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Abstract—Quality improvement of practical cybersecurity 
training is challenging due to the process-oriented nature 
of this learning domain. Event logs provide only a sparse 
preview of trainees' behavior in a form that is difficult to 
analyze. Process mining has great potential in converting 
events into behavioral graphs that could provide better 
cognitive features for understanding users' behavior than the 
raw data. However, practical usability for learning analytics 
is affected by many aspects. This paper aims to provide an 
experience report summarizing key features and obstacles in 
integrating process discovery into cyber ranges. We describe 
our lessons learned from applying process mining techniques 
to data captured in a cyber range, which we have been 
developing and operating for almost ten years. We discuss 
lessons learned from the whole workflow that covers data 
preprocessing, data mapping, and the utilization of process 
models for the post-training analysis of Capture the Flag 
games. Tactics addressing scalability are explicitly discussed 
because scalability has proven to be a challenging task. 
Interactive data mapping and Capture the Flag specific 
features are used to address this issue. 

Index Terms—cybersecurity, hands-on training, process min­
ing, data analysis, learning analytics 

1. Introduction 

As cybersecurity skills require higher-order thinking, 
the best way to develop and ameliorate these abilities is 
through hands-on training [14], [20]. However, practical 
cybersecurity is process-oriented. The learning tasks are 
focused on attack or defense skills like scanning the 
computer network for vulnerable servers or protecting the 
server by a firewall. Although modern cyber ranges, in 
which practical cybersecurity training is organized [9], 
[30], [40], gather behavioral data in the form of event logs, 
they provide only a limited view of trainees' behavior, and 
they are very difficult to explore. 

Process mining. Although not yet fully explored in the 
context of cyber-security training analysis, process min­
ing (PM) has great potential to generate comprehensible 
behavioral models. It has been successful in aiding with 
similar types of tasks in domains like education [6], cy­
bersecurity [ ], healthcare [ ], software reliability [ ], 
and several others [11]. 

P M [ ] is a discipline that aims to understand and an­
alyze processes, thus providing more perspectives to data 
interpretation. It provides a better understanding of the op­
erations by extracting knowledge from event logs, which 
makes it a great candidate to address the challenges in 
identifying problematic situations and the reasons behind 
them in the hands-on training sessions. In particular, the 
process mining is booming in three analytical categories. 

Process discovery aims to find a formal descriptive 
model for the underlying event logs. The model usually 
has the form of a dependency graph capturing activities 
and traces inferred from the raw log data, as demonstrated 
in Figure 1 on the hacking process. However, the exact 
appearance and then usability of the graph depend on 
many factors that are the subject of process discovery. 

Conformance checking is used to monitor and inspect 
how much the observed behavior conforms to the expected 
behavior. Techniques of comparative analysis are used to 
compare models of expected behavior with actual execu­
tions of processes. 

Process enhancement aims to improve and extend an 
existing process model based on event logs capturing 
actual executions of the process. 

In this paper, we focus on the potential of process 
discovery for cybersecurity training session analysis. Our 
goal is not to study the impact of process models on 
students' skills. Instead, this experience report summarizes 
the necessary steps, limits, and obstacles of the recon­
struction of behavioral graphs from sparse cybersecurity 
training data and suggests their possible usability for post-
training analysis on several examples. We describe our 
experience using the data collected from cybersecurity 
Capture the Flag games [35] as an input for process 
discovery algorithms. We demonstrate the usefulness of 
process mining models to answer analytical questions 
that might help with the further improvement of training 
programs. We also discuss the possibilities of tackling 
graph complexity and achieving a scalable solution. Our 
approach is based on specific features of the training data 
and the combination of a traditional graph representation 
of process models with complementary visualizations. 

