
Chalupová et al. BMC Genomics (2022) 23:248
https://doi.org/10.1186/s12864-022-08414-x

SOFTWARE

ENNGene: an Easy Neural Network model
building tool for Genomics
Eliška Chalupová1,2, Ondřej Vaculík1,2, Jakub Poláček3, Filip Jozefov3, Tomáš Majtner2 and Panagiotis Alexiou2*   

Abstract 

Background:  The recent big data revolution in Genomics, coupled with the emergence of Deep Learning as a set
of powerful machine learning methods, has shifted the standard practices of machine learning for Genomics. Even
though Deep Learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) are becoming widespread in Genomics, developing and training such models is outside the ability of most
researchers in the field.

Results:  Here we present ENNGene—Easy Neural Network model building tool for Genomics. This tool simplifies
training of custom CNN or hybrid CNN-RNN models on genomic data via an easy-to-use Graphical User Interface.
ENNGene allows multiple input branches, including sequence, evolutionary conservation, and secondary structure,
and performs all the necessary preprocessing steps, allowing simple input such as genomic coordinates. The network
architecture is selected and fully customized by the user, from the number and types of the layers to each layer’s
precise set-up. ENNGene then deals with all steps of training and evaluation of the model, exporting valuable metrics
such as multi-class ROC and precision-recall curve plots or TensorBoard log files. To facilitate interpretation of the
predicted results, we deploy Integrated Gradients, providing the user with a graphical representation of an attribu-
tion level of each input position. To showcase the usage of ENNGene, we train multiple models on the RBP24 dataset,
quickly reaching the state of the art while improving the performance on more than half of the proteins by including
the evolutionary conservation score and tuning the network per protein.

Conclusions:  As the role of DL in big data analysis in the near future is indisputable, it is important to make it avail-
able for a broader range of researchers. We believe that an easy-to-use tool such as ENNGene can allow Genomics
researchers without a background in Computational Sciences to harness the power of DL to gain better insights into
and extract important information from the large amounts of data available in the field.

Keywords:  Deep Learning, Convolutional Neural Network, Recurrent Neural Network, Evolutionary Conservation
Score, RNA Secondary Structure, GUI

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Artificial Neural Networks (ANNs) are a family of
Machine Learning (ML) algorithms, which learn com-
plex tasks via the connection of simple artificial neurons.
ANNs have been used for a multitude of tasks since their

inception more than 50 years ago [1], such as image and
signal processing, natural language processing and trans-
lation, and many more. In recent years, the field of ANNs
has undergone a revolutionary change, with the adoption
of Deep Neural Networks, or Deep Learning (DL) [2].
These types of ANNs utilize a large number of stacked
artificial layers of neurons in order to learn increasingly
complex representations of input data. DL consistently
outperforms other ML methods in cases where moder-
ately large training sets are available.

Open Access

*Correspondence: panagiotis.alexiou@ceitec.muni.cz
2 Central European Institute of Technology (CEITEC), Masaryk University,
Brno, Czechia
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-3437-7482
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-022-08414-x&domain=pdf

Page 2 of 11Chalupová et al. BMC Genomics (2022) 23:248

Some of the commonly used networks for Deep Learn-
ing are Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). CNNs make use of
Convolutional neural layers to effectively model specific
aspects of input samples while reducing the number of
parameters that need to be trained. That allows training
with fewer input data, together with the development of
deeper architectures. RNNs utilize different architectures
such as Long-Short Term Memory (LSTM) and Gated
Recurrent Units (GRU) to introduce a temporal memory
capability. In Genomics, DL models were quickly applied
to problems such as the prediction of biomolecule bind-
ing specificities [3], prediction of the effect of non-cod-
ing variants [4], learning the functional activity of DNA
sequences [5], and many more [6].

Training DL models from scratch requires high-level
programming skills and an understanding of DL pro-
gramming libraries. Recently, projects such as pysster
[7], Selene [8], or Janggu [9] have been developed to
standardize the usage of Deep Learning in Genomics
and lower the prerequisite for training DL models for
genomics data. Pysster [7] is a Python package focusing
on CNNs for biological sequence data. Pysster enables
learning sequence and structure motifs and visualizing
them along with information about their positional and
class enrichment. Selene [8] is a PyTorch-based library

for working with sequence-based DL models. It offers
workflows for applying an existing model, retraining it
on new data, or developing new model architectures.
Though it is meant to be run by simple scripts, the input
is provided via extensive configuration files. When creat-
ing a new architecture, users must be able to define it in
a separate Python file properly. Together, this is a rather
intricate process that can discourage researchers not
versed in programming or scripting. Finally, Janggu [9]
is a library offering support for both Keras and PyTorch
[10] backend, together with unified dataset objects sim-
plifying data acquisition and preprocessing. It supports
visualization options, including genomic tracks and input
feature importance via Integrated Gradients. While these
tools offer a measure of facilitation for developing DL
models, they still expect users to have at least intermedi-
ate programming skills.

We have experienced the need for an accessible and
user-friendly framework that could allow Genomics
researchers with minimal programming skills to access
the power of applying DL on their preferred dataset.
With this motivation, we have developed ENNGene, a
tool utilizing a user-friendly Graphical User Interface
(GUI) to handle data preprocessing, model building,
training, and evaluation, as well as interpretation of the
predicted results (Fig. 1). ENNGene allows users to select

Fig. 1  a The Graphical User Interface (GUI) of ENNGene—ENNGene is fully operated via the GUI. Users define the input parameters using simple
interactive elements, such as dropdown menus or checkboxes. Warnings and hints are displayed via the GUI in a user-friendly way directly as the
user interacts with it. Web browser being at the basis of the GUI, interactive plots or results are visualized immediately throughout or after the
calculations. b Simplified data flow—ENNGene comprises multiple subsequent modules with separate functionality, covering the whole process
from input preparation and network architecture definition to model evaluation and interpretation

Page 3 of 11Chalupová et al. BMC Genomics (2022) 23:248 	

among up to three input branches—genomic sequence,
predicted RNA secondary structure, and, unlike any
other DL implementation for Genomics, phylogenetic
conservation scores. In the last decade, most of the pro-
gress in the DL field has been concentrated on finding
better performing, easier-to-train deep neural networks.
In practice, it is also essential to be able to verify the
results and validate the process that led to them. That is
especially important in applications such as the Genomic
and Biomedical fields, where the model’s reliability must
be guaranteed. ENNGene offers an interpretation of
trained models based on a novel implementation of the
Integrated Gradients method [11] that can be applied on
multi-branch networks.

