormancy by different transcription
factors is shown. Arrows and T-shaped lines represent activation and
repression, respectively. Direct targets are shown by blue lines. Dot-
ted arrows indicate indirect regulation by To et al. (2006). SPT targets

are from Vaistij et al. (2013). Thick arrows denote the promotion of
seed dormancy

major constituents of seed storage reserves (Baud et al.
2002, 2008). During late maturation, the embryo begins
to lose water and chlorophyll (degreening) and simulta-
neously commences acquiring desiccation tolerance and
dormancy (Leprince et al. 2017; Baud et al. 2008; Delmas
et al. 2013). In Arabidopsis, the entire process of seed
maturation has been shown under the tight control of sev-
eral TFs that cooperate and act in a combinatorial manner
(Fig. 3; Table 2; Boulard et al. 2017; Lepiniec et al. 2018;
Jo et al. 2019).

LAFL transcription factors: the master regulators
of maturation

To date, several TFs associated with the maturation phase
have been identified and characterized in Arabidopsis.
Among them, LAFL [LEAFY COTYLEDONI1 (LEC1),
ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3
(FUS3), and LEC2] TFs have been demonstrated to play
central roles in most aspects of seed maturation, including
accumulation of seed storage reserves, ability to withstand
desiccation, and establishment of dormancy (Boulard et al.
2017; Lepiniec et al. 2018; Jo et al. 2019). They are required
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for the onset of embryo maturation as they, at least partially,
regulate chloroplast development and subsequent embryo
greening, which is the first visible sign of embryo matura-
tion (O'Neill et al. 2019). ABI3, FUS3, and LEC2 (here-
after referred to as B3-AFL) are the members of the B3
domain-containing TFs, whereas LEC1 encodes the member
of the NF-YB protein family (NF-YB9, HAP3 subunit of the
CCAAT box-binding factors) (Braybrook and Harada 2008;
Santos-Mendoza et al. 2008).

Mutations in LAFL genes revealed their partially over-
lapping functions during maturation (Meinke et al. 1994;
West et al. 1994; Lotan et al. 1998; Nambara et al. 1995;
Keith et al. 1994; Kagaya et al. 2005). However, they display
some functional specificities. For instance, ABI3 controls
chlorophyll degradation to mediate embryo degreening by
regulating two functionally redundant genes, STAY-GREEN I
(SGRI) and SGR2 (Delmas et al. 2013). Similarly, LEC1
and LEC2 have a distinct role in initiating and maintain-
ing embryonic fate. Their ectopic expression is sufficient
to induce somatic embryogenesis in vegetative tissues.
And their loss-of-function mutants exhibit trichomes and
anthocyanin accumulation on cotyledon’s surface (Lotan
et al. 1998; Stone et al. 2008, 2001). Recently, it has been
observed that the expression of LEC/ in the embryo is not
sufficient to initiate the maturation process. The endosperm-
produced LECI1 protein, trafficked to the embryo through
the suspensor, performs this function (Song et al. 2021).
Moreover, detailed genetic analyses using complementation
approach and mutant combinations of LAFL genes revealed
the existence of a regulatory cascade with synergistic and/
or redundant functions in parallel pathways (Badumlein et al.
1994; Keith et al. 1994; Meinke et al. 1994; Parcy et al.
1997; To et al. 2006; Roscoe et al. 2015). Cross-regulation
and feedback control of LAFL TFs have been observed. For
instance, ABI3 and FUS3 regulate each other’s expression
and can autoactivate themselves. Furthermore, their expres-
sion is positively regulated by LEC1 and LEC2 (To et al.
2006). One well-documented function of the LAFL network
is to control protein and lipid accumulation during matura-
tion (Roscoe et al. 2015; Baud et al. 2016). However, dis-
crepancies in the level of control imposed by each LAFL
on synthesis and accumulation of fatty acids and storage
proteins have been observed (Baud et al. 2016; Roscoe et al.
2015; Kroj et al. 2003). For example, ABI3 exerts greater
control over seed protein content, whereas FUS3 affects
the lipid content to a greater extent (Roscoe et al. 2015).
In another report, Baud et al. (2016) observed the strongest
activation of an oleosin promoter fragment by ABI3 and
the weakest by FUS3. Although LEC1 cannot activate the
oleosin promoter alone, it enhances the synergistic activity
of LEC2 and ABI3 on oleosin promoter expression. Oleosins
are the structural proteins found on the surfaces of oil bodies
of mature seeds (Frandsen et al. 2001).