2. Related Work 

Nowadays, there is plenty of various cyber ranges and 
testbeds that differ in their features and primary purpose. 
This paper deals with modern cyber ranges that emulate 
computer networks and then support the organization of 
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userld;timestamp;event 
L;2.08.2020 10:31:43;use webmin_backdoor 
L;2.08.2020 10:32:44;set RHOST 
L;2.08.2020 10:33:19;set LHOST 
L;2.08.2020 10:34:27;set SSL 
L;2.08.2020 10:34:35;set TARGET 
>;2.08.2020 10:52:55;use webmin_backdoor 
>;2.08.2020 10:53:22;exploit 
>;2.08.2020 10:56:24;set RPORT 
>;2.08.2020 10:56:57;exploit 
>;2.08.2020 10:59:51;set LHOST 
l;2.08.2020 l l:00:02;set SSL 
l;2.08.2020 11:00:14;set TARGET 
3;2.08.2020 12:21:13;use webmin_backdoor 
3;2.08.2020 12:22:14;set RHOST 
3;2.08.2020 12:23:02;set LHOST 
3;2.08.2020 12:24:17;set SSL 
3;2.08.2020 12:24:41;set TARGET 

Process d iscovery 

set LHOST (3) set RPORT (1) 

3 

set SSL (3) set TARGET (3) 

Figure 1. Process discovery example of the hacking process using Metasploit command line history 

hands-on training programs with advanced data collection, 
e.g., SimSpace Cyber Range [ ], EDURange [ ], DE-
TERlab [ ], CyRIS [ ], or CyTrONE [5]. 

The results of this experience report are based on 
data collected from the KYPO Cyber Range1 [ ] that 
we have been operating since 2013. The system serves as 
a platform for regular practical training of our university 
students. We believe that process discovery techniques can 
improve existing analytical tools [12], [33] of the cyber 
range. 

Process mining techniques have already been applied 
in numerous educational situations [ ]. The term educa­
tional process mining (EPM) is often used in this context. 
Mukala et al. [22] use E P M to obtain and analyze stu­
dents' learning habits from the Coursera learning system, 
while Bannert et al. [ ] applied these techniques to detect 
students' learning difficulties. Macak et al. [ ] used 
process mining to understand student coding-behavior pat­
terns from the Git log of their projects. Multiple other 
articles use E P M to gain a better understanding of the 
educational process from Moodle logs [7], [25], for cur­
riculum mining [2 ], analysis of student registrations [2], 
or professional training [ ]. 

Our research builds on the same E P M ideas and prin­
ciples. Still, it addresses a specific application domain— 
hands-on cybersecurity training—aiming to research how 
the data properties affect the process mining. 

Only a few papers address cybersecurity learning. 
Weiss et al. [36], [37] demonstrated that carefully 
constructed directed graphs constructed from command 
history can provide useful information about trainees' 
progress and behavior. The evaluation of two different 
graph models is also presented in [41], 

Another solution can be found in Andreolini et al. [1]. 
Their method utilizes a reference graph of ideal behavior 
to automatically construct trainee graphs from monitored 
trainee activities and system logs, e.g., command history, 

1. K Y P O is a Czech acronym for Cybersecurity Polygon. 

web browsing history, GUI interactions, network events, 
or OS process activities. 

These approaches to the graph-based evaluation of 
cybersecurity exercises share some important concepts. 
They use special algorithms for graph construction that 
were precisely designed for the specific data, espe­
cially command-line histories. Our goal is to use well-
established process discovery algorithms to reconstruct 
trainees' walkthroughs. Moreover, the previous methods 
address conformance checking where reference graphs of 
expected behavior have to be defined in advance. How­
ever, creating reference graphs is laborious and tricky. 
We aim to explore the possibilities and limits of a more 
generic process discovery analysis where no reference 
graphs are required. 

We are aware that process mining algorithms can 
produce huge graphs. The previous papers deal with the 
complexity by restricting data or models, e.g., by using 
command-line histories only or analyzing the behavior of 
a single trainee. This paper describes our experience with 
combining multiple data sources and multiple participants. 
It is assumed that the information complexity will be 
solved by combining domain-specific data filtering with 
exploratory visual analysis techniques that complement 
standard graph-based views. 

3. Methodology and Data Description 

This section provides a data and methodology back­
ground related to the conclusions presented in the remain­
der of the paper. The structure reflects three significant 
steps of the process mining workflow. 

