WIESNER, David, Julian SUK, Sven DUMMER, David SVOBODA and Jelmer WOLTERINK. Implicit Neural Representations for Generative Modeling of Living Cell Shapes. In Linwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, Shuo Li. International Conference on Medical Image Computing and Computer Assisted Intervention. Switzerland: Springer Nature Switzerland. p. 58-67. ISBN 978-3-031-16439-2. doi:10.1007/978-3-031-16440-8_6. 2022.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Implicit Neural Representations for Generative Modeling of Living Cell Shapes
Name in Czech Implicitní neurální reprezentace pro generativní modelování tvaru živých buněk
Authors WIESNER, David (203 Czech Republic, belonging to the institution), Julian SUK (528 Netherlands), Sven DUMMER (528 Netherlands), David SVOBODA (203 Czech Republic, guarantor, belonging to the institution) and Jelmer WOLTERINK.
Edition Switzerland, International Conference on Medical Image Computing and Computer Assisted Intervention, p. 58-67, 10 pp. 2022.
Publisher Springer Nature Switzerland
Other information
Original language English
Type of outcome Proceedings paper
Field of Study 10201 Computer sciences, information science, bioinformatics
Country of publisher Switzerland
Confidentiality degree is not subject to a state or trade secret
Publication form electronic version available online
WWW URL
Impact factor Impact factor: 0.402 in 2005
RIV identification code RIV/00216224:14330/22:00125774
Organization unit Faculty of Informatics
ISBN 978-3-031-16439-2
ISSN 0302-9743
Doi http://dx.doi.org/10.1007/978-3-031-16440-8_6
UT WoS 000867306400006
Keywords in English cell shape modeling; neural networks; implicit neural representations; signed distance function; generative model; interpolation
Tags cbia-web, core_A, firank_A
Tags International impact, Reviewed
Changed by Changed by: RNDr. Pavel Šmerk, Ph.D., učo 3880. Changed: 28/3/2023 10:42.
Abstract
Methods allowing the synthesis of realistic cell shapes could help generate training data sets to improve cell tracking and segmentation in biomedical images. Deep generative models for cell shape synthesis require a light-weight and flexible representation of the cell shape. However, commonly used voxel-based representations are unsuitable for high-resolution shape synthesis, and polygon meshes have limitations when modeling topology changes such as cell growth or mitosis. In this work, we propose to use level sets of signed distance functions (SDFs) to represent cell shapes. We optimize a neural network as an implicit neural representation of the SDF value at any point in a 3D+time domain. The model is conditioned on a latent code, thus allowing the synthesis of new and unseen shape sequences. We validate our approach quantitatively and qualitatively on C. elegans cells that grow and divide, and lung cancer cells with growing complex filopodial protrusions. Our results show that shape descriptors of synthetic cells resemble those of real cells, and that our model is able to generate topologically plausible sequences of complex cell shapes in 3D+time.
Links
EF18_046/0016045, research and development projectName: Modernizace národní infrastruktury pro biologické a medicínské zobrazování Czech-BioImaging
LM2018129, research and development projectName: Národní infrastruktura pro biologické a medicínské zobrazování Czech-BioImaging
Investor: Ministry of Education, Youth and Sports of the CR
MUNI/A/1145/2021, interní kód MUName: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace XI. (Acronym: SV-FI MAV XI.)
Investor: Masaryk University
MUNI/A/1230/2021, interní kód MUName: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity 22 (Acronym: SKOMU)
Investor: Masaryk University
MUNI/G/1446/2018, interní kód MUName: Deciphering the mechanisms of mammary epithelial branched pattern formation through iterative biological and mathematical modelling
Investor: Masaryk University, INTERDISCIPLINARY - Interdisciplinary research projects
PrintDisplayed: 19/4/2024 05:48