@ Springer

Considerable efforts have been made to understand how
LAFL genes control seed maturation. B3-AFL directly regu-
late maturation genes by binding to the RY element (CAT
GCA) and its variants found in many seed-specific promoters
(Braybrook et al. 2006; Reidt et al. 2000; Kroj et al. 2003;
Monke et al. 2004; Baud et al. 2016; Sasnauskas et al. 2018).
However, the binding specificity of the corresponding TFs
depends on the flanking nucleotides of the core element (5'-
CATG-3') (Braybrook et al. 2006; Baud et al. 2016). Moreo-
ver, other motifs adjacent to the RY element are required to
modulate this binding. In contrast, LEC1 does not exhibit
specific DNA-binding activity. It interacts with NF-YA and
NF-YC subunits to form the NF-Y complex, recognizing
the CCAAT motif to regulate the transcription of its target
genes (Dolfini et al. 2012; Baud et al. 2016). Nevertheless,
an in vitro interaction of LEC1 with the OLEOSINI (OLE])
promoter has been observed (Baud et al. 2016).

Moreover, these TFs act in concert with other TFs in the
regulation of maturation-specific genes. For instance, ABI3
cooperates with the members of bZIP TFs such as bZIP10,
25, and bZIP53 in regulating SSP (At2S) gene expression
(Alonso et al. 2009; Lara et al. 2003). Although ABI3 does
not interact with bZIP53, it forms a ternary complex with
the heterodimers of bZIP53 and bZIP10 or 25 to enhance
the maturation gene expression. Likewise, LEC1 and its
paralogs LEC1-like (L1L) interact with an NF-YC subunit
and bZIP67. This trimeric complex (LEC1/L1L-NFYC2-
bZIP67) binds to ABRE/G-box elements through bZIP67 to
activate the expression of genes involved in storage, such as
CRUCIFERIN and FATTY ACID DESATURASE3 (FAD3),
an enzyme involved in fatty acid biosynthesis (Mendes et al.
2013; Yamamoto et al. 2009).

Direct and indirect targets of LAFL TFs have been identi-
fied using genome-wide approaches, including microarray-
based profiling and chromatin immunoprecipitation (ChIP)
assay (Wang and Perry 2013; Monke et al. 2012; Tian et al.
2020; Pelletier et al. 2017; Braybrook et al. 2006). Several
maturation-specific genes were identified as the targets of
LAFL. Among them, the genes encoding albumins and oleo-
sins appear to be regulated by all four TFs (Braybrook et al.
2006; Tian et al. 2020; Wang and Perry 2013). As mentioned
above, LAFL regulate each other in planta. For instance,
genomic regions of ABI3, LEC1, and FUS3 are directly
bound by FUS3 (Wang and Perry 2013). ABI3, LEC2, and
FUS3 have been identified as the direct targets of the LEC1/
NF-Y complex (Pelletier et al. 2017). These findings further
corroborate the genetic interactions that exist between LAFL
(To et al. 2006). Moreover, ChIP tilling array highlighted the
abundant presence of RY elements and G-boxes (CACGTG
) in the ABI3- and FUS3-bound regions. This suggests that
G-box elements modulate the known combinatorial activ-
ity of ABI3 and bZIP TFs on RY elements. However, the
interaction of FUS3 with bZIP TFs in the regulation of seed



