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Abstract 

Background:  The recent big data revolution in Genomics, coupled with the emergence of Deep Learning as a set 
of powerful machine learning methods, has shifted the standard practices of machine learning for Genomics. Even 
though Deep Learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks 
(RNNs) are becoming widespread in Genomics, developing and training such models is outside the ability of most 
researchers in the field.

Results:  Here we present ENNGene—Easy Neural Network model building tool for Genomics. This tool simplifies 
training of custom CNN or hybrid CNN-RNN models on genomic data via an easy-to-use Graphical User Interface. 
ENNGene allows multiple input branches, including sequence, evolutionary conservation, and secondary structure, 
and performs all the necessary preprocessing steps, allowing simple input such as genomic coordinates. The network 
architecture is selected and fully customized by the user, from the number and types of the layers to each layer’s 
precise set-up. ENNGene then deals with all steps of training and evaluation of the model, exporting valuable metrics 
such as multi-class ROC and precision-recall curve plots or TensorBoard log files. To facilitate interpretation of the 
predicted results, we deploy Integrated Gradients, providing the user with a graphical representation of an attribu-
tion level of each input position. To showcase the usage of ENNGene, we train multiple models on the RBP24 dataset, 
quickly reaching the state of the art while improving the performance on more than half of the proteins by including 
the evolutionary conservation score and tuning the network per protein.

Conclusions:  As the role of DL in big data analysis in the near future is indisputable, it is important to make it avail-
able for a broader range of researchers. We believe that an easy-to-use tool such as ENNGene can allow Genomics 
researchers without a background in Computational Sciences to harness the power of DL to gain better insights into 
and extract important information from the large amounts of data available in the field.

Keywords:  Deep Learning, Convolutional Neural Network, Recurrent Neural Network, Evolutionary Conservation 
Score, RNA Secondary Structure, GUI

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Artificial Neural Networks (ANNs) are a family of 
Machine Learning (ML) algorithms, which learn com-
plex tasks via the connection of simple artificial neurons. 
ANNs have been used for a multitude of tasks since their 

inception more than 50 years ago [1], such as image and 
signal processing, natural language processing and trans-
lation, and many more. In recent years, the field of ANNs 
has undergone a revolutionary change, with the adoption 
of Deep Neural Networks, or Deep Learning (DL) [2]. 
These types of ANNs utilize a large number of stacked 
artificial layers of neurons in order to learn increasingly 
complex representations of input data. DL consistently 
outperforms other ML methods in cases where moder-
ately large training sets are available.
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Some of the commonly used networks for Deep Learn-
ing are Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs). CNNs make use of 
Convolutional neural layers to effectively model specific 
aspects of input samples while reducing the number of 
parameters that need to be trained. That allows training 
with fewer input data, together with the development of 
deeper architectures. RNNs utilize different architectures 
such as Long-Short Term Memory (LSTM) and Gated 
Recurrent Units (GRU) to introduce a temporal memory 
capability. In Genomics, DL models were quickly applied 
to problems such as the prediction of biomolecule bind-
ing specificities [3], prediction of the effect of non-cod-
ing variants [4], learning the functional activity of DNA 
sequences [5], and many more [6].

Training DL models from scratch requires high-level 
programming skills and an understanding of DL pro-
gramming libraries. Recently, projects such as pysster 
[7], Selene [8], or Janggu [9] have been developed to 
standardize the usage of Deep Learning in Genomics 
and lower the prerequisite for training DL models for 
genomics data. Pysster [7] is a Python package focusing 
on CNNs for biological sequence data. Pysster enables 
learning sequence and structure motifs and visualizing 
them along with information about their positional and 
class enrichment. Selene [8] is a PyTorch-based library 

for working with sequence-based DL models. It offers 
workflows for applying an existing model, retraining it 
on new data, or developing new model architectures. 
Though it is meant to be run by simple scripts, the input 
is provided via extensive configuration files. When creat-
ing a new architecture, users must be able to define it in 
a separate Python file properly. Together, this is a rather 
intricate process that can discourage researchers not 
versed in programming or scripting. Finally, Janggu [9] 
is a library offering support for both Keras and PyTorch 
[10] backend, together with unified dataset objects sim-
plifying data acquisition and preprocessing. It supports 
visualization options, including genomic tracks and input 
feature importance via Integrated Gradients. While these 
tools offer a measure of facilitation for developing DL 
models, they still expect users to have at least intermedi-
ate programming skills.