Data collection and preprocessing. We analyzed event 
logs of fifteen training sessions of six different training 
scenarios to identify possible errors, inconsistencies, and 
low-level data properties that could affect process discov­
ery. The number of participants whose data were collected 
in each scenario varied between 8 and 58, with an average 



of 25. The average number of participants in each training 
session was 9.8. A l l the training sessions were organized 
in K Y P O Cyber Range. 

Section 4 summarizes our lessons learned from this 
phase. We abstract away from specific monitoring infras­
tructures and focus on data only. Although the experience 
is based on the data from only a single cyber range, 
the presented results are generic. They can appear in 
any modern cyber range that generates event logs with 
timestamps. 

Data mapping. Datasets used in our experimental eval­
uation consist of three different data types produced by 
two different data sources of the distributed architecture 
of K Y P O Cyber Range. 

The first two data types are commands executed on 
the UNIX command line (shell) and commands typed 
within the Metasploit tool. They both are captured in 
sandboxes that implement isolated virtualized computer 
networks where trainees perform cybersecurity tasks. Be­
sides the commands and their arguments, additional pieces 
of information are captured in event records, e.g., trainee's 
ID, working directory under which the command was 
executed, hostname and IP address of the host, trainee's 
ID, or timestamp. 

The third data type is game events. While shell and 
Metasploit commands represent generic data types that are 
produced by many cyber ranges, game events introduce 
higher-level semantics into datasets because they capture 
the state and assessment of the training session. They can 
vary between cyber ranges and training types. 

Our training data follows so-called Capture The Flag 
(CTF) games [10], [28], [32], [38] consisting of well-
described tasks divided into consecutive levels. Complet­
ing each task yields a text string called the flag that 
must be inserted into the system to proceed to the subse­
quent task. Trainees can take hints or show the complete 
solution (step-by-step instructions leading to the correct 
flag). Points are awarded or deducted for these actions so 
that the final scores of individual trainees are mutually 
comparable and can be used for their basic evaluation. 

T A B L E 1. G A M E E V E N T S A N D T H E I R M E A N I N G . 

Event Description. The trainee ... 
TrainingRunS tarted . . . started the training. 
TrainingRunEnded . . . finished the training. 

LevelStarted . . . started a level. 
LevelCompleted . . . submitted a correct flag. 

WrongFlagSubmitted . . . submitted a wrong flag. 
CorrectFlagSubmitted . . . submitted the right flag. 

HintTaken . . . took a hint. 
AssessmentAnswers . . . answered a questionnaire. 
SolutionDisplayed . . . viewed the level solution. 

Types of game events produced by K Y P O Cyber 
Range are summarized in Table 1. They are common for 
all games regardless of the specific cybersecurity content. 
Each event is extended with many other pieces of infor­
mation, such as the trainee's identifier, timestamp, and the 
game level in which the event appeared. Moreover, indi­
vidual event types can have specific mandatory or optional 
data. For example, submitting the wrong or correct flag 
always includes the flag value. A hint is always equipped 
with a hint number, brief description, and penalty. 

Process discovery algorithms require special input data 
formatting. In particular, each event in the log needs to 
refer to a single process instance, named case. Also, each 
event needs to refer to a step in the process named activity. 
The last minimal requirement is that events within the 
case must be ordered, either sequentially or by including 
timestamp. Otherwise, it is not possible to apply process 
discovery to the data. Section 5 discusses how to map raw 
events of training logs into the input of process discovery 
algorithms. 

Utilization of Process Models for Training Analysis. 
Having the data in the format suitable for process discov­
ery algorithms does not guarantee that generated process 
models are reasonable. Detailed research into the practical 
usability of various models for learning analytics is out 
of the scope of this paper. Therefore, we demonstrate the 
usefulness on several examples and discuss our experience 
gained from experiments. 