90

Page 9 of 19

(2022) 255:90

Planta

(¥107) Te 10 SuIq KoueuLiop peag [872:8: i\ AMIM
(9107) T8 10 SI[BION-Z3[BZUOD 9OUBIS[0) UOHBIIISIJ TZIV1d ‘1ZLvV1d Z1V'ld
(6100) T 01T Koueuriop pass s109Jje A[oAnESaN [ El Jd4/¢dV
juswdoraaap
(6107) 'Te 10 Ayzo1Ad] oK1qud A1res urmp sqSs Jo uonenunode njewaid JoLsay q4¢d ‘vdca dcd
(6107) Sueyz pue 10521D0e (€107) ‘T 12 Mstep Kouewrop paag NOZ ‘ddI ‘LdS
(9107) 'Te 10 OBD uonodoxd aane[a1 I19Y) pue sJSS JO UOHB[NWNII. [0NU0D) YOAIN ‘€DAIN ‘TOAN
SISOUIUASOIQ V] U PIAJOAUT SQUQS JO uorssardxa ay) saje|
(#107) ‘eI YD -NJaI-UMOP ‘£§/).f PUE DT ‘[DAT JO uolissardxa s1oape Apoan( 8LL HTHA1
(0207) 'Te 10 Suoy| SISOUIUASOIq V] POJRIPAU-[ YA $199Jfe A[oATESoN #dOL dOL
SISQUJUAsoIq
(L10D) Te1 1T Vel UT POAJOAUT SOUDS [eNUASSD IAI0 PUE [y M JO uoissaiday 68dAN AN €d¢d
(€100) Te 10 nys Kemyed Surpreusts ygy :Kouewiop paag viav
(6007) Te 12 09BN “(6107) ‘T8 10 Suoy TAV'T JO 19318) 10211 :SISAYIUASOI] Y/ Ul PIAJOAUT SAUIT SAR[NSAY M dv
(9107) ‘Te 19 SA[RIOJN-Z[BZUOL) QOURID[0) UONLIJISI L91DOV
(8100) Te 10 UAYD (uoneImew pass) ¢S PUE IV ‘TOHT JO I01e[NSaI 2ATISO] SI'IOV  A-SNONVOV
KouewIiop pads ysijqeIsa
(6000) 01 [DHT JO Weansumop s19® Jeq V4 Pue NI¥FAIDN1YD JO uois
‘Te 19 ojowrewex (€107) T8 32 SOPUIN “(6107) SYSNH pue Jueklg  -saidxa soyeanoe pue “J1 pue [DFT YIM Xo[dwod SLIDWLY WI0] 19d1Z4 diza
uors
(£00T) 'Te 32 eI (6007) ‘T8 12 osuoly  -saxdxe ouad (S7IV) SS JO uonensar ay ut ¢Igy Wim deredoo) €6d1Z9 ‘§Td1Z49 ‘01d1Z9 dIZq
(6007) 'Te 10 OyowreweX “(€107) Te 10 SIPUSIN stsoiuksolq v COA-AN OA-AN
90URID0) UONEIIISIP ‘UONBINJeW OAIqQUID
(100T ‘8007) ‘1B 1R QUMIS “(1207) ‘1B 1R ‘oA1quuo pue wadsopuo usam)aq [eUSIS JR[NOJ[OW B SB JO' ‘UOT)
3uog “(8107) T8 10 d91uIdoT ‘(8661) ‘T8 32 URlOT (6107) ‘T8 19 Of -g[nunooe pidi] pue urojoid 98e10)s saje[nSal ajey Sruokiquyg 1091 dA-AN
(0207) 'Te 19 ueLL, “(€10T) T8 19 NI KouruLIop pass 1uoIssaIdxa £[gy ABANOY 914dV 0149V
(2102) ‘T8 10 uedderoop
“(L00T) 'Te 32 IysoSexns, <(L00T) ‘Te 30 PNz “(8107) 'T& 12 udy) UONEUTUIISS To)Je JI0M19U V] oY Jo uotssarday  ¢TVA ‘TTVA/IISH ‘T'TVA/CISH
(9002) JOUBIS[0) UOIIBIOISIP JO uonismboe (Aouewriop
‘812 01, “(S661) Te 10 erequeN ‘(8107) ‘Te 10 oo1urdaT “(S007) Po9s ‘uoneInjew OAIqUId (9)eJ OTUOAIqUID (SIATISAI AFLI0)S POs
‘[e 19 eAR3eY <(800C) BPRIBRH pUR Y0oIqAeld ‘(9007) T8 10 YJooiqhelg Jo uonenundoe ay) de[n3ar A[AnIsod {1910 Yord Yiim JorIU] 70d1‘eSnA ‘€19v cq
S9OURIRJOY uonoung AL PoAjoAUL Aprurey g1,