We have experienced the need for an accessible and 
user-friendly framework that could allow Genomics 
researchers with minimal programming skills to access 
the power of applying DL on their preferred dataset. 
With this motivation, we have developed ENNGene, a 
tool utilizing a user-friendly Graphical User Interface 
(GUI) to handle data preprocessing, model building, 
training, and evaluation, as well as interpretation of the 
predicted results (Fig. 1). ENNGene allows users to select 

Fig. 1  a The Graphical User Interface (GUI) of ENNGene—ENNGene is fully operated via the GUI. Users define the input parameters using simple 
interactive elements, such as dropdown menus or checkboxes. Warnings and hints are displayed via the GUI in a user-friendly way directly as the 
user interacts with it. Web browser being at the basis of the GUI, interactive plots or results are visualized immediately throughout or after the 
calculations. b Simplified data flow—ENNGene comprises multiple subsequent modules with separate functionality, covering the whole process 
from input preparation and network architecture definition to model evaluation and interpretation
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among up to three input branches—genomic sequence, 
predicted RNA secondary structure, and, unlike any 
other DL implementation for Genomics, phylogenetic 
conservation scores. In the last decade, most of the pro-
gress in the DL field has been concentrated on finding 
better performing, easier-to-train deep neural networks. 
In practice, it is also essential to be able to verify the 
results and validate the process that led to them. That is 
especially important in applications such as the Genomic 
and Biomedical fields, where the model’s reliability must 
be guaranteed. ENNGene offers an interpretation of 
trained models based on a novel implementation of the 
Integrated Gradients method [11] that can be applied on 
multi-branch networks.

We demonstrate the functionality of ENNGene on the 
use case of a well-known benchmark dataset based on the 
classification of RNA Binding Protein (RBP) binding sites 
[12]. On this benchmark, we show that models developed 
using ENNGene, without specific hand-crafted features 
based on domain knowledge, match or outperform state-
of-the-art methods created explicitly for this task.

Implementation
ENNGene uses the open-source Streamlit framework 
(https://​strea​mlit.​io/) and is built atop TensorFlow [13], 
one of the most popular DL backends. It runs locally on 
both physical and virtual machines, using either Central 
Processing Units (CPUs) or Graphics Processing Units 
(GPUs), which offer a considerable speed-up when train-
ing larger networks [14]. Our major considerations in the 
implementation of ENNGene were ease of use, generic 
functionality on various genomic problems, and repro-
ducibility of results. The software consists of four linearly 
connected modules: (a) preprocessing module, (b) train-
ing module, (c) prediction module, and (d) evaluation 
module.

User input
The minimal user input is a Browser Extensible Data 
(BED) file containing DNA/RNA sequences and a 
genome or transcriptome (fasta) reference file. An addi-
tional PhyloP [15] reference file must be provided if the 
user wishes to utilize the evolutionary conservation. Such 
reference files are readily available for most organisms 
from public repositories such as Ensembl [16] or UCSC 
Genome Tables Browser [17]. Optionally, the user may 
also input a log file (Yaml) from a previous ENNGene 
run, instantly reproducing the input configuration. This 
way, users can guarantee full reproducibility across dif-
ferent instances of ENNGene, provided the same input 
files are available. To avoid re-mapping the same inputs 

to the same reference multiple times, ENNGene provides 
an option to save and reuse mapped files between runs.

Module 1: preprocessing
In the first module, data is preprocessed into a format 
convenient for CNN input. The user may select one 
or more input types engineered from the given inter-
val files. (a) Sequence – one-hot encoded RNA or DNA 
sequence, obtained by mapping given intervals to the 
reference genome or transcriptome fasta file. (b) RNA 
secondary structure is based on the mapped sequences 
and computed by the ViennaRNA2 package [18]. When 
calculating the secondary structure, users can choose 
the number of CPU cores dedicated to the computa-
tion. (c) The evolutionary conservation score is mapped 
similarly to the sequence, with the user-provided phy-
logenetic conservation file as a reference.