We demonstrate the functionality of ENNGene on the
use case of a well-known benchmark dataset based on the
classification of RNA Binding Protein (RBP) binding sites
[12]. On this benchmark, we show that models developed
using ENNGene, without specific hand-crafted features
based on domain knowledge, match or outperform state-
of-the-art methods created explicitly for this task.

Implementation
ENNGene uses the open-source Streamlit framework
(https://​strea​mlit.​io/) and is built atop TensorFlow [13],
one of the most popular DL backends. It runs locally on
both physical and virtual machines, using either Central
Processing Units (CPUs) or Graphics Processing Units
(GPUs), which offer a considerable speed-up when train-
ing larger networks [14]. Our major considerations in the
implementation of ENNGene were ease of use, generic
functionality on various genomic problems, and repro-
ducibility of results. The software consists of four linearly
connected modules: (a) preprocessing module, (b) train-
ing module, (c) prediction module, and (d) evaluation
module.

User input
The minimal user input is a Browser Extensible Data
(BED) file containing DNA/RNA sequences and a
genome or transcriptome (fasta) reference file. An addi-
tional PhyloP [15] reference file must be provided if the
user wishes to utilize the evolutionary conservation. Such
reference files are readily available for most organisms
from public repositories such as Ensembl [16] or UCSC
Genome Tables Browser [17]. Optionally, the user may
also input a log file (Yaml) from a previous ENNGene
run, instantly reproducing the input configuration. This
way, users can guarantee full reproducibility across dif-
ferent instances of ENNGene, provided the same input
files are available. To avoid re-mapping the same inputs

to the same reference multiple times, ENNGene provides
an option to save and reuse mapped files between runs.

Module 1: preprocessing
In the first module, data is preprocessed into a format
convenient for CNN input. The user may select one
or more input types engineered from the given inter-
val files. (a) Sequence – one-hot encoded RNA or DNA
sequence, obtained by mapping given intervals to the
reference genome or transcriptome fasta file. (b) RNA
secondary structure is based on the mapped sequences
and computed by the ViennaRNA2 package [18]. When
calculating the secondary structure, users can choose
the number of CPU cores dedicated to the computa-
tion. (c) The evolutionary conservation score is mapped
similarly to the sequence, with the user-provided phy-
logenetic conservation file as a reference.

As required by CNNs, all input sequences must be of
the same length. One strategy for ensuring same length
inputs is N or 0 padding [19, 20]. However, such an
approach runs the danger of introducing a blind spot
or even learning the padding artifact above the legiti-
mate features when sequences of different classes do
not have the same length distribution [21]. In the case
of ENNGene, we avoid this by extending or trimming
the provided genomic coordinates to the same length,
thus ‘padding’ our intervals with actual neighboring
sequences and other features.

The training of CNNs can be affected by an imbalance
in class sizes [22]. It is common practice to artificially
balance the various classes in training sets by downsam-
pling the more populous classes. ENNGene makes this
optional preprocessing step easy by allowing users to
define a reduction by an absolute or relative dataset size
(e.g., 5,000 out of 10,000 sequences, or 0.5 ratio).

Following this step, datasets are split into ‘training’,
‘validation’, ‘evaluation’ (testing), and ‘black-box’ (left-
out testing) randomly at a user-defined ratio or based
on reference chromosome number. The ‘training’ and
‘validation’ datasets are used throughout the training
process. The ‘evaluation’ dataset is used for model evalu-
ation directly after the training. The last one, the ‘black-
box’ dataset, is optional and is never seen by any part of
the training or evaluation modules of ENNGene. It is a
truly left-out dataset that can be used for final evalua-
tion after multiple rounds of hyperparameters tuning and
architecture exploration in order to avoid overfitting the
evaluation dataset. Splitting the sequences based on the
chromosome they are found on also ensures that each
of these datasets comes from entirely unrelated genomic
regions and that there is no possibility for one part of the
process encountering a left-out locus, for example, when
using input files with nearly overlapping genomic loci.

https://streamlit.io/

Page 4 of 11Chalupová et al. BMC Genomics (2022) 23:248

Module 2: training
In the second module, the user can use the GUI to define
the neural network architecture and training hyperpa-
rameters: (a) batch size, (b) learning rate, and (c) choose
one of three available optimizers: stochastic gradient
descent (SGD)—preset with Nesterov’s momentum to 0.9
[23], RMSprop [24], or Adam [25]. If SGD is selected, two
additional learning rate options become available, using
a learning rate scheduler or applying one cycle policy
[26]. Users may also define a specific number of training
epochs or apply the early stopping callback, which stops
the training when there is no more improvement on the
validation dataset. We have opted to simplify hyperpa-
rameter selection as much as possible while not compro-
mising the power of the produced models.

ENNGene enables the building of CNNs consisting of
convolutional layers followed by fully connected layers,
or hybrid CNN-RNNs. In the latter case, the convolu-
tional layers are first followed by recurrent layers—either
GRU [27] or LSTM [28], finally followed by dense lay-
ers. The details of the network architecture are defined
per each section separately, having one section for each
selected branch corresponding to the preprocessed input
types and one section for the common part of the net-
work following the concatenation of the branches.