UONBINIBUI PA3S UT PIAJOAUL S,I], T 3|qeL

pringer

a's



90 Page 10 of 19

Planta (2022) 255:90

storage proteins (SSPs) is not yet identified. Likewise, apart
from the LEC1-binding CCAAT motif, other elements such
as RY, ABRE-like, and G-box-like are overrepresented in
LECI1-bound regions (Pelletier et al. 2017). Together, these
findings imply that the combinatorial function of LAFL with
other TFs is mediated by cis-regulatory modules containing
the clustered binding sites of different TFs and by physical
interactions that are known to occur between them.

The strict control of LAFL expression is crucial during
the transition from seed maturation to seed germination and
seedling growth. HIGH-LEVEL EXPRESSION OF SUGAR
INDUCIBLE GENE2 (HSI2)/VIVIPAROUS1 ABI3-LIKE1
(VAL1), HSI2-LIKE1 (HSL1)/VAL2, and VAL3 mediate
repression of the LAFL network, thereby restraining seed
maturation program after germination (Tsukagoshi et al.
2007; Suzuki et al. 2007; Veerappan et al. 2012). Recently,
Chen et al. (2018) reported that HSI2/VALI indirectly con-
trols LAFL expression through down-regulation of AGA-
MOUS-Like 15 (AGL15) during germination and seedling
growth. Moreover, AGLI5 is also regulated by LAFL TFs.
For example, AGL15 is the direct target of LEC1 and FUS3,
and its expression is induced by LEC2 (Braybrook et al.
2006).

Other transcription factors regulating synthesis
and accumulation of seed storage reserves