The experiments were performed in the Disco [13] 
process mining system and the PM4py process mining 
library. Nevertheless, process mining tools differ only in 
the user interface and usage purposes (e.g., a complete 
GUI-based tool versus an API-based library), while the 
principles of underlying process discovery algorithms are 
the same. Therefore, it does not matter which tool is used, 
and we did not notice any important differences in this 
sense. 

Although we conducted experiments with multiple 
datasets, the process models presented in this paper were 
generated from a single dataset to provide a consistent 
preview of our experience and demonstrate the key prin­
ciples. The dataset was captured in 2020 during the Online 
Hacking Day, where computer science undergraduate or 
graduate students played CTF games invented by their col­
leagues within a specialized cybersecurity course. During 
the event, multiple games were played by the participants. 
We use datasets of 3 trainees who played the same game, 
which is a good number to demonstrate the goals and ob­
stacles in using process mining techniques for CTF game 
analysis without being overburdened with huge amounts 
of data. 

Section 6 summarizes our observations from using 
process mining models for the analysis of hands-on train­
ing data. Concrete examples demonstrate possible usabil­
ity. Although only simple process graphs are presented 
to demonstrate the principles, tactics for tackling the 
scalability of process graphs are explicitly discussed. 

4. Lessons Learned from Data Preprocessing 

Process discovery methods are sensitive to data errors 
that can produce misleading process graphs. Moreover, the 
incorrectness may not be visible at first sight. Therefore, it 
is necessary to pay attention to data preprocessing and val­
idation. We classify our observations into two categories: 
generic data errors removable by data cleansing and time-
related inconsistencies. 

4.1. Data Cleansing 

The analysis of 15 datasets revealed that almost all 
of them include rubbish pieces of information that can 
mislead analysts. They can be classified as follows. 



Dummy data. Organizers of exercises very often conduct 
dry runs or testing loops before the real exercise to check 
the training scenario and cyber range infrastructure. Our 
experience shows that such testing is a standard part of 
the training life cycle, even for regular training courses. 
Unfortunately, this unwarily created data often remains 
in the datasets and must be removed before the learning 
analytics is used. Technically, the removal is easy due to 
the presence of timestamps. But the problem occurs when 
the dummy data is overlooked in the dataset. They can 
significantly affect obtained process graphs, while it is 
difficult to notice that something is wrong. 

Missing data. Modern cyber ranges are often designed as 
complex distributed systems where many things can go 
wrong not only due to bugs in code but as a consequence 
of failures in the runtime environment. Failures in network 
connectivity or unreliable low-level virtualization services, 
for example, can cause some data to be missing and 
then provide confusing insight into the behavior of related 
trainees. 

Unrelated data. The raw datasets include many technical 
records, e.g., IDs of virtual sandboxes where the training 
is performed, IDs of the training sessions, or score devel­
opment values that are irrelevant to the behavior analysis 
of a single training session. Removing these unrelated 
pieces of information helped us to obscure details and 
infer conceptional views on the data. 

Duplicate data. Another data reduction resided in the 
aggregation of log records. For example, every completion 
of one level is immediately followed by the next level 
(except the very last level of the training). In the raw 
datasets, the corresponding events LevelCompleted and 
LevelStarted are recorded just behind each other. The time 
difference is always negligible, and these events are never 
interrupted by another event. Therefore, we removed the 
LevelCompleted events from the datasets as they bring no 
new semantic information and make the models point-
lessly complex. We also removed the TrainingRunStarted 
for a similar reason. 

4.2. Time Unification 

Events need to be sorted sequentially in the dataset, 
or timestamps must be included in data records. Then 
it is possible to reconstruct traces of users' activities. 
As the training data is captured from multiple resources, 
the timestamp-based ordering usually represents the only 
possible way. Therefore, time records require special at­
tention. 

Synchronization. Process models are sensitive to events' 
ordering. Only a tiny shift in times can re-order events 
in joint process graphs of multiple trainees and produce 
confusing models. It is necessary to precisely synchronize 
time, especially in distributed cyber ranges. 

