D 2022

AdaptOr: Objective-Centric Adaptation Framework for Language Models

ŠTEFÁNIK, Michal, Vít NOVOTNÝ, Nikola GROVEROVÁ and Petr SOJKA

Basic information

Original name

AdaptOr: Objective-Centric Adaptation Framework for Language Models

Authors

ŠTEFÁNIK, Michal (703 Slovakia, guarantor, belonging to the institution), Vít NOVOTNÝ (203 Czech Republic, belonging to the institution), Nikola GROVEROVÁ (203 Czech Republic) and Petr SOJKA (203 Czech Republic, belonging to the institution)

Edition

Dublin, Irsko, Proceedings of the 60th Conference of Association of Computational Linguistics, ACL 2022, p. 261-269, 9 pp. 2022

Publisher

Association for Computational Linguistics, ACL

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

RIV identification code

RIV/00216224:14330/22:00125674

Organization unit

Faculty of Informatics

ISBN

978-1-955917-24-7

ISSN

UT WoS

000828759800025

Keywords (in Czech)

plnotextové vyhledávání; doménová adaptace

Keywords in English

Adaptor library; domain adaptation; similarity search; vector space; embeddings

Tags

International impact, Reviewed
Změněno: 14/5/2024 09:59, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

Progress in natural language processing research is catalyzed by the possibilities given by the widespread software frameworks. This paper introduces the Adaptor library that transposes the traditional model-centric approach composed of pre-training + fine-tuning steps to the objective-centric approach, composing the training process by applications of selected objectives. We survey research directions that can benefit from enhanced objective-centric experimentation in multitask training, custom objectives development, dynamic training curricula, or domain adaptation. Adaptor aims to ease the reproducibility of these research directions in practice. Finally, we demonstrate the practical applicability of Adaptor in selected unsupervised domain adaptation scenarios.

Links

MUNI/A/1230/2021, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity 22 (Acronym: SKOMU)
Investor: Masaryk University