The AP2 domain-containing TF, WRINKELED1 (WRI1),
is a crucial regulator of triacylglyceride (TAG) biosynthesis
(Kong et al. 2019). It directly regulates genes involved in
fatty acid (FAs) biosynthesis by binding to an AW-box pre-
sent in their 5° upstream region (UTR) (Maeo et al. 2009).
Genetic and molecular analysis has revealed that WRI1
acts downstream to LEC1 and LEC2 (Baud et al. 2007; Mu
et al. 2008). Previously, FUS3 has been shown to affect the
expression of fatty acid biosynthetic genes, probably by acti-
vating WRII expression (Yamamoto et al. 2010). In recent
reports, WRII has appeared as the direct target of LEC1 and
FUS3 (Wang and Perry 2013; Pelletier et al. 2017). Also,
ABI3 directly induces WRII and other fatty acid biosynthe-
sis-related genes such as FAD3 and SSI2 (Tian et al. 2020).
Another TF, MYB89, a member of the R2R3 MYB TF fam-
ily, negatively regulates oil accumulation by directly repress-
ing WRII and other essential genes involved in oil synthesis
and accumulation during maturation (Li et al. 2017). Three
members of the TEOSINTE BRANCHED1/CYCLOIDEA/
PROLIFERATING CELL FACTOR (TCP) TF family, i.e.,
TCP4, TCP10, and TCP24, have been identified as the
interacting proteins of WRI1 (Kong et al. 2020). However,
only interaction between TCP4 and WRI1 negatively affects
WRI1-mediated oil biosynthesis in the seed.
TRANSPARENT TESTA GLABRAL1 (TTG1), a WD40
repeat protein, suppresses the accumulation of seed storage
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reserves by negatively affecting the expression of genes
encoding SSPs and enzymes involved in FA biosynthesis
(Chen et al. 2015). It also indirectly suppresses the expres-
sion of genes that encode the major regulators of matura-
tion and enzymes for the synthesis and modification of
FAs. Moreover, TTG1 acts downstream to FUS3, which
negatively regulates 77GI expression via direct binding.
Similarly, TRANSPARENT TESTAS (TT8), a bHLH TF,
inhibits FA content by down-regulating the expression of
genes involved in FA biosynthesis and directly affecting the
expression of LECI, LEC2, and FUS3 (Chen et al. 2014).
Likewise, three bHLH TFs, MYC2, MYC3, and MYC4,
were found to redundantly control SSPs’ accumulation and
their relative proportion in the seed. The loss-of-function
triple mutants (myc2 myc3 myc4) accumulate fewer 2S albu-
mins but more cruciferins (Gao et al. 2016). Recently, the
E2F TFs, E2FA and E2FB, have been identified to act as
repressors on the cell cycle genes and the maturation genes
such as LEC2 and WRII during the transition from prolifera-
tion to maturation (Leviczky et al. 2019). They also restrict
the premature accumulation of storage proteins during early
embryo development.

Transcriptional regulation of acquisition
of desiccation tolerance and onset
of dormancy

To survive extreme water loss, seeds need to develop des-
iccation tolerance (DT) during the mid-maturation phase.
Like other seed maturation events, LAFL TFs are essen-
tial for seed DT. However, genetic evidence suggests that
several other TFs act downstream of the LAFL network to
control this process. Gonzalez-Morales et al. (2016) iden-
tified genes that act downstream to the LAFL network to
acquire DT using an integrated approach combining genet-
ics, genomics, and metabolomics. The genes encoding three
TFs, i.e., the plant AT-rich sequence and zinc-binding pro-
tein 1 (PLATZ1), PLATZ2, and AGL67, were shown to
play a critical role in seed desiccation tolerance. Moreover,
these TFs have been identified as the direct targets of ABI3
(Tian et al. 2020). In addition, many genes encoding Late
Embryogenesis-Abundant (LEA) proteins that play a pro-
tective role during the acquisition of desiccation tolerance
are directly induced by ABI3 (Tian et al. 2020; Kijak and
Ratajczak 2020).

Primary seed dormancy (PD) is defined as the inability of
a freshly matured seed to complete germination even under
optimal conditions (Carrillo-Barral et al. 2020; Née et al.
2017). Seeds will germinate only after the release of dor-
mancy by a period of dry storage at room temperature (after-
ripening) or moist cold treatment (stratification) (Née et al.
2017). Some non-dormant seeds may experience a state of
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secondary dormancy upon exposure to unfavourable condi-
tions such as very high or low temperatures or osmotic stress
(Buijs 2020; Finkelstein et al. 2008). The network involving
TFs in the establishment and control of seed dormancy is
shown in Fig. 3.

The plant hormone abscisic acid (ABA) plays a central
role in inducing and maintaining seed dormancy (Ali et al.
2021). Several mutants in which ABA signalling is attenu-
ated display a reduced seed dormancy. Three TFs, including
ABI3, ABI4, and ABIS, are the key downstream components
of the seed-specific ABA response pathway. However, a
loss-of-function mutation in ABI3 and ABI4, but not in ABI5,
reduces seed dormancy (Finkelstein 1994; Shu et al. 2013).
A WRKY domain-containing TF, WRKY41, has been found
to regulate PD by directly regulating ABI3 expression in a
maturing seed. However, its activity on ABI3 appears to be
independent of ABA signalling (Ding et al. 2014). ABI4, a
member of the AP2 domain family, positively regulates PD
by maintaining the balance between ABA and gibberellic
acid (GA) biogenesis (Shu et al. 2013). Moreover, auxin
also controls seed dormancy via activation of ABI3 expres-
sion by two auxin-responsive TFs, ARF10 and ARF16 (Liu
et al. 2013). MicroRNA160 post-transcriptionally regu-
lates these two TFs. A feedback loop has been observed