Relativity. Analytical goals usually include tasks that 
compare the behavior of a group of trainees, e.g., students 
of a single course. In this case, the absolute time has to 
be converted to the relative time of the training session, 

i.e., the time elapsed since the TrainingRunStarted event). 
Participants of exercises organized as supervised fixed-
time group sessions usually start almost at the same 
time. However, time-shifting is specifically required if the 
training content is available online at any time. 

Gaps. Participants of training courses with a tight sched­
ule are forced to work intensively without significant time 
for the rest. On the other hand, loosely conceived training 
programs would enable participants to stop playing for 
a while and continue with tasks later, even the next 
day. These gaps affect process models significantly when 
timestamps are used for process discovery. Therefore, 
datasets from the loosely organized training events require 
much more attention and expertise to be paid by the ana­
lyst, who has to take care of the correct time unification, 
its employment in process discovery, and interpretation of 
obtained models. 

Format. Another problem we faced was the diversity 
of time formats. Our datasets included three different 
time formats, depending on the event source in the dis­
tributed environment: the POSIX time (number of sec­
onds that elapsed since "the epoch" - 00:00:00 UTC 
on 1 January 1970) and two variants of human-readable 
formats: "2020-05- 14T08:22:11.563Z" and "2020-05-
14T12:22:11.563715+02:00". They had to be unified. 

5. Lessons Learned from Data Mapping 

As data from hands-on cybersecurity exercises differ 
in their semantics and content, the selection of proper 
mapping into process mining cases and activities is an 
important step in the analytical workflow. 

Case. In our datasets, every event is equipped with an 
anonymized unique identifier of the trainee who produced 
the event. We took this T R A I N E E ID as the case ID of 
process mining so that the process discovery reconstructs 
the traces of individual trainees. These traces are the 
primary subjects of the analysis, enabling the analyst to 
compare trainees' behavior and analyze the expected vs. 
anomalous behavior with respect to the training definition. 
Traces appear as paths in process graphs. 

Activity. The process mining activities appear as nodes 
in process graphs. Their mapping depends on the type of 
event record. For game events, the event type column from 
Table 1 can be used as activity. For shell or Metasploit 
commands, we can use the basic command, e.g., S S H . 
However, it is important to point out that incorporating 
other data from event records can significantly affect 
obtained process models. For example, consider the event 
"the trainee took the hint No. 4.1" encoded in the raw data. 
If the record is mapped into the process discovery so that 
E V E N T = "HintTaken" and the hint's number is omitted, 
then the process model will interpret "taking a hint" as 
single activity regardless of what hint has been taken or 
when (in which level). Only the "HintTaken" node appears 
in the process graph. On the contrary, merging both values 
into the event mapping, i.e., E V E N T = "HintTaken hint-
number" will produce a much finer model with nodes like 
"HintTaken 4.1", "HintTaken 4.2", etc. 



We chose reasonable mapping depending on the event 
and data available in our experiments. For example, the 
HintTaken events are always mapped to activity together 
with hint ID to distinguish different hints in the model. 
WrongFlagSubmitted events are always equipped with the 
flag value for a similar reason - to distinguish between 
different unsuccessful attempts. 

6. Lessons Learned from Process Discovery 

The usability of process models generated by process 
discovery depends on the algorithms used and analytical 
goals. We focus on the analysis of trainees' behavior and 
the detection of flows in training scenarios to demon­
strate possible usage in these important analytical tasks. 
Moreover, the scalability of process graphs is explicitly 
discussed because it may pose an important challenge for 
practical usability. 

6.1. Behavior of Trainees 

Process mining can produce different types of process 
models based on different mining algorithms, e.g., alpha-
miner, inductive miner, or heuristic-miner [ ]. Moreover, 
these algorithms can use various internal metrics that 
affect the produced models. 

Process models. It is out of the scope of this paper to 
analyze the expressiveness of different process models for 
learning analytics tasks. We conducted only basic experi­
ments with various algorithms and then chose heuristic 
nets for further discussion. They have been shown to 
provide sufficient insight into trainees' behavior where an 
analyst can glimpse walkthroughs, identify anomalies, and 
ask questions related to learning analytics. 