After setting up the number and types of the layers, the
layer parameters can be customized. For each layer, users
can pick a dropout rate [29], choose to apply the batch
normalization [30], and set the layer-specific options—
the number and size of the convolutional filters, the
number of dense or recurrent units, and the application
of a bidirectional wrapper on the recurrent layers. In
accordance with the focus of the ENNGene on classifica-
tion problems for two or more classes, the loss function
is preset to categorical cross-entropy, together with the
last layer set as the softmax activation function with the
number of units corresponding to the number of classes.

Models created by ENNGene are trained using the
TensorFlow framework with the support of GPU acceler-
ation. The GPU is automatically detected and used when
available on the machine, providing considerable speed
up during the training phase. Throughout the training,
users can monitor the progress, together with the devel-
opment of the accuracy and loss metrics on an interactive
plot. These metrics are also plotted and exported for later
use.

After the training, the resulting model is directly evalu-
ated on the user-defined evaluation dataset. Above the
basic metrics, the receiver operating characteristic (ROC)
and precision-recall curves, both adjusted for the multi-
class classification problems, are calculated and exported
in the form of plots and tables (Fig. 2 (a, b)). Further-
more, TensorBoard [13] files allowing visualization and

browsing of the model architecture, as well as metrics
comparison between multiple runs, can be produced.

Modules 3&4: prediction and evaluation
The final two modules allow the user to evaluate a pre-
viously trained model on a different dataset (Evaluation)
or apply the model to classify novel data samples (Predic-
tion). The two modules share most of the functionality;
therefore, they will be addressed together in this last sec-
tion. At this point, the user may upload any pre-trained
model, either produced by ENNGene or not, and a set
of genomic loci to be evaluated either with known class
labels (Evaluation) or not (Prediction).

Loci to be evaluated are preprocessed in the same way
described in the first module. For evaluation purposes,
the black-box dataset prepared during the preprocessing
of the original data can be used. If the trained model does
not use a conservation branch, then even simple fasta
files containing sequences of the correct length may be
used for prediction.

Calculated predictions are exported as probability
scores for each class, with the highest-scoring class high-
lighted. ENNGene does not return a single ‘predicted
class’, as that can vary based on the subjective choice of a
threshold for each class. Optionally, Integrated Gradients
(IG) [11] are calculated for each sample and exported as
a list of scores for custom visualization. At the same time,
the top ten predictions per class are directly displayed in
the browser (Fig. 2 (c)). The IG technique is based on cal-
culating the difference between the baseline, a vector of
zeros in our case, and an input sequence. That depend-
ency is the core of the attribution and is expressed as the
color adjustment of each nucleobase across all the input
types. The higher the attribution of the sequence to the
prediction, the more pronounced red is its color. On the
other hand, blue means a low level of attribution. The
attribution visualization can be used for auxiliary evalu-
ation and debugging of the model.

Results and discussion
ENNGene is a generic tool created to enable research-
ers to produce state-of-the-art DL models with mini-
mal programming knowledge. It was developed with a
focus on ease of use, reproducibility, and interpretability
while avoiding compromising the power of the produced
models.

Ease of use and reproducibility
The entirety of ENNGene’s code is freely and openly
available at GitHub at https://​github.​com/​ML-​Bioin​fo-​
CEITEC/​ENNGe​ne under an open-source GNU Affero

https://github.com/ML-Bioinfo-CEITEC/ENNGene
https://github.com/ML-Bioinfo-CEITEC/ENNGene

Page 5 of 11Chalupová et al. BMC Genomics (2022) 23:248 	

General Public License. ENNGene runs on a Linux sys-
tem and was extensively tested on the Ubuntu distribu-
tion. Using the Anaconda package manager, we ensure
containerization and safe un/installation of the applica-
tion. A step-by-step guided installation script, as well as
extensive documentation, can be found at the project’s
code repository and as a supplementary file accompa-
nying this publication (Additional file 1).

We have taken various steps to improve the user expe-
rience. The application verifies every provided input
information. Specific warnings or hints are returned to
the user immediately during the parameter set-up or just
before any further calculations are started. All the user

input, warnings, and errors are logged throughout the
whole session. After the session is finished, the log file
is placed in the user-specified output folder. If an error
occurs during the session, the user is notified of the loca-
tion of the log file containing the additional details.

To ensure full reproducibility of the results, ENNGene
logs all the parameters set by the user and exports them
as a Yaml file. The file can be imported into the applica-
tion at any time in the future, immediately setting all the
parameters for the chosen task. This way, users can recre-
ate all their results or quickly tune chosen hyperparam-
eters. Above that, all the tracked parameters are exported
into one.tsv file, shared across all the application sessions

Fig. 2  a Precision-recall curve—the precision-recall metric indicates the relationship between the model’s positive predictive value (precision)
and sensitivity (recall) at various thresholds. b Receiver Operating Characteristic (ROC) curve—the ROC metric is calculated as a ratio between the
true positive rate and the false positive rate at various thresholds. Both the metrics, precision-recall and ROC calculated by ENNGene, are adjusted
for multi-class classification problems and thus can be applied to models with any number of classes. Both curves and other metrics (accuracy,
loss, AUROC) are a standard part of exported results after a model evaluation, optionally with Integrated Gradients’ scores. c Integrated Gradients
visualization—IG scores of ten sequences with the highest predicted score per class are directly visualized in the browser. Scores are displayed in
separate rows for each input type used—sequence, secondary structure, and conservation score. The higher the nucleotide’s attribution to the
prediction of a given class, the more pronounced is its red color. On the other hand, the blue color means a low level of attribution

Page 6 of 11Chalupová et al. BMC Genomics (2022) 23:248

within the same output folder, with one line per session.
This file can significantly streamline the comparison of
multiple models, as the user has all the preprocessing and
training parameters used to create each of the models in
one place.

