

Identification of Attack Paths Using Kill Chain and Attack Graphs

Lukáš Sadlek, Pavel Čeleda, Daniel Tovarňák

Introduction

- Multi-step attacks
- Early identification of event sequencies
- Attack graphs
- Custom rules for chaining of attack steps
- Research question:
 - Can we merge kill chains and attack graphs to determine targeted cyber threats that jeopardize protected infrastructure and defense against them?

Threat Models

- Kill chain
 - Attacks are **sequences** of steps
 - Cyber kill chain
 - Phases are skipped or duplicated
- Attack graphs
 - Depict attack paths in a network
 - Attack paths not mapped to the kill chain
 - Custom set of attack techniques
 - The right level of details required

Step	Name of Phase	
1	Reconnaissance	
2	Weaponization	
3	Delivery	
4	Exploitation	
5	Installation	
6	Command and control	
7	Actions on objectives	

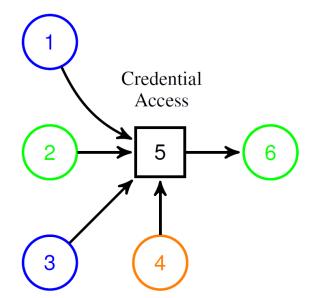
CONCORDIA

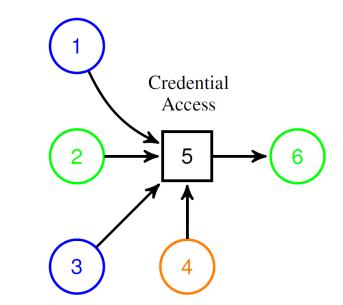
CONCORDIA

Chaining of Attack Steps

• STRIDE

- Acronym for six categories:
 - Taxonomy for chaining of attack steps
- Four types of assets
 - Actors
 - Examples: external actor, user accounts
 - Actions
 - Examples: sending an email, network connection
 - Data
 - Examples: file, email message
 - Secondary assets
 - Examples: operating systems, applications

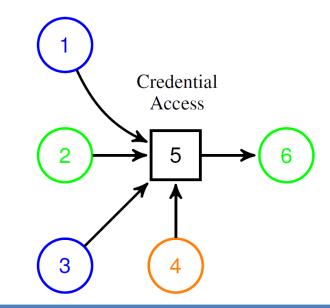

Threat Category	Security Property
Spoofing	Authentication
Tampering	Integrity
Repudiation	Non-repudiation
Information disclosure	Confidentiality
Denial of service	Availability
Elevation of privilege	Authorization


Definition of a Kill Chain Attack Graph

- The kill chain attack graph (KCAG) is a triple (G, P, f):
 - G = (V, E) denotes a directed graph
 - P contains kill chain phases
 - **f assigns** kill chain **phases to** attack **techniques**

- Attacker's level of control over an asset
 - Level zero
 - Asset's existence was not revealed
 - Represented by an *external actor*
 - The first level
 - Asset's existence was revealed
 - The second level
 - The attacker **can compromise** asset's security properties taxonomized by STRIDE

ID Description


- 2 Violated authentication of SSH network connection to the server.
- 5 T1110 Brute Force.
- 6 Violated authentication of SSH service user account on the server.

- Property of an asset
 - Information about
 - network services
 - vulnerable applications
 - user accounts

Countermeasure

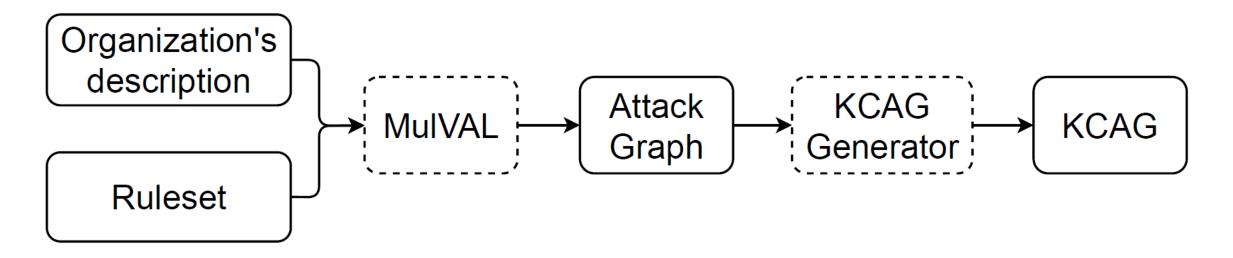
• An **employed countermeasure** hinders the use of related attack techniques