A basic heuristic net for level 40 depicted in Figure 2 
demonstrates these possibilities. Nodes in the graph rep­
resent activities, numbers at arrows and in the brackets 
inside nodes denote for the number of passes through the 
path (one trainee can pass the node multiple times). 

We can clearly see that two trainees used the first 
hint right after the beginning of the level. One trainee 
tried to solve the task by using several commands (ip, 
i p c o n f i g , Is, and connect) but failed and then fi­
nally took the hint as well. This can indicate either the 
confusion in the task description, improper difficulty with 
respect to learners' knowledge, or the lack of learners' 
motivation, which may stem from a bad experience in 
previous levels. 

After taking the first hint, two trainees successfully 
finished the level by using the nmap command. One 
participant had trouble due to misspelling the command 
(the capital "N") and then finally took the second hint that 
helped him finish the task and submit a correct flag. Also, 
the useless usage of the sudo command is visible in the 
model. 

Complementary model metrics. The process model de­
picted in Figure 2 uses so-called absolute frequency. It 
depicts the total number of times a particular activity has 
been performed or a specific transition has been made. The 
switching of the focus of the process model to alternate 
process metrics can bring a complementary view that can 

40-LevelStarted (3) 

l-ip(3) i>l 

40-ipconflg (1) 40-ls(l) 

Figure 2. Detailed process model for game level 40. Numbers at arrows 
and in the brackets inside nodes denote for the number of passes through 
the path. 

44-LevelStarted (3) 

44-HintTaken-44-l (3) 

44-HintTaken-44-2 (2) 

44-HintTaken-44-3 (2) 

44-CorrectFlagSubmitted (3) 44-ls (1) 44-chmod (3) 

Figure 3. Process model using frequency metric for level 44. Nodes used 
by all three trainees are emphasized. 

reveal or emphasize different behavioral aspects of the 
data. 

Using case frequency, for instance, the numbers on 
transitions and inside nodes of the model represent the 
number of unique cases that pass through the transition 
or event. Based on this metric, the analyst can infer the 
importance of steps that trainees performed. 

In Figure 3, it is evident that for the successful pass of 
level 44, all three trainees needed to take the first hint, use 
ssh command multiple times, and use chmod command. 
On the contrary, using commands like pwd or cd was not 
necessary for solving the task. 

A closer look at the model in Figure 3 reveals yet 



41-LevelStarted (3) 42-LevelStarted (3) 

41-HintTaken-41-l (3) 

41-HintTaken-41-2 (3) 

Z i 

41-SolutionDisplayed (4) 41-WrongFlagSubmitted-49357 (1) 

41-CorrectFlagSubmined (3) 

z 
42-LevelStarted (3) 

Figure 4. Level of detail based on event type. Game events of only 
level 41 are displayed. The red arrows between highlight a flow in the 
gameplay caused by a bug in K Y P O Cyber Range implementation. 

another behavior that is not visible at first sight. There 
is one direct transition between taking the third hint (44-
3) and providing the correct flag. However, it is highly 
unlikely that a trainee would correctly complete the level 
without using the command line in the meantime. There­
fore, we can hypothesize that one trainee took the hint 
after retrieving the correct flag just to be sure that he got 
it right. A n in-depth data analysis performed out of this 
model confirmed this hypothesis. 

Similarly to case frequency, it is also possible to check 
other process model metrics like the duration of transi­
tions. With this metric, the analyst can see the process 
model from the time perspective, identifying the parts 
of CTF games that were too easy or where the trainees 
struggled. 

For the sake of simplicity, we use models of absolute 
frequency in the remainder of this paper. 

6.2. Detection of Flaws in the Exercise 

The identification of possible flaws in the design of 
training content is demonstrated in Figure 4, which cap­
tures only game events of the game level 41. The level 
can be considered tough for the trainees' group because 
all of them took two hints, then two gave up (they looped 
at the solution with the correct flag). One trainee found 
and submitted the correct flag on the second try. 