Case Study: RBP24 classification—comparison to the state
of the art
To demonstrate the functionality of ENNGene, we chose
the problem of the RNA-binding proteins (RBPs) target
site classification. So far, DL methods published in the
field provide one or more trained models (e.g. [3] and
[31]) prepared specifically to address this task. For exam-
ple, a wide range of pretrained models for RBP binding
site prediction can be found on the RBPsuite web server
[32]. Using the RBPsuite, users can choose from models
trained on linear RNA based on the iDeepS architecture
[33] or trained on the circular RNA with the underlying
CRIP architecture [34]. Though operated via GUI, its
function is limited to applying a trained model too, with
no option of training a new one.

CNNs were applied to the RBP target site classifica-
tion problem for the first time in 2015 [3]. Since then,
there have been many novel approaches, including sev-
eral different network architectures. With the target RNA
sequence as the primary feature, predicted secondary
structure [7, 20, 31, 35–37] and transcript region type
[38, 39] are the other most commonly used features. Up
to date, several different network types have been applied
to the RBP binding site classification problem. Those
include the CNN [7, 36], RNN [40], or often a combina-
tion of the two [20, 31, 36, 39, 41], deep belief network
(DBN) [35, 38], deep residual network [42], and atten-
tion network [37]. ENNGene allows the users to use the
two most widely applied architectures—CNN and hybrid
CNN-RNN networks. In most cases, one model per RBP
is trained. In a few exceptions, a multi-label classifier is
built for all the proteins [39], for example, by applying
classifier chains to learn the correlation between labels
[43]. Using ENNGene, we have applied the two most
commonly used network types (CNN and hybrid CNN-
RNN) on the RBP24 dataset introduced in GraphProt
[12], producing one model for each RBP in the dataset.

We selected this widely used benchmark dataset as it
has already been used for benchmarking by several state-
of-the-art methods [3, 19, 31, 35, 42]. The RBP24 dataset
consists of 21 RNA-binding protein target sites from 24
CLIP-seq experiments. Since ENNGene works with input
bed files, we extracted the interval coordinates from the
sequence header from the original RBP24 dataset (see the
extracted genomic coordinates at the project’s GitHub
repository; the original fasta files can be obtained from

GraphProt repository at http://​www.​bioinf.​uni-​freib​urg.​
de/​Softw​are/​Graph​Prot/). Following the original data-
set, intervals were mapped to the human (hg19) genome
reference on a 150 nt long window centered at the ini-
tial coordinates. The length of 150 nucleotides has been
previously used in several RBP target site predictors [35]
and has been proven to be the best choice for secondary
structure prediction [44]. The base-wise conservation
scores by PhyloP [15] from the PHAST package [45], cre-
ated by multiple alignments of 99 vertebrate genomes to
the human genome, were obtained from the UCSC file
storage. Only the PTBv1 dataset was mapped to the older
(hg18) genome reference and the corresponding Phy-
loP files (with 43 vertebrate genomes aligned) according
to the original dataset specification. ENNGene being a
generic tool works well with any genomic assembly and
depth of conservation file.

The number of samples in the RBP24 dataset widely
differs between the experiments, with the ratio between
positive and negative classes always close to 1:1. We used
the original training files for model training and param-
eter search purposes, dividing them into training, vali-
dation, and testing datasets. The original testing samples
were left entirely out as a ‘black-box’ dataset. We chose
the best models based on the Area Under Receiver
Operating Characteristic curve (AUROC) metric upon
the testing dataset while prioritizing the simplest archi-
tecture available. We performed a human-guided search
of selected hyperparameters since fully covering the data
and model hyperparameter space by grid search would
be too time-consuming for a simple demonstration.
The tuned parameters were number and combination
of branches, batch size, number of epochs, optimizer,
learning rate, number of layers per section, as well as the
type of the layer and specific parameters per layer (num-
ber of units/filters, bidirectionality, kernel size, dropout
rate, batch normalization). The models were trained
for different numbers of epochs, optionally using the
early stopping with parameters set to patience = 10 and
delta = 0.01 to avoid overfitting. A complete list of the
hyperparameters used for each final model can be found
in Additional file 2.

The left-out files were used only for the final evalua-
tion of the already tuned models. We show that using
ENNGene we were able to produce models that perform
to the current state-of-the-art standard. For more than
half of the experiments in the RBP24 dataset, ENNGene
models outperform the state of the art, producing an
improved average AUROC value of 0.947 on the whole
RBP24 dataset (Table 1, Additional file 3). All the final
trained models can be found at the project’s GitHub
repository.

http://www.bioinf.uni-freiburg.de/Software/GraphProt/
http://www.bioinf.uni-freiburg.de/Software/GraphProt/

Page 7 of 11Chalupová et al. BMC Genomics (2022) 23:248 	

Importance of network branches beyond sequence
Easily producing Deep Learning models at the state-
of-the-art level is the primary objective of ENNGene.
However, we are also interested in exploring additional
features beyond sequence, namely evolutionary conser-
vation and predicted RNA secondary structure (Fig. 3).
Previously [46], we have used a multi-branch approach
with the same features to identify small RNA loci, out-
performing the state of the art. Both the conservation
and secondary structure branches were shown to be
important for that task. In the RBP24 dataset presented
here, we investigated networks of various configurations,
starting from the simple sequence, adding either evolu-
tionary conservation or secondary structure branches,
and finally, all three branches together. We identified that
adding an evolutionary conservation branch improved
the performance of all but five protein datasets (FUS,
HNRNPC, ELAVL1—PAR-CLIP C, PTB, and TDP43)

that had similar performance with or without the con-
servation feature. On the contrary, we had not registered
improvement in any model when the secondary structure
was included.