As required by CNNs, all input sequences must be of 
the same length. One strategy for ensuring same length 
inputs is N or 0 padding [19, 20]. However, such an 
approach runs the danger of introducing a blind spot 
or even learning the padding artifact above the legiti-
mate features when sequences of different classes do 
not have the same length distribution [21]. In the case 
of ENNGene, we avoid this by extending or trimming 
the provided genomic coordinates to the same length, 
thus ‘padding’ our intervals with actual neighboring 
sequences and other features.

The training of CNNs can be affected by an imbalance 
in class sizes [22]. It is common practice to artificially 
balance the various classes in training sets by downsam-
pling the more populous classes. ENNGene makes this 
optional preprocessing step easy by allowing users to 
define a reduction by an absolute or relative dataset size 
(e.g., 5,000 out of 10,000 sequences, or 0.5 ratio).

Following this step, datasets are split into ‘training’, 
‘validation’, ‘evaluation’ (testing), and ‘black-box’ (left-
out testing) randomly at a user-defined ratio or based 
on reference chromosome number. The ‘training’ and 
‘validation’ datasets are used throughout the training 
process. The ‘evaluation’ dataset is used for model evalu-
ation directly after the training. The last one, the ‘black-
box’ dataset, is optional and is never seen by any part of 
the training or evaluation modules of ENNGene. It is a 
truly left-out dataset that can be used for final evalua-
tion after multiple rounds of hyperparameters tuning and 
architecture exploration in order to avoid overfitting the 
evaluation dataset. Splitting the sequences based on the 
chromosome they are found on also ensures that each 
of these datasets comes from entirely unrelated genomic 
regions and that there is no possibility for one part of the 
process encountering a left-out locus, for example, when 
using input files with nearly overlapping genomic loci.

https://streamlit.io/
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Module 2: training
In the second module, the user can use the GUI to define 
the neural network architecture and training hyperpa-
rameters: (a) batch size, (b) learning rate, and (c) choose 
one of three available optimizers: stochastic gradient 
descent (SGD)—preset with Nesterov’s momentum to 0.9 
[23], RMSprop [24], or Adam [25]. If SGD is selected, two 
additional learning rate options become available, using 
a learning rate scheduler or applying one cycle policy 
[26]. Users may also define a specific number of training 
epochs or apply the early stopping callback, which stops 
the training when there is no more improvement on the 
validation dataset. We have opted to simplify hyperpa-
rameter selection as much as possible while not compro-
mising the power of the produced models.

ENNGene enables the building of CNNs consisting of 
convolutional layers followed by fully connected layers, 
or hybrid CNN-RNNs. In the latter case, the convolu-
tional layers are first followed by recurrent layers—either 
GRU [27] or LSTM [28], finally followed by dense lay-
ers. The details of the network architecture are defined 
per each section separately, having one section for each 
selected branch corresponding to the preprocessed input 
types and one section for the common part of the net-
work following the concatenation of the branches.

After setting up the number and types of the layers, the 
layer parameters can be customized. For each layer, users 
can pick a dropout rate [29], choose to apply the batch 
normalization [30], and set the layer-specific options—
the number and size of the convolutional filters, the 
number of dense or recurrent units, and the application 
of a bidirectional wrapper on the recurrent layers. In 
accordance with the focus of the ENNGene on classifica-
tion problems for two or more classes, the loss function 
is preset to categorical cross-entropy, together with the 
last layer set as the softmax activation function with the 
number of units corresponding to the number of classes.

Models created by ENNGene are trained using the 
TensorFlow framework with the support of GPU acceler-
ation. The GPU is automatically detected and used when 
available on the machine, providing considerable speed 
up during the training phase. Throughout the training, 
users can monitor the progress, together with the devel-
opment of the accuracy and loss metrics on an interactive 
plot. These metrics are also plotted and exported for later 
use.

After the training, the resulting model is directly evalu-
ated on the user-defined evaluation dataset. Above the 
basic metrics, the receiver operating characteristic (ROC) 
and precision-recall curves, both adjusted for the multi-
class classification problems, are calculated and exported 
in the form of plots and tables (Fig.  2 (a, b)). Further-
more, TensorBoard [13] files allowing visualization and 

browsing of the model architecture, as well as metrics 
comparison between multiple runs, can be produced.