ID Description

- 1 A user account on SSH service running on the server.
- 3 SSH service on the server accessible on TCP port 22.
- 4 The organization does not use a strong password policy.

- Attack technique
 - Rules describe input and output vertices
 - Incoming edges from:
 - Asset control levels
 - Asset properties
 - Not employed countermeasures
 - Outgoing edge to:
 - Level of asset's control
 - Attack goal
 - Only some combinations of input and output asset types are allowed

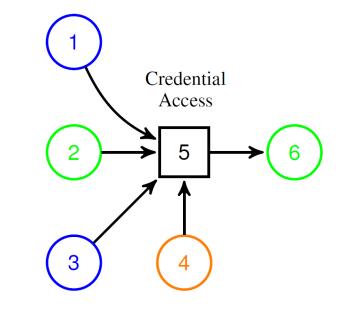
Output Input	Ext. Actor	Actor	Sec. Asset	Action	Data
Ext. Actor	-	-	-	\checkmark	-
Actor	-	-	\checkmark	\checkmark	-
Sec. Asset	-	\checkmark	\checkmark	\checkmark	\checkmark
Action	-	\checkmark	\checkmark	\checkmark	\checkmark
Data	-	-	\checkmark	\checkmark	-


- Attack technique
 - Mapped to kill chain phases using set P and mapping function f
- Attack goal
 - Attacker's objectives mission-critical assets
 - Only incoming edges

Tactic (Kill Chain Phase)	ATT&CK ID	Technique Name	Violated Property (STRIDE)
Initial Access	T1190	Exploit Public-Facing Application	Authorization
Execution	T1203	Exploitation for Client Execution	Authorization
Credential Access	T1110	Brute Force	Authentication
Impact	T1485	Data Destruction	Integrity, Availability

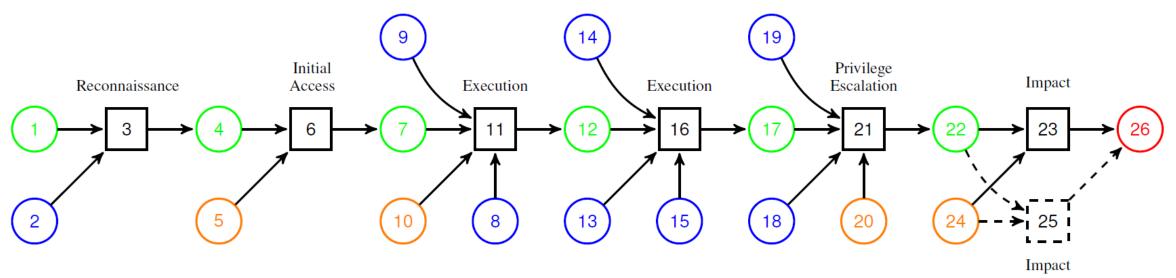
Implementation

- Steps
 - Input files
 - Organization's description secondary assets, vulnerabilities, and other information
 - Ruleset based on MITRE ATT&CK
 - Attack graph generated by MulVAL
 - KCAG created by the KCAG generator