Evolutionary conservation features have been exten-
sively used by machine learning classifiers predating the
beginning of DL, along with many other features such as
amino acid composition and hydrophobicity, predicted
secondary structure, and other global protein features
[47]. An essential concept in CNNs is that using convo-
lutional layers can bypass the process of derivative feature
generation, as the network itself learns how to derive com-
plex features from raw data. However, unlike, for exam-
ple, a predicted secondary structure, the conservation
information can not be derived from the given sequence,
and as such, it may provide the network with additional
information. The group of authors behind the iDeepV and
iDeepE methods [19, 42] showed that in both approaches,

Table 1  AUROC values from the evaluation of the final models, together with the RBP24 dataset properties. Models created using
ENNGene outperform the state-of-the-art tools on more than half of the experiments in the RBP24 dataset while also improving the
average AUROC value on the whole dataset. The AUROC values of the other tools are taken from the original publications. The highest
AUROC score reached for the experiment is highlighted in bold

Protein RBP-24

Dataset info Results (AUROC)

Clip method # positives # negatives GraphProt deepnet-rbp DeepBind iDeepV iDeepE DeepRKE ENNGene

Ago1-4 PAR-CLIP 36,902 31,310 0.895 0.881 0.919 0.925 0.915 0.932 0.927

Ago2 HITS-CLIP 48,095 44,251 0.765 0.809 0.879 0.886 0.884 0.9 0.94
ALKBH5 PAR-CLIP 1213 1197 0.68 0.714 0.668 0.643 0.758 0.74 0.877
C17ORF85 PAR-CLIP 1860 1849 0.8 0.82 0.755 0.74 0.83 0.824 0.916
C22ORF28 PAR-CLIP 9369 9136 0.751 0.792 0.809 0.823 0.837 0.832 0.908
CAPRIN1 PAR-CLIP 8140 7901 0.855 0.834 0.888 0.824 0.893 0.869 0.896
ELAVL1 HITS-CLIP 8595 8436 0.955 0.966 0.98 0.966 0.964 0.978 0.991

PAR-CLIP (A) 27,275 23,974 0.959 0.966 0.972 0.973 0.988 0.978 0.965

PAR-CLIP (B) 9464 9283 0.935 0.961 0.961 0.962 0.971 0.98 0.987
PAR-CLIP (C) 125,202 113,686 0.991 0.994 0.989 0.99 0.979 0.996 0.989

EWSR1 PAR-CLIP 16,292 14,720 0.935 0.966 0.969 0.962 0.969 0.971 0.972
FUS PAR-CLIP 34,581 31,480 0.968 0.98 0.983 0.976 0.985 0.988 0.977

hnRNPC iCLIP 21,472 19,794 0.952 0.962 0.979 0.979 0.976 0.978 0.977

IGF2BP1-3 PAR-CLIP 8539 6838 0.889 0.879 0.939 0.923 0.947 0.943 0.946

MOV10 PAR-CLIP 13,793 12,987 0.863 0.854 0.899 0.896 0.916 0.92 0.922
PUM2 PAR-CLIP 9116 8227 0.954 0.971 0.964 0.965 0.967 0.965 0.972
PTB HITS-CLIP 44,574 43,700 0.937 0.983 0.944 0.936 0.944 0.953 0.954

QKI PAR-CLIP 10,276 9142 0.957 0.983 0.973 0.965 0.97 0.975 0.984
SFRS1 HITS-CLIP 19,438 17,195 0.898 0.931 0.929 0.905 0.946 0.945 0.939

TAF15 PAR-CLIP 7298 6606 0.97 0.983 0.978 0.978 0.976 0.985 0.985
TDP43 iCLIP 92,031 75,079 0.874 0.876 0.93 0.935 0.945 0.954 0.924

TIA1 iCLIP 18,049 16,135 0.861 0.891 0.929 0.941 0.937 0.942 0.959
TIAL1 iCLIP 42,332 36,652 0.833 0.87 0.922 0.929 0.934 0.946 0.95
ZC3H7B PAR-CLIP 20,962 20,018 0.82 0.796 0.875 0.883 0.907 0.914 0.862

AVERAGE AUROC: 0.887 0.903 0.918 0.913 0.931 0.934 0.947

Page 8 of 11Chalupová et al. BMC Genomics (2022) 23:248

they were able to reach state-of-the-art performance on
the RBP24 dataset without using secondary structure
information. DeepCLIP [41] presents a hybrid CNN-RNN
network that outperforms structure-based models, as well
as the iDeepV and iDeepE models, using sequence data
alone. The authors hypothesize that context-dependency
can be better modeled implicitly by the recurrent layers
rather than by predefined features, such as the predicted
secondary structure. However, other models such as
DeepRKE [31], Deepnet-rbp [35], and DLPRB [20] show
a performance improvement when utilizing secondary
structure features in a small fraction of proteins. That
emphasizes the need for individually designed architec-
tures for each protein separately. In the case of evolu-
tionary conservation, which is not a derivative feature, it
is clear that substantial additional information is indeed
given to the network under training. Conservation fea-
tures have not been used by other DL algorithms tackling
this question, probably because of the difficulty of retriev-
ing and preprocessing conservation data. ENNGene’s pre-
processing module takes care of this process for the user
and makes this important feature available.

It has been previously shown that the combination of
derived/hand-crafted and learned features can lead to bet-
ter performance [48]. We have avoided adding more hand-
crafted features to retain the generality of ENNGene to deal
with genomic questions. We decided to retain the second-
ary structure feature as it is a commonly used feature that
we have found useful in other applications of CNNs [46].

Interpretation of predictions
To gain an insight into what a DL model has learned,
many studies utilizing CNNs use a heuristic based on
convolution kernel analysis [3, 20, 36, 41]. This approach
is characteristic for the Genomics field, as it allows one

to visualize a learned pattern as a pseudo motif-repre-
senting position weight matrix [49]. However, for the
full understanding of the relationship between an input
sequence and an output prediction, simply analyzing fil-
ters of one convolutional layer is not sufficient.