Modules 3&4: prediction and evaluation
The final two modules allow the user to evaluate a pre-
viously trained model on a different dataset (Evaluation) 
or apply the model to classify novel data samples (Predic-
tion). The two modules share most of the functionality; 
therefore, they will be addressed together in this last sec-
tion. At this point, the user may upload any pre-trained 
model, either produced by ENNGene or not, and a set 
of genomic loci to be evaluated either with known class 
labels (Evaluation) or not (Prediction).

Loci to be evaluated are preprocessed in the same way 
described in the first module. For evaluation purposes, 
the black-box dataset prepared during the preprocessing 
of the original data can be used. If the trained model does 
not use a conservation branch, then even simple fasta 
files containing sequences of the correct length may be 
used for prediction.

Calculated predictions are exported as probability 
scores for each class, with the highest-scoring class high-
lighted. ENNGene does not return a single ‘predicted 
class’, as that can vary based on the subjective choice of a 
threshold for each class. Optionally, Integrated Gradients 
(IG) [11] are calculated for each sample and exported as 
a list of scores for custom visualization. At the same time, 
the top ten predictions per class are directly displayed in 
the browser (Fig. 2 (c)). The IG technique is based on cal-
culating the difference between the baseline, a vector of 
zeros in our case, and an input sequence. That depend-
ency is the core of the attribution and is expressed as the 
color adjustment of each nucleobase across all the input 
types. The higher the attribution of the sequence to the 
prediction, the more pronounced red is its color. On the 
other hand, blue means a low level of attribution. The 
attribution visualization can be used for auxiliary evalu-
ation and debugging of the model.

Results and discussion
ENNGene is a generic tool created to enable research-
ers to produce state-of-the-art DL models with mini-
mal programming knowledge. It was developed with a 
focus on ease of use, reproducibility, and interpretability 
while avoiding compromising the power of the produced 
models.

Ease of use and reproducibility
The entirety of ENNGene’s code is freely and openly 
available at GitHub at https://​github.​com/​ML-​Bioin​fo-​
CEITEC/​ENNGe​ne under an open-source GNU Affero 

https://github.com/ML-Bioinfo-CEITEC/ENNGene
https://github.com/ML-Bioinfo-CEITEC/ENNGene
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General Public License. ENNGene runs on a Linux sys-
tem and was extensively tested on the Ubuntu distribu-
tion. Using the Anaconda package manager, we ensure 
containerization and safe un/installation of the applica-
tion. A step-by-step guided installation script, as well as 
extensive documentation, can be found at the project’s 
code repository and as a supplementary file accompa-
nying this publication (Additional file 1).

We have taken various steps to improve the user expe-
rience. The application verifies every provided input 
information. Specific warnings or hints are returned to 
the user immediately during the parameter set-up or just 
before any further calculations are started. All the user 

input, warnings, and errors are logged throughout the 
whole session. After the session is finished, the log file 
is placed in the user-specified output folder. If an error 
occurs during the session, the user is notified of the loca-
tion of the log file containing the additional details.

To ensure full reproducibility of the results, ENNGene 
logs all the parameters set by the user and exports them 
as a Yaml file. The file can be imported into the applica-
tion at any time in the future, immediately setting all the 
parameters for the chosen task. This way, users can recre-
ate all their results or quickly tune chosen hyperparam-
eters. Above that, all the tracked parameters are exported 
into one.tsv file, shared across all the application sessions 

Fig. 2  a Precision-recall curve—the precision-recall metric indicates the relationship between the model’s positive predictive value (precision) 
and sensitivity (recall) at various thresholds. b Receiver Operating Characteristic (ROC) curve—the ROC metric is calculated as a ratio between the 
true positive rate and the false positive rate at various thresholds. Both the metrics, precision-recall and ROC calculated by ENNGene, are adjusted 
for multi-class classification problems and thus can be applied to models with any number of classes. Both curves and other metrics (accuracy, 
loss, AUROC) are a standard part of exported results after a model evaluation, optionally with Integrated Gradients’ scores. c Integrated Gradients 
visualization—IG scores of ten sequences with the highest predicted score per class are directly visualized in the browser. Scores are displayed in 
separate rows for each input type used—sequence, secondary structure, and conservation score. The higher the nucleotide’s attribution to the 
prediction of a given class, the more pronounced is its red color. On the other hand, the blue color means a low level of attribution
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within the same output folder, with one line per session. 
This file can significantly streamline the comparison of 
multiple models, as the user has all the preprocessing and 
training parameters used to create each of the models in 
one place.