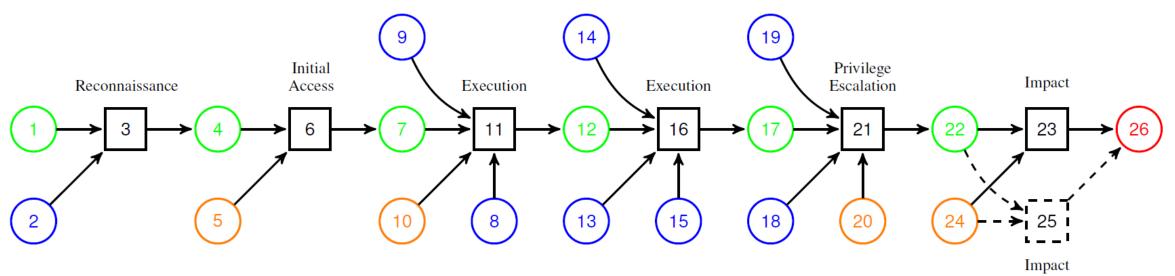

Implementation Workflow

• Example rule for brute force:

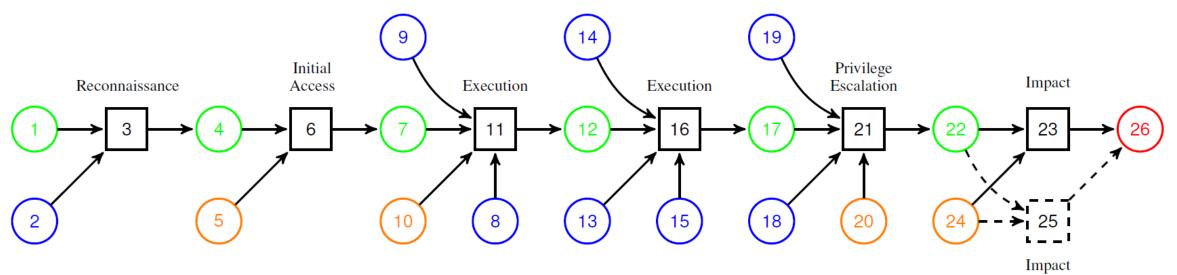
account(2, authentication, User, Identity, H, Software) :networkConnection(2, authentication, H, Protocol, Port),
networkService(H, Software, Protocol, Port, _),
hasAccount(Identity, User, H, Software),
strongPasswordPolicy(no).


• KCAG generator

- Labeling of vertices
- Assignment of kill chain phases
 - Partial ordering of phases
- Strategic techniques and countermeasures


Validation - Kill Chain Attack Graph

ID	Description	ID	Description
1	External actor.	6	T1566.001 – Spearphishing Attachment.
2	Employee's email address published on a website.	7	Authentication of sending an email was violated.
3	T1594 – Search Victim-Owned Websites.	8	The employee can click on the attachment.
4	The attacker knows that the email address exists.	9	The employee has a user account on a PC.
5	Sender reputation analysis was not accomplished.	10	Training of users was not accomplished.


Validation - Kill Chain Attack Graph

ID	Description	ID	Description
11	T1204.002 – User execution: Malicious file.	16	T1203 – Exploitation for Client Execution.
12	Authentication of opening file action was violated.	17	System's authorization was violated (user rights).
13	Microsoft Office opens files.	18	Microsoft Windows 8.1 is installed on the PC.
14	Microsoft Office is installed on the PC.	19	Microsoft Windows 8.1 contains CVE-2017-0263.
15	Microsoft Office 2016 contains CVE-2017-0262.	20	Software is not regularly updated.

Validation - Kill Chain Attack Graph

ID	Description	ID	Description
21	T1068 – Exploitation for Privilege Escalation.	24	Data backup was not accomplished (countermeasure).
22	The attacker violated the system's authorization (admin rights).	25	T1486 – Data Encrypted for Impact.
23	T1485 – Data Destruction.	26	Integrity of a sensitive file was violated.

Summary

Contribution

- A novel kill chain attack graph
- Chaining of individual attack steps
 - Asset type
 - STRIDE security property
- The right level of details
 - MITRE ATT&CK
- KCAG generator
- Future work
 - Generation in an imperative language
 - Alerts from detection systems

Contact

Research Institute CODE Carl-Wery-Straße 22 81739 Munich Germany

contact@concordia-h2020.eu

Follow us

www.concordia-h2020.eu

www.twitter.com/concordiah2020

www.facebook.com/concordia.eu

www.linkedin.com/in/concordia-h2020

www.youtube.com/concordiah2020