To evaluate the importance of each nucleotide, [3]
applied input modification, also known in the field as an
in silico mutagenesis. In this approach, each nucleotide
is substituted by every other possible nucleotide, and a
prediction is re-calculated for every ‘mutated’ sequence
to identify the essential parts. Such an exhaustive input
perturbation involves very high computational costs.
Increasing the number of nucleotides to be perturbed
exponentially increases the computational time needed
to calculate effects. Therefore, in most cases, only a part
of the sequence is modified, based either on random
selection or on a previously defined motif, and important
parts of the sequence might be completely ignored [6].

Gradient-based approaches [50–56], to the contrary,
are not only more computationally efficient but provide
information about the whole sequence, allowing to find
previously unexpected essential sections in the sequence.
One issue of the earlier methods [50, 51] is neuron satu-
ration. Given a sequence with two binding regions, such
an algorithm would assign a low score to both regions, as
each such region is not individually important enough for
the prediction. To address the saturation problem, meth-
ods like DeepLift [55] and Integrated Gradients [11] use a
background reference to properly distinguish the crucial
elements from noise. Integrated Gradients, the method
adopted by ENNGene, gained popularity due to its math-
ematical and theoretical justifications and computational
efficiency compared to alternative approaches. IGs can
be applied to any differentiable model, not strictly focus-
ing on the CNNs, and are suitable for large networks and

Fig. 3  Simplified representation of model architecture. The model in this example was trained on 150 nt long sequences using all three available
input types—sequence, secondary structure, and conservation score—each represented by a separate model branch. After the network extracts
information from the separate inputs, the branches are concatenated, and the network continues learning interdependencies by looking at the
combined information via dense or recurrent layers. Boxes represent individual layers, while the adjacent numbers indicate the data dimensionality.
A plain graphical representation of the network architecture is produced and exported by ENNGene for every trained model

Page 9 of 11Chalupová et al. BMC Genomics (2022) 23:248 	

feature spaces without the undesirable computational
overhead. Only one recent RBP target site classifier [39]
utilizes the IGs to see what parts of the sequence and
region, the two input types adopted in the study, were
responsible for the predicted category. Similarly, for
ENNGene, we use IGs to visualize important parts of the
input within all branches of the trained model.

Future development
At this point, ENNGene allows the production of state-of-
the-art multi-branch CNN and CNN-RNN models via a
user-friendly interface while providing one level of interpreta-
tion of the produced results. Despite the ease of training new
models with ENNGene, automatic identification of the opti-
mal model architecture and hyperparameter search would be
an important future step. Neural Architecture Search (NAS)
is an automated search of an optimal architecture on given
data, using predefined building blocks. Using NAS, the net-
work building blocks are handled similarly to other hyper-
parameters. Since around 2015, there are already several
different NAS techniques [57]. It has been shown that NAS
can be on par or outperform hand-designed architectures
[58, 59]. Recently, NAS was implemented on genomics data,
improving processing time and complexity of use [60]. Even
with the current computational power at hand, it is still a very
resource-demanding process outside most research groups’
capabilities. We aim to incorporate some type of NAS in the
future of ENNGene, as computational resources become
more readily available and methods for NAS more efficient.

Currently, the process of manually tuning hyperparam-
eters is fairly simple. Users can use the option to load the
parameters from any previous session, change just the cho-
sen parameters without setting up the rest, and start training
again within moments. Nevertheless, we would like to add
a separate module dedicated to automated hyperparameter
tuning. The new module would provide options such as ran-
dom or grid search of user-defined parameter space.

Finally, to support a broader user base in the future,
we are considering setting up a dedicated server with the
most common genome references available. That way,
users would need to provide only the interval files, mak-
ing the usage of ENNGene even easier. Depending on the
current costs and funds available, the server might pro-
vide the GPU power, speeding up the NN training for the
users with no other access to it.

Conclusions
As genomic data generation accelerates, researchers in
the field will increasingly require powerful but easy-to-
use data science and machine learning methods. In this
work, we have presented ENNGene, a tool that allows
the development and interpretation of Deep Learning

models without advanced programming knowledge. We
believe that ENNGene will empower Genomics research-
ers to explore their data using the powerful models that
ENNGene can produce. We have demonstrated these
abilities by building state-of-the-art models for a well-
known and competitive benchmark of RNA Binding Pro-
tein target sites. It is our intention to support ENNGene
and its user base with continuous development and
improvement over the following years, making it an
important tool for the Genomics research community.

Availability and requirements
Project name: ENNGene.

Project home page: https://​github.​com/​ML-​Bioin​fo-​
CEITEC/​ENNGe​ne

Operating system(s): Linux.
Programming language: Python 3.
Other requirements: Anaconda, web browser.
License: GNU Affero General Public License v3.0
Any restrictions to use by non-academics: None

above the license.

Abbreviations
AUROC: Area Under the Receiver Operating Characteristic curve; BED: Browser
Extensible Data; BLSTM: Bidirectional Long Short-Term Memory; CNN: Convolutional
Neural Network; CPU: Central Processing Unit; DBN: Deep Belief Network; DL: Deep
Learning; GPU: Graphics Processing Unit; GRU​: Gated Recurrent Unit; IGs: Integrated
Gradients; LSTM: Long Short-Term Memory; ML: Machine Learning; NAS: Neural
Architecture Search; RBP: RNA-Binding Protein; RNN: Recurrent Neural Network; ROC:
Receiver Operating Characteristic; SGD: Stochastic Gradient Descent.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​022-​08414-x.

Additional file 1. Documentation. Complete documentation of the
current version of the ENNGene application (v1.2.2) in pdf format. Each
module and its functions, together with all the parameters and available
options, are described in the documentation.

Additional file 2. RBP24 model parameters. Complete list of the
ENNGene parameters used to obtain the final models. Parameters from
Preprocessing, Training, and Evaluation modules are reported and ensure
full reproducibility of the results.

Additional file 3. RBP24 ROC curves. ROC curves generated by ENNGene
for each experiment in the RBP24 dataset. The ROC curves are based on
the evaluation of the final models on the leave-out data. The AUROC
values of the corresponding ROC curves were used for comparison with
the other publications and their reported AUROC values.