Case Study: RBP24 classification—comparison to the state 
of the art
To demonstrate the functionality of ENNGene, we chose 
the problem of the RNA-binding proteins (RBPs) target 
site classification. So far, DL methods published in the 
field provide one or more trained models (e.g. [3] and 
[31]) prepared specifically to address this task. For exam-
ple, a wide range of pretrained models for RBP binding 
site prediction can be found on the RBPsuite web server 
[32]. Using the RBPsuite, users can choose from models 
trained on linear RNA based on the iDeepS architecture 
[33] or trained on the circular RNA with the underlying 
CRIP architecture [34]. Though operated via GUI, its 
function is limited to applying a trained model too, with 
no option of training a new one.

CNNs were applied to the RBP target site classifica-
tion problem for the first time in 2015 [3]. Since then, 
there have been many novel approaches, including sev-
eral different network architectures. With the target RNA 
sequence as the primary feature, predicted secondary 
structure [7, 20, 31, 35–37] and transcript region type 
[38, 39] are the other most commonly used features. Up 
to date, several different network types have been applied 
to the RBP binding site classification problem. Those 
include the CNN [7, 36], RNN [40], or often a combina-
tion of the two [20, 31, 36, 39, 41], deep belief network 
(DBN) [35, 38], deep residual network [42], and atten-
tion network [37]. ENNGene allows the users to use the 
two most widely applied architectures—CNN and hybrid 
CNN-RNN networks. In most cases, one model per RBP 
is trained. In a few exceptions, a multi-label classifier is 
built for all the proteins [39], for example, by applying 
classifier chains to learn the correlation between labels 
[43]. Using ENNGene, we have applied the two most 
commonly used network types (CNN and hybrid CNN-
RNN) on the RBP24 dataset introduced in GraphProt 
[12], producing one model for each RBP in the dataset.

We selected this widely used benchmark dataset as it 
has already been used for benchmarking by several state-
of-the-art methods [3, 19, 31, 35, 42]. The RBP24 dataset 
consists of 21 RNA-binding protein target sites from 24 
CLIP-seq experiments. Since ENNGene works with input 
bed files, we extracted the interval coordinates from the 
sequence header from the original RBP24 dataset (see the 
extracted genomic coordinates at the project’s GitHub 
repository; the original fasta files can be obtained from 

GraphProt repository at http://​www.​bioinf.​uni-​freib​urg.​
de/​Softw​are/​Graph​Prot/). Following the original data-
set, intervals were mapped to the human (hg19) genome 
reference on a 150 nt long window centered at the ini-
tial coordinates. The length of 150 nucleotides has been 
previously used in several RBP target site predictors [35] 
and has been proven to be the best choice for secondary 
structure prediction [44]. The base-wise conservation 
scores by PhyloP [15] from the PHAST package [45], cre-
ated by multiple alignments of 99 vertebrate genomes to 
the human genome, were obtained from the UCSC file 
storage. Only the PTBv1 dataset was mapped to the older 
(hg18) genome reference and the corresponding Phy-
loP files (with 43 vertebrate genomes aligned) according 
to the original dataset specification. ENNGene being a 
generic tool works well with any genomic assembly and 
depth of conservation file.

The number of samples in the RBP24 dataset widely 
differs between the experiments, with the ratio between 
positive and negative classes always close to 1:1. We used 
the original training files for model training and param-
eter search purposes, dividing them into training, vali-
dation, and testing datasets. The original testing samples 
were left entirely out as a ‘black-box’ dataset. We chose 
the best models based on the Area Under Receiver 
Operating Characteristic curve (AUROC) metric upon 
the testing dataset while prioritizing the simplest archi-
tecture available. We performed a human-guided search 
of selected hyperparameters since fully covering the data 
and model hyperparameter space by grid search would 
be too time-consuming for a simple demonstration. 
The tuned parameters were number and combination 
of branches, batch size, number of epochs, optimizer, 
learning rate, number of layers per section, as well as the 
type of the layer and specific parameters per layer (num-
ber of units/filters, bidirectionality, kernel size, dropout 
rate, batch normalization). The models were trained 
for different numbers of epochs, optionally using the 
early stopping with parameters set to patience = 10 and 
delta = 0.01 to avoid overfitting. A complete list of the 
hyperparameters used for each final model can be found 
in Additional file 2.