where ABI3 represses the expression of miR160, leading to
increased transcripts of ARFI0 and ARF16 that upregulate
ABI3, resulting in seed dormancy (Liu et al. 2013; Tian
et al. 2020). SPATULA (SPT), a bHLH TF, differentially
regulates the establishment of seed dormancy in Arabidopsis
ecotypes as Landsberg erecta (Ler) seeds become highly
dormant due to lack of SPT, whereas Columbia (Col-0)
seeds are less dormant. SPT represses the expression of a
gene encoding MOTHER-OF-FT-AND-TFL1 (MFT) that
promotes seed dormancy. It interferes with ABA and GA
signalling by repressing ABI4 and REPRESSOR-OF-GA
(RGA) expression, respectively. In contrast, it induces the
expression of ABI5 and RGA-Like3 (RGL3) to control pri-
mary seed dormancy (Vaistij et al. 2013). Two bHLH TFs,
ZHOUPI (ZOU) and INDUCER OF CBF EXPRESSION1
(ICE1) are preferentially expressed in the endosperm and
play a role in determining the depth of PD (MacGregor and
Zhang 2019). Lack of ICE1 and ZOU activity increases seed
dormancy that is accompanied by increased ABA levels.
Moreover, ICE1 directly represses the expression of ABI3,
thereby modulating the LAFL network to regulate seed
dormancy.

The gene that encodes DELAY OF GERMINATION
(DOGT1) is essential for seed dormancy in Arabidopsis
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(Nonogaki 2019; Carrillo-Barral et al. 2020). It acts in
parallel but independently to the ABA signalling pathway.
The amount of active DOGI protein determines the after-
ripening period of freshly harvested seeds. Thus, it may
serve as a timer for seed dormancy release. It was found
that the dogl-1 mutation can enhance the weak effects of
the abi3-1 allele, thus revealing the genetic interaction
between ABI3 and DOG1 (Dekkers et al. 2016). This raises
the possibility of ABI3 being at the point of convergence
for both pathways. Another TF, bZIP67, acts downstream
to LEC1 and regulates the expression of DOGI to establish
primary seed dormancy (Bryant and Hughes 2019). ETH-
YLENE RESPONSE FACTOR12 (ERF12), a member of
the AP2/ERF TF family, acts downstream of ETHYLENE
RESPONSEL1 (ETR1)/ REDUCED DORMANCY?3 (RDO3)
in the ethylene response pathway and negatively regulates
seed dormancy by inhibiting the expression of DOGI (Li
et al. 2019). It physically interacts with TOPLESS (TPL),
and this complex binds to the DEHYDRATION-RESPON-
SIVE ELEMENT (DRE)/C-repeat (CRT) motif (5'-RCC
GAC-3') present on the promoter of DOG].