Acknowledgements
Not applicable.

Authors’ contributions
EC created the ENNGene application. FJ and JP implemented the Integrated
Gradients for ENNGene. OV created the installation script. EC and OV conducted
the RBP24 use case. EC, OV, and TM tested the application. EC and PA prepared
the manuscript. All authors read and approved the final manuscript.

https://github.com/ML-Bioinfo-CEITEC/ENNGene
https://github.com/ML-Bioinfo-CEITEC/ENNGene
https://doi.org/10.1186/s12864-022-08414-x
https://doi.org/10.1186/s12864-022-08414-x

Page 10 of 11Chalupová et al. BMC Genomics (2022) 23:248

Funding
This research was funded by grant Horizon 2020 Widening Fellowship by
Horizon 2020 (H2020-WF-01–2018: 867414) to PA, and grant “Postdoc2@
MUNI” by Operační program Výzkum, vývoj a vzdělávání (OPVVV, No.
CZ.02.2.69/0.0/0.0/18 053/0016952) to TM. The funding bodies played no role
in the design of the study and collection, analysis, and interpretation of data
and in writing the manuscript.

Availability of data and materials
The datasets generated and analysed during the study are available in the
GitHub repository at https://​github.​com/​ML-​Bioin​fo-​CEITEC/​ENNGe​ne/​tree/​
master/​RBP24.
The original fasta files used to obtain the genomic coordinates are available
in GraphProt repository at http://​www.​bioinf.​uni-​freib​urg.​de/​Softw​are/​Graph​
Prot/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Faculty of Science, National Centre for Biomolecular Research, Masaryk
University, Brno, Czechia. 2 Central European Institute of Technology (CEITEC),
Masaryk University, Brno, Czechia. 3 Faculty of Informatics, Masaryk University,
Brno, Czechia.

Received: 5 November 2021 Accepted: 23 February 2022

References
	1.	 Rosenblatt F. The perceptron: a probabilistic model for information stor-

age and organization in the brain. Psychol Rev. 1958;65:386–408.
	2.	 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.
	3.	 Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence

specificities of DNA- and RNA-binding proteins by deep learning. Nat
Biotechnol. 2015;33:831–8.

	4.	 Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with
deep learning-based sequence model. Nat Methods. 2015;12:931–4.

	5.	 Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the
accessible genome with deep convolutional neural networks. Genome
Res. 2016;26:990–9.

	6.	 Eraslan G, Avsec Ž, Gagneur J, Theis FJ. Deep learning: new computational
modelling techniques for genomics. Nat Rev Genet. 2019;20:389–403.

	7.	 Budach S, Marsico A. pysster: classification of biological sequences by
learning sequence and structure motifs with convolutional neural net-
works. Bioinformatics. 2018;34:3035–7.

	8.	 Chen KM, Cofer EM, Zhou J, Troyanskaya OG. Selene: a PyTorch-based
deep learning library for sequence data. Nat Methods. 2019;16:315–8.

	9.	 Kopp W, Monti R, Tamburrini A, Ohler U, Akalin A. Deep learning for
genomics using Janggu. Nat Commun. 2020;11:3488.

	10.	 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In: Wallach
H, Larochelle H, Beygelzimer A, d\textquotesingle Alché-Buc F, Fox E,
Garnett R, editors. Advances in Neural Information Processing Systems.
Curran Associates, Inc.; 2019. https://​proce​edings.​neuri​ps.​cc/​paper/​2019/​
file/​bdbca​288fe​e7f92​f2bfa​9f701​27277​40-​Paper.​pdf.

	11.	 Sundararajan M, Taly A, Yan Q. Axiomatic Attribution for Deep Networks.
In: Precup D, Teh YW, editors. Proceedings of the 34th International
Conference on Machine Learning. PMLR; 2017. p. 3319–28. http://​proce​
edings.​mlr.​press/​v70/​sunda​raraj​an17a/​sunda​raraj​an17a.​pdf.

	12.	 Maticzka D, Lange SJ, Costa F, Backofen R. GraphProt: modeling binding
preferences of RNA-binding proteins. Genome Biol. 2014;15:R17.

	13.	 Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, et al.
Deep Learning with Differential Privacy. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. New
York: Association for Computing Machinery; 2016. p. 308–18.

	14.	 Buber E, Diri B. Performance Analysis and CPU vs GPU Comparison for
Deep Learning. In: 2018 6th International Conference on Control Engi-
neering Information Technology (CEIT). 2018. p. 1–6.

	15.	 Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral
substitution rates on mammalian phylogenies. Genome Res. 2010;20:110–21.

	16.	 Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, et al.
Ensembl 2021. Nucleic Acids Res. 2021;49:D884–91.

	17	 Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al.
The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 2004;32
Database issue:D493-6.

	18	 Lorenz R, Bernhart SH, HönerZuSiederdissen C, Tafer H, Flamm C, Stadler
PF, et al. ViennaRNA Package 20. Algorithms Mol Biol. 2011;6:26.

	19.	 Pan X, Shen H-B. Learning distributed representations of RNA sequences
and its application for predicting RNA-protein binding sites with a convo-
lutional neural network. Neurocomputing. 2018;305:51–8.

	20.	 Ben-Bassat I, Chor B, Orenstein Y. A deep neural network approach for
learning intrinsic protein-RNA binding preferences. Bioinformatics.
2018;34:i638–46.

	21.	 Alsallakh B, Kokhlikyan N, Miglani V, Yuan J, Reblitz-Richardson O. Mind
the Pad -- CNNs can Develop Blind Spots. arXiv [cs.CV]. 2020. http://​arxiv.​
org/​abs/​2010.​02178.

	22.	 Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbal-
ance. Journal of Big Data. 2019;6:1–54.

	23.	 Sutskever I, Martens J, Dahl G, Geoffrey H. On the importance of initializa-
tion and momentum in deep learning. In: ICML’13: Proceedings of the
30th International Conference on International Conference on Machine
Learning. 2013. p. III – 1139 – III – 1147. http://​proce​edings.​mlr.​press/​v28/​
sutsk​ever13.​pdf.