The left-out files were used only for the final evalua-
tion of the already tuned models. We show that using 
ENNGene we were able to produce models that perform 
to the current state-of-the-art standard. For more than 
half of the experiments in the RBP24 dataset, ENNGene 
models outperform the state of the art, producing an 
improved average AUROC value of 0.947 on the whole 
RBP24 dataset (Table  1, Additional file  3). All the final 
trained models can be found at the project’s GitHub 
repository.

http://www.bioinf.uni-freiburg.de/Software/GraphProt/
http://www.bioinf.uni-freiburg.de/Software/GraphProt/
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Importance of network branches beyond sequence
Easily producing Deep Learning models at the state-
of-the-art level is the primary objective of ENNGene. 
However, we are also interested in exploring additional 
features beyond sequence, namely evolutionary conser-
vation and predicted RNA secondary structure (Fig.  3). 
Previously [46], we have used a multi-branch approach 
with the same features to identify small RNA loci, out-
performing the state of the art. Both the conservation 
and secondary structure branches were shown to be 
important for that task. In the RBP24 dataset presented 
here, we investigated networks of various configurations, 
starting from the simple sequence, adding either evolu-
tionary conservation or secondary structure branches, 
and finally, all three branches together. We identified that 
adding an evolutionary conservation branch improved 
the performance of all but five protein datasets (FUS, 
HNRNPC, ELAVL1—PAR-CLIP C, PTB, and TDP43) 

that had similar performance with or without the con-
servation feature. On the contrary, we had not registered 
improvement in any model when the secondary structure 
was included.

Evolutionary conservation features have been exten-
sively used by machine learning classifiers predating the 
beginning of DL, along with many other features such as 
amino acid composition and hydrophobicity, predicted 
secondary structure, and other global protein features 
[47]. An essential concept in CNNs is that using convo-
lutional layers can bypass the process of derivative feature 
generation, as the network itself learns how to derive com-
plex features from raw data. However, unlike, for exam-
ple, a predicted secondary structure, the conservation 
information can not be derived from the given sequence, 
and as such, it may provide the network with additional 
information. The group of authors behind the iDeepV and 
iDeepE methods [19, 42] showed that in both approaches, 

Table 1  AUROC values from the evaluation of the final models, together with the RBP24 dataset properties. Models created using 
ENNGene outperform the state-of-the-art tools on more than half of the experiments in the RBP24 dataset while also improving the 
average AUROC value on the whole dataset. The AUROC values of the other tools are  taken from the original publications. The highest 
AUROC score reached for the experiment is highlighted in bold

Protein RBP-24

Dataset info Results (AUROC)

Clip method # positives # negatives GraphProt deepnet-rbp DeepBind iDeepV iDeepE DeepRKE ENNGene

Ago1-4 PAR-CLIP 36,902 31,310 0.895 0.881 0.919 0.925 0.915 0.932 0.927

Ago2 HITS-CLIP 48,095 44,251 0.765 0.809 0.879 0.886 0.884 0.9 0.94
ALKBH5 PAR-CLIP 1213 1197 0.68 0.714 0.668 0.643 0.758 0.74 0.877
C17ORF85 PAR-CLIP 1860 1849 0.8 0.82 0.755 0.74 0.83 0.824 0.916
C22ORF28 PAR-CLIP 9369 9136 0.751 0.792 0.809 0.823 0.837 0.832 0.908
CAPRIN1 PAR-CLIP 8140 7901 0.855 0.834 0.888 0.824 0.893 0.869 0.896
ELAVL1 HITS-CLIP 8595 8436 0.955 0.966 0.98 0.966 0.964 0.978 0.991