Methodologies used to identify TFs involved
in embryo development

Known and new TFs from different (plant and animal)
tissues and developmental stages are often identified by
methods such as yeast one-hybrid library screening (Reece-
Hoyes and Marian Walhout 2012), transcriptome analysis
(Andrilenas et al. 2015; Kodama et al. 2018), DNA affin-
ity purification followed by Mass Spectrometry (Tacheny
et al. 2013) and protein arrays (Hu et al. 2009; Fig. 4). The
newly identified DNA-binding proteins are scanned against
known plant TF databases such as the “Plant TF database” to
annotate and assign them into a TF family (Jin et al. 2017).
The classification of TFs under a specific family depends
on the presence of DNA binding domain (DBD) in their
protein sequence that shows sequence homology to the pre-
viously characterized DBDs such as B3, NAC, C2H2, AP2,
etc. These DBDs are catalogued in different databases such
as InterPro (Blum et al. 2021), Pfam (Mistry et al. 2021),
SMART (Letunic et al. 2021) as multiple sequence align-
ments, and hidden Markov models (HMM). Alternatively,
these HMM profiles can be used to scan the protein dataset
for the presence of a particular DBD, thereby classifying the
proteins into a corresponding TF family. Indeed, transcrip-
tome data provide valuable information on the gene expres-
sion pattern. Potential candidate TFs having differential
expression can be identified by comparing transcriptomes
of different tissues and/or different developmental stages.
For Arabidopsis, such expression profiles can be found in the
gene expression tool, ePlant (http://bar.utoronto.ca/eplant/).
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In addition, putative TFs regulating different sets of genes
can be identified by performing co-expression analysis
(Zogopoulos et al. 2021). These methods have successfully
been utilized in the past decade to identify TFs involved in
seed and/or embryo development in different plant species
(Wu et al. 2020; Gu et al. 2020; Pradhan et al. 2014; Yi and
Gu 2019). The identified TFs can be molecularly character-
ised using genomic approaches to identify binding promoters
(e.g., ChIP assay) and to identify interacting proteins (e.g.,
yeast two-hybrid library screening, Mass spectrometry).

Among the methods mentioned above, transcriptomics
has gained widespread interest in identifying gene regula-
tory networks, including TFs. However, most transcriptom-
ics were performed utilizing whole or parts of embryos. It
limits the understanding of transcriptome changes at the cel-
lular level during early embryogenesis. To identify TFs for
cell fate specification, the utilization of cell-type-specific
transcriptome would be a better approach. Various methods
such as laser capture microdissection (LCM), fluorescence-
activated cell sorting (FACS), translating ribosome affinity
purification (TRAP), and isolation of nuclei tagged in spe-
cific cell types (INTACT) are available to isolate specific
cell types for transcriptome profiling (reviewed in Palovaara
et al. 2013).

Although significant transcriptome profiling has been
carried out to study seed/embryo development, only a few
have focused exclusively on TFs required for the develop-
ment of different stages and/or tissues of seeds. For example,
Le et al. (2010) identified 48 seed-specific TFs using Affy-
metrix Gene Chips. These TF genes exhibit stage-specific
expression, suggesting their active involvement in that par-
ticular stage. Similarly, 57 candidate TFs have been identi-
fied using RNA-seq data of developing embryos (Hofmann
et al. 2019). In addition to known TF genes, some novel TFs
involved in embryo morphogenesis were identified, such as
storekeeper protein-related transcripts, MYB62, and REGU-
LATOR OF AXILLARY MERISTEMS2 (RAX2) (Hofmann
et al. 2019). Likewise, distinct TFs involved in the apical and
basal cell lineages specification have been identified using
the RNA-seq data of the apical and basal domains of the
proembryo (Zhou et al. 2020). Differential expression pro-
filing of the identified TFs resulted in 73 and 39 apical and
basal cell lineage-maintained TFs, respectively. Moreover,
putative TFs that may regulate the other lineage-specific
genes were identified by co-expression analysis and by ana-
lysing the promoter sequences of lineage-specific genes for
the presence of TF binding motifs. Recently, using single-
nucleus mRNA-sequencing, Kao et al. (2021) identified
many candidate TFs involved in the development of different
cell types of early embryos.

Besides, a yeast-one hybrid library screening identifies a
repertoire of TFs that can bind to the DNA region of inter-
est. However, utilization of this method for genome-wide
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identification of TFs associated with seed development is
very limited in Arabidopsis. Recently, Smit et al. (2020)
identified potential TFs that may contribute to vascular iden-
tity during embryogenesis using a large-scale enhanced yeast
one-hybrid assay. Among the most robust candidate TFs, the
G-class bZIP TF G-box-binding factor 2 (GBF2) was iden-
tified as an interacting protein of MP/ARFS5 in modulating
vascular gene expression.