Moreover, we have discovered a flaw in the imple­
mentation of the K Y P O Cyber Range platform. The red 
arrows in Figure 4 indicate that if trainees submit the 
correct flag after displaying a task solution (where the 
flag is shown), then they are redirected back to the solution 
page instead of being moved to the next level immediately. 
As this behavior was visible in all levels that contain the 
SolutionDisplayed activity, it was reported as a bug. In the 
same way, flaws in game design can be visually identified 
from real gameplay data. 

42-HintTaken-42-l(3) 

2 42-HintTaken-42-2 (2) 

42-WrongFlagSubmitted-.ssh (1) 

42-WrongFlagSubmitted-keys (1) 

42-CorrectFlagSubmitted (3) 43-LevelStarted (3) 

z 
43-HintTaken-43-l (3) 

z 

Figure 5. Cross-level process model for levels 42 and 43. 

However, the experiments turned out that obtained process 
graphs can become too complex and incomprehensible 
for effective analysis. As the walkthroughs of trainees 
differ, increasing their number leads to the rapid growth 
of different events and their relationships, making the 
behavioral graphs too complex. Similarly, incorporating 
multiple levels into a single model increases the model as 
well. 

As the complexity of process graphs can pose a critical 
aspect for practical usability, we discuss possible strategies 
for tackling this problem in this section. 

Per-level fragmentation. Levels of CTF games follow 
each other. There is no way a trainee can skip some 
level or return to the previous one. Therefore, the heuristic 
graph can be logically split into loosely coupled coherent 
parts that correspond to individual levels. It is achieved 
by adding the level number to all events. Since that, the 
42-ssh and 4 7-ssh events, for instance, are considered 
two different ssh commands used in two different levels, 
and, vice versa, every sub-graph corresponding to a level 
includes only events that appeared in that level. The 
fragmentation can be seen in Figure 5, where two coherent 
sub-graphs for levels 42 and 43 are clearly visible. 

Based on this observation, we can fragment the com­
plex process model and either navigate the analyst into in­
dividual levels or provide a simplified, high-level overview 
of the training session. 

6.3. Scalability 

The process graphs presented so far captured only a 
few trainees and focused on only a part of the collected 
data to demonstrate their usability for analytical tasks. 

Events selection. Different events can be considered the 
different levels of details of the gameplay. For example, 
game events in our datasets capture key milestones in 
the exercise, while bash and Metasploit commands can 
be considered lower-level steps used to achieve these 



[TASK] Cracking SSH key passphrase (3) 

3 

[HINT] (43-1) What's the name of the cracking tool? (3) 

[HINT] (43-2) What needs to be done before cracking? (2) 

[TASK] Stealing the data (3) 

[HINT] (44-1) How to use the key? (3) 

[HINT] (44-2) In what format addresses are? (2) 

[HINT] (44-3) Where to look for passwords? (2) 

[INFO] Ending (3) 

Figure 6. Training structure - only levels 43, 44, and 45 are depicted. 

milestones. Selecting events of only the preferred "level 
of details" enables analysts to narrow their attention from 
an overall preview to detailed parts. 

The process model in Figure 6 demonstrates the prin­
ciple. It provides a comprehensible high-level overview of 
the last three levels of the training session by including 
game events only and completely omitting commands. 
Events like 43-LevelStarted are equipped with relevant 
text from raw records to make the model even more 
readable. 

Compare this view with the model in Figure 2 that 
captures all events of only a single level. Although Fig­
ure 6 depicts three levels, it is easy to spot that all trainees 
successfully finished the game, but nobody went through 
without the help of hints. It is also evident that at both 
levels, there is one trainee who took only one hint. How­
ever, we do not know whether it is the same participant. 
Therefore, this example also demonstrates the limits of 
static process models. Verification of the hypothesis that 
this is the same trainee requires in-depth data exploration. 

This filtering approach is generic. It does not depend 
on a level-based structure and is also usable for other 
types of cybersecurity exercises. On the other hand, some 
semantics classification of events reflecting their level of 
detail has to be done before this technique can be used. 