PAR-CLIP (A) 27,275 23,974 0.959 0.966 0.972 0.973 0.988 0.978 0.965

PAR-CLIP (B) 9464 9283 0.935 0.961 0.961 0.962 0.971 0.98 0.987
PAR-CLIP (C) 125,202 113,686 0.991 0.994 0.989 0.99 0.979 0.996 0.989

EWSR1 PAR-CLIP 16,292 14,720 0.935 0.966 0.969 0.962 0.969 0.971 0.972
FUS PAR-CLIP 34,581 31,480 0.968 0.98 0.983 0.976 0.985 0.988 0.977

hnRNPC iCLIP 21,472 19,794 0.952 0.962 0.979 0.979 0.976 0.978 0.977

IGF2BP1-3 PAR-CLIP 8539 6838 0.889 0.879 0.939 0.923 0.947 0.943 0.946

MOV10 PAR-CLIP 13,793 12,987 0.863 0.854 0.899 0.896 0.916 0.92 0.922
PUM2 PAR-CLIP 9116 8227 0.954 0.971 0.964 0.965 0.967 0.965 0.972
PTB HITS-CLIP 44,574 43,700 0.937 0.983 0.944 0.936 0.944 0.953 0.954

QKI PAR-CLIP 10,276 9142 0.957 0.983 0.973 0.965 0.97 0.975 0.984
SFRS1 HITS-CLIP 19,438 17,195 0.898 0.931 0.929 0.905 0.946 0.945 0.939

TAF15 PAR-CLIP 7298 6606 0.97 0.983 0.978 0.978 0.976 0.985 0.985
TDP43 iCLIP 92,031 75,079 0.874 0.876 0.93 0.935 0.945 0.954 0.924

TIA1 iCLIP 18,049 16,135 0.861 0.891 0.929 0.941 0.937 0.942 0.959
TIAL1 iCLIP 42,332 36,652 0.833 0.87 0.922 0.929 0.934 0.946 0.95
ZC3H7B PAR-CLIP 20,962 20,018 0.82 0.796 0.875 0.883 0.907 0.914 0.862

AVERAGE AUROC: 0.887 0.903 0.918 0.913 0.931 0.934 0.947
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they were able to reach state-of-the-art performance on 
the RBP24 dataset without using secondary structure 
information. DeepCLIP [41] presents a hybrid CNN-RNN 
network that outperforms structure-based models, as well 
as the iDeepV and iDeepE models, using sequence data 
alone. The authors hypothesize that context-dependency 
can be better modeled implicitly by the recurrent layers 
rather than by predefined features, such as the predicted 
secondary structure. However, other models such as 
DeepRKE [31], Deepnet-rbp [35], and DLPRB [20] show 
a performance improvement when utilizing secondary 
structure features in a small fraction of proteins. That 
emphasizes the need for individually designed architec-
tures for each protein separately. In the case of evolu-
tionary conservation, which is not a derivative feature, it 
is clear that substantial additional information is indeed 
given to the network under training. Conservation fea-
tures have not been used by other DL algorithms tackling 
this question, probably because of the difficulty of retriev-
ing and preprocessing conservation data. ENNGene’s pre-
processing module takes care of this process for the user 
and makes this important feature available.

It has been previously shown that the combination of 
derived/hand-crafted and learned features can lead to bet-
ter performance [48]. We have avoided adding more hand-
crafted features to retain the generality of ENNGene to deal 
with genomic questions. We decided to retain the second-
ary structure feature as it is a commonly used feature that 
we have found useful in other applications of CNNs [46].

Interpretation of predictions
To gain an insight into what a DL model has learned, 
many studies utilizing CNNs use a heuristic based on 
convolution kernel analysis [3, 20, 36, 41]. This approach 
is characteristic for the Genomics field, as it allows one 

to visualize a learned pattern as a pseudo motif-repre-
senting position weight matrix [49]. However, for the 
full understanding of the relationship between an input 
sequence and an output prediction, simply analyzing fil-
ters of one convolutional layer is not sufficient.

To evaluate the importance of each nucleotide, [3] 
applied input modification, also known in the field as an 
in silico mutagenesis. In this approach, each nucleotide 
is substituted by every other possible nucleotide, and a 
prediction is re-calculated for every ‘mutated’ sequence 
to identify the essential parts. Such an exhaustive input 
perturbation involves very high computational costs. 
Increasing the number of nucleotides to be perturbed 
exponentially increases the computational time needed 
to calculate effects. Therefore, in most cases, only a part 
of the sequence is modified, based either on random 
selection or on a previously defined motif, and important 
parts of the sequence might be completely ignored [6].