The identified TFs can be molecularly characterised using
genome-wide approaches to identify binding promoters
(e.g., ChIP assay) and interacting proteins (e.g., yeast two-
hybrid library screening, Mass spectrometry). Furthermore,
reverse genetics methods are widely used to establish the
function of identified TFs, such as generating mutants and
over-expression lines of newly identified genes, followed
by phenotype analysis. Non-targeted gene mutations are
achieved by chemical mutagenesis, transgene and transpo-
son insertions. These methods are generally used to knock
out a gene where the gene is completely deactivated. For
Arabidopsis, such mutants may be available to researchers
through seed stock centers. In the last few years, type 11
CRISPR/Cas (CRISPR/Cas9) has emerged as a powerful
genome-editing tool for targeted gene mutations and knock-
ing out the function of a gene (Liu et al. 2017). A modified
CRISPR/Cas9 system can also be used for transcriptional
activation and repression in plants (Piatek et al. 2015). Fur-
thermore, RNA interference (RNAI) is a potential method
for gene knockdown where an exogenous or endogenous
small double-stranded RNA (dsRNA) interferes with tar-
get gene expression (Hung and Slotkin 2021). In addition,
over-expression lines are utilized to analyze the effects of
gain-of-function of studied genes. However, over-expression
of a gene using constitutive promoters may harm the plant,
resulting in seed/embryo abortion, lack of germination, or
reduced seed set. To overcome such issues, tissue-specific
(restricted) promoters and/or inducible gene expression sys-
tems can be used (Borghi 2010). For example, to achieve
early-embryo-specific expression, WOX2 promoter has been
used in Arabidopsis, whereas the promoters of seed storage
proteins have been a major choice to study the maturation
stage (Liao and Weijers 2018; Jeong et al. 2014).

Conclusions and perspectives

It is evident that TFs are crucial members of regulatory
networks involved in many biological processes, including
seed development. Therefore, the mechanisms by which
these TFs exert their function, including interactions with
other proteins and target promoters, will provide strategic
insights toward understanding this complex developmental
process. To date, several TFs involved in seed development
have been identified using forward and reverse genetic

analysis. Nevertheless, their molecular and genetic inter-
actors remain to be explored. To achieve this goal, it is
essential to utilize global approaches such as affinity puri-
fication followed by mass spectrometry and ChIP assays,
especially using seed tissues. For example, in recent years,
using ChIP coupled with transcriptomics, the target genes
of many TFs began to emerge to a greater extent. Such
techniques would be helpful to uncover several new genes
that would aid in understanding and manipulating the reg-
ulatory mechanisms involved in seed development.

Although many TFs involved in maturation have been
identified and characterized at the molecular and genetic
levels, knowledge on the transcriptional regulation of early
embryogenesis is still minimal. For instance, most studies
are biased towards the ARFS5 TF for lower tier domain fate.
Some other TFs most probably exist in this process that
need to be detected. Also, hormones such as auxin and
ABA are required for early embryogenesis and matura-
tion. Identifying TFs involved in their biosynthesis and
transport would open the door to devising new strategies
to control these processes of seed development. Moreo-
ver, the activity of TFs is tightly controlled by several
genetic and epigenetic factors, the knowledge of which
is still fragmented. Systemic analysis of such factors
will aid in expanding regulatory networks and filling the
knowledge gaps for better comprehension of seed devel-
opment. Furthermore, to deepen our knowledge, cutting-
edge approaches such as cell-type-specific transcriptom-
ics are available to identify cell and/or tissue-specific TFs
in developing embryos. Overall, this review provides a
repository of TFs as potential candidates that can be func-
tionally studied in crop plants to improve seed quality and
agronomic practices.
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