Events mapping. Event mapping discussed in Section 5 
can also affect the complexity of process graphs. For 
example, if only ssh is taken into account regardless 
of other parameters, then only one node is produced. 
The number of trainees (number of different logs of the 
ssh usage) does not affect the complexity of the model. 
On the contrary, considering ssh 127.0.01 and ssh 
12 7.0.02 two distinct commands will produce two dis­
tinct nodes. In this case, the more trainees included in the 
model, the more probably they will introduce a new node 
with a new remote address. 

In general, scalability depends on the freedom or un­
certainty of values provided by users. For example, the up­
per bound of nodes representing the "taking concrete hint" 

event is limited because the number of hints defined in the 
exercise is limited. On the contrary, the number of nodes 
representing the "incorrect flag with the typed value" is 
unlimited since users can provide arbitrary values due to 
improperly solved tasks. The "ssh connection with remote 
address" demonstrates the case between these extremes. 
On one side, users could provide an arbitrary address of 
the remote host. On the other side, they are limited by 
a few hosts presented in their network (sandbox). Other 
addresses are usually typos and then rare. 

Therefore, properly used event mapping can manage 
the complexity of generated models and then become part 
of the exploratory workflow. However, precise rules and 
tactics remain open for future work. 

Exploratory Techniques of Visual Analytics. Another 
approach to deal with model complexity is by transform­
ing graph-based views of process models into alternate 
concepts by applying techniques of visual analytics that 
support human decisions in the analytical loops. 

The main research goal of visual analytics is revealing 
relationships hidden in the raw data [ ], proving analyt­
ical hypotheses [27], and tackling graph complexity by 
using principles of exploratory data visualizations [4], 

With regards to this theory, process models can be 
considered so-called multivariate graphs that appear in 
many application domains. Dealing with them by comple­
mentary visualizations is a broadly researched field within 
the visual analytics discipline [ ]. Although graph prop­
erties of cybersecurity training programs may differ, the 
visualization principles of multivariate graphs are generic 
and then applicable. 

According to the classification formulated in Nobre et 
al. [23], process graphs of our CTF games are of a medium 
(less than 1.000 nodes) or large size (more than 1.000 
nodes), k-partite; they have heterogeneous nodes with 
few attributes and homogeneous edges. Based on these 
observations, the best alternate visualization techniques 
should combine attribute-driven faceting with quilts and 
integrated or juxtaposed view operations. However, the 
design of concrete analytical visualizations remains a 
challenging task requiring further research. 

7. Conclusion and Future Work 

In this paper, we contributed to the state of the art of 
applying process mining in practical cybersecurity training 
sessions. 

We described our experience of using data captured 
during hands-on exercises organized in K Y P O Cyber 
Range as the input of external generic process discovery 
tools. We confirmed the usefulness of the collected data 
for this purpose. However, many preprocessing steps have 
to be done to unify and synchronize the data gathered from 
multiple sources in the distributed training environment. 
Therefore, tight integration of data preprocessing steps and 
active avoidance of inconsistencies inside the cyber range 
infrastructure has to be done for routine usage. 

We demonstrated successful mapping of raw event 
logs into the required data format of process discovery 
methods. Our datasets reflect obvious data monitored by 
modern cyber ranges. However, we are aware exact map­
ping of available raw data into process mining events sig-



nificantly affects the process models and their complexity. 
Therefore, they have to be carefully chosen based on the 
analytical goals. A unified data abstraction and mapping 
rules would help to formalize and generalize the analytical 
workflow in the future. 

In our follow-up research, we also would like to 
compare the usefulness of different process models for 
different analytical goals like run-time situational aware­
ness, detection of patterns in trainees' behavior, or the 
identification of flows in training design and assessment. 

The scalability appears to be the most challenging 
task of the process mining workflow. However, we are 
convinced that the combination of domain-specific data 
filtering with the exploratory visualization of multivariate 
graphs enables us to bring a suitable solution to this 
open problem. We plan to integrate these methods into 
the existing visual-analysis dashboards of K Y P O Cyber 
Range. 
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