FELICE, A.K.G., C. SCHUSTER, A. KADEK, F. FILANDR, C.V. F. P. LAURENT, S. SCHEIBLBRANDNER, L. SCHWAIGER, F. SCHACHINGER, D. KRACHER, C. SYGMUND, P. MAN, P. HALADA, C. OOSTENBRINK a R. LUDWIG. Chimeric Cellobiose Dehydrogenases Reveal the Function of Cytochrome Domain Mobility for the Electron Transfer to Lytic Polysaccharide Monooxygenase. ACS CATALYSIS. 2021, roč. 11, č. 2, s. 517-532. ISSN 2155-5435. Dostupné z: https://dx.doi.org/10.1021/acscatal.0c05294.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Chimeric Cellobiose Dehydrogenases Reveal the Function of Cytochrome Domain Mobility for the Electron Transfer to Lytic Polysaccharide Monooxygenase
Autoři FELICE, A.K.G., C. SCHUSTER, A. KADEK, F. FILANDR, C.V. F. P. LAURENT, S. SCHEIBLBRANDNER, L. SCHWAIGER, F. SCHACHINGER, D. KRACHER, C. SYGMUND, P. MAN, P. HALADA, C. OOSTENBRINK a R. LUDWIG.
Vydání ACS CATALYSIS, 2021, 2155-5435.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 10400 1.4 Chemical sciences
Stát vydavatele Spojené státy
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 13.700
Kód RIV RIV/00216224:14740/21:00124506
Organizační jednotka Středoevropský technologický institut
Doi http://dx.doi.org/10.1021/acscatal.0c05294
UT WoS 000611450000005
Klíčová slova anglicky cellobiose dehydrogenasechimeric enzymedomain swapping electron transferlytic polysaccharide monooxygenase
Štítky ne MU, rivok
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Mgr. Pavla Foltynová, Ph.D., učo 106624. Změněno: 18. 5. 2022 15:04.
Anotace
The natural function of cellobiose dehydrogenase (CDH) to donate electrons from its catalytic flavodehydrogenase (DH) domain via its cytochrome (CYT) domain to lytic polysaccharide monooxygenase (LPMO) is an example of a highly efficient extracellular electron transfer chain. To investigate the function of the CYT domain movement in the two occurring electron transfer steps, two CDHs from the ascomycete Neurospora crassa (NcCDHIIA and NcCDHIIB) and five chimeric CDH enzymes created by domain swapping were studied in combination with the fungus' own LPMOs (NcLPMO9C and NcLPMO9F). Kinetic and electrochemical methods and hydrogen/deuterium exchange mass spectrometry were used to study the domain movement, interaction, and electron transfer kinetics. Molecular docking provided insights into the protein-protein interface, the orientation of domains, and binding energies. We find that the first, interdomain electron transfer step from the catalytic site in the DH domain to the CYT domain depends on steric and electrostatic interface complementarity and the length of the protein linker between both domains but not on the redox potential difference between the FAD and heme b cofactors. After CYT reduction, a conformational change of CDH from its closed state to an open state allows the second, interprotein electron transfer (IPET) step from CYT to LPMO to occur by direct interaction of the b-type heme and the type-2 copper center. Chimeric CDH enzymes favor the open state and achieve higher IPET rates by exposing the heme b cofactor to LPMO. The IPET, which is influenced by interface complementarity and the heme b redox potential, is very efficient with bimolecular rates between 2.9 x 10(5) and 1.1 x 10(6) M-1 s(-1).
Návaznosti
90043, velká výzkumná infrastrukturaNázev: CIISB
VytisknoutZobrazeno: 24. 4. 2024 18:26