Gradient-based approaches [50–56], to the contrary, 
are not only more computationally efficient but provide 
information about the whole sequence, allowing to find 
previously unexpected essential sections in the sequence. 
One issue of the earlier methods [50, 51] is neuron satu-
ration. Given a sequence with two binding regions, such 
an algorithm would assign a low score to both regions, as 
each such region is not individually important enough for 
the prediction. To address the saturation problem, meth-
ods like DeepLift [55] and Integrated Gradients [11] use a 
background reference to properly distinguish the crucial 
elements from noise. Integrated Gradients, the method 
adopted by ENNGene, gained popularity due to its math-
ematical and theoretical justifications and computational 
efficiency compared to alternative approaches. IGs can 
be applied to any differentiable model, not strictly focus-
ing on the CNNs, and are suitable for large networks and 

Fig. 3  Simplified representation of model architecture. The model in this example was trained on 150 nt long sequences using all three available 
input types—sequence, secondary structure, and conservation score—each represented by a separate model branch. After the network extracts 
information from the separate inputs, the branches are concatenated, and the network continues learning interdependencies by looking at the 
combined information via dense or recurrent layers. Boxes represent individual layers, while the adjacent numbers indicate the data dimensionality. 
A plain graphical representation of the network architecture is produced and exported by ENNGene for every trained model
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feature spaces without the undesirable computational 
overhead. Only one recent RBP target site classifier [39] 
utilizes the IGs to see what parts of the sequence and 
region, the two input types adopted in the study, were 
responsible for the predicted category. Similarly, for 
ENNGene, we use IGs to visualize important parts of the 
input within all branches of the trained model.

Future development
At this point, ENNGene allows the production of state-of-
the-art multi-branch CNN and CNN-RNN models via a 
user-friendly interface while providing one level of interpreta-
tion of the produced results. Despite the ease of training new 
models with ENNGene, automatic identification of the opti-
mal model architecture and hyperparameter search would be 
an important future step. Neural Architecture Search (NAS) 
is an automated search of an optimal architecture on given 
data, using predefined building blocks. Using NAS, the net-
work building blocks are handled similarly to other hyper-
parameters. Since around 2015, there are already several 
different NAS techniques [57]. It has been shown that NAS 
can be on par or outperform hand-designed architectures 
[58, 59]. Recently, NAS was implemented on genomics data, 
improving processing time and complexity of use [60]. Even 
with the current computational power at hand, it is still a very 
resource-demanding process outside most research groups’ 
capabilities. We aim to incorporate some type of NAS in the 
future of ENNGene, as computational resources become 
more readily available and methods for NAS more efficient.

Currently, the process of manually tuning hyperparam-
eters is fairly simple. Users can use the option to load the 
parameters from any previous session, change just the cho-
sen parameters without setting up the rest, and start training 
again within moments. Nevertheless, we would like to add 
a separate module dedicated to automated hyperparameter 
tuning. The new module would provide options such as ran-
dom or grid search of user-defined parameter space.

Finally, to support a broader user base in the future, 
we are considering setting up a dedicated server with the 
most common genome references available. That way, 
users would need to provide only the interval files, mak-
ing the usage of ENNGene even easier. Depending on the 
current costs and funds available, the server might pro-
vide the GPU power, speeding up the NN training for the 
users with no other access to it.

Conclusions
As genomic data generation accelerates, researchers in 
the field will increasingly require powerful but easy-to-
use data science and machine learning methods. In this 
work, we have presented ENNGene, a tool that allows 
the development and interpretation of Deep Learning 

models without advanced programming knowledge. We 
believe that ENNGene will empower Genomics research-
ers to explore their data using the powerful models that 
ENNGene can produce. We have demonstrated these 
abilities by building state-of-the-art models for a well-
known and competitive benchmark of RNA Binding Pro-
tein target sites. It is our intention to support ENNGene 
and its user base with continuous development and 
improvement over the following years, making it an 
important tool for the Genomics research community.
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