J 2022

Conditionally oscillatory linear differential equations with coefficients containing powers of natural logarithm

HASIL, Petr and Michal VESELÝ

Basic information

Original name

Conditionally oscillatory linear differential equations with coefficients containing powers of natural logarithm

Authors

HASIL, Petr (203 Czech Republic, belonging to the institution) and Michal VESELÝ (203 Czech Republic, guarantor, belonging to the institution)

Edition

AIMS Mathematics, American Institute of Mathematical Sciences, 2022, 2473-6988

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 2.200

RIV identification code

RIV/00216224:14310/22:00119751

Organization unit

Faculty of Science

UT WoS

000782283500004

Keywords in English

linear equation; differential equation; conditional oscillation; non-oscillation; logarithm

Tags

Tags

International impact, Reviewed
Změněno: 28/4/2022 14:21, Mgr. Marie Šípková, DiS.

Abstract

V originále

In this paper, we study linear differential equations whose coefficients consist of products of powers of natural logarithm and very general continuous functions. Recently, using the Riccati transformation, we have identified a new type of conditionally oscillatory linear differential equations together with the critical oscillation constant. The studied equations are a generalization of these equations. Applying the modified Prüfer angle, we prove that they remain conditionally oscillatory with the same critical oscillation constant.

Links

GA20-11846S, research and development project
Name: Diferenciální a diferenční rovnice reálných řádů: kvalitativní analýza a její aplikace
Investor: Czech Science Foundation