	24.	 Tieleman T, Hinton G. Lecture 6.5-rmsprop: Divide the Gradient by a Run-
ning Average of Its Recent Magnitude. 2012. https://​www.​cs.​toron​to.​edu/​
~tijmen/​csc321/​slides/​lectu​re_​slides_​lec6.​pdf. Accessed 1 Nov 2021.

	25.	 Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [cs.
LG]. 2014. http://​arxiv.​org/​abs/​1412.​6980.

	26.	 Smith LN. Cyclical Learning Rates for Training Neural Networks. 2015.
http://​arxiv.​org/​abs/​1506.​01186. Accessed 1 Nov 2021.

	27.	 Chung J, Gulcehre C, Cho K, Bengio Y. Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling. 2014. http://​arxiv.​
org/​abs/​1412.​3555. Accessed 1 Nov 2021.

	28.	 Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Comput.
1997;9:1735–80.

	29.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Drop-
out: a simple way to prevent neural networks from overfitting. J Mach
Learn Res. 2014;15:1929–58.

	30.	 Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. arXiv [cs.LG]. 2015. http://​
arxiv.​org/​abs/​1502.​03167.

	31.	 Deng L, Liu Y, Shi Y, Zhang W, Yang C, Liu H. Deep neural networks for
inferring binding sites of RNA-binding proteins by using distributed
representations of RNA primary sequence and secondary structure. BMC
Genomics. 2020;21(Suppl 13):866.

	32.	 Pan X, Fang Y, Li X, Yang Y, Shen H-B. RBPsuite: RNA-protein binding sites
prediction suite based on deep learning. BMC Genomics. 2020;21:884.

	33.	 Pan X, Rijnbeek P, Yan J, Shen H-B. Prediction of RNA-protein sequence
and structure binding preferences using deep convolutional and recur-
rent neural networks. BMC Genomics. 2018;19. https://​doi.​org/​10.​1186/​
s12864-​018-​4889-1.

	34.	 Zhang K, Pan X, Yang Y, Shen H-B. CRIP: predicting circRNA-RBP-binding
sites using a codon-based encoding and hybrid deep neural networks.
RNA. 2019;25:1604–15.

	35.	 Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C, et al. A deep learning
framework for modeling structural features of RNA-binding protein
targets. Nucleic Acids Res. 2016;44:e32.

	36.	 Pan X, Rijnbeek P, Yan J, Shen H-B. Prediction of RNA-protein sequence
and structure binding preferences using deep convolutional and recur-
rent neural networks. BMC Genomics. 2018;19:511.

https://github.com/ML-Bioinfo-CEITEC/ENNGene/tree/master/RBP24
https://github.com/ML-Bioinfo-CEITEC/ENNGene/tree/master/RBP24
http://www.bioinf.uni-freiburg.de/Software/GraphProt/
http://www.bioinf.uni-freiburg.de/Software/GraphProt/
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://proceedings.mlr.press/v70/sundararajan17a/sundararajan17a.pdf
http://proceedings.mlr.press/v70/sundararajan17a/sundararajan17a.pdf
http://arxiv.org/abs/2010.02178
http://arxiv.org/abs/2010.02178
http://proceedings.mlr.press/v28/sutskever13.pdf
http://proceedings.mlr.press/v28/sutskever13.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1506.01186
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://doi.org/10.1186/s12864-018-4889-1
https://doi.org/10.1186/s12864-018-4889-1

Page 11 of 11Chalupová et al. BMC Genomics (2022) 23:248 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	37.	 Du Z, Xiao X, Uversky VN. DeepA-RBPBS: A hybrid convolution and recur-
rent neural network combined with attention mechanism for predicting
RBP binding site. J Biomol Struct Dyn. 2020;1–9. https://​pubmed.​ncbi.​
nlm.​nih.​gov/​33272​122/.

	38.	 Pan X, Shen H-B. RNA-protein binding motifs mining with a new hybrid
deep learning based cross-domain knowledge integration approach.
BMC Bioinformatics. 2017;18:136.

	39.	 Ghanbari M, Ohler U. Deep neural networks for interpreting RNA-binding
protein target preferences. Genome Res. 2020;30:214–26.

	40.	 Park B, Han K. Discovering protein-binding RNA motifs with a generative
model of RNA sequences. Comput Biol Chem. 2020;84:107171.

	41.	 Grønning AGB, Doktor TK, Larsen SJ, Petersen USS, Holm LL, Bruun GH,
et al. DeepCLIP: predicting the effect of mutations on protein–RNA bind-
ing with deep learning. Nucleic Acids Res. 2020;48:7099–118.

	42.	 Pan X, Shen H-B. Predicting RNA–protein binding sites and motifs
through combining local and global deep convolutional neural networks.
Bioinformatics. 2018;34:3427–36.

	43.	 Yang H, Deng Z, Pan X, Shen H-B, Choi K-S, Wang L, et al. RNA-binding
protein recognition based on multi-view deep feature and multi-label
learning. Brief Bioinform. 2021;22. https://​doi.​org/​10.​1093/​bib/​bbaa1​74.

	44.	 Lange SJ, Maticzka D, Möhl M, Gagnon JN, Brown CM, Backofen R. Global
or local? Predicting secondary structure and accessibility in mRNAs.
Nucleic Acids Res. 2012;40:5215–26.

	45.	 Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K,
et al. Evolutionarily conserved elements in vertebrate, insect, worm, and
yeast genomes. Genome Res. 2005;15:1034–50.

	46.	 Georgakilas GK, Grioni A, Liakos KG, Chalupova E, Plessas FC, Alexiou P.
Multi-branch Convolutional Neural Network for Identification of Small
Non-coding RNA genomic loci. Sci Rep. 2020;10:9486.

	47.	 Si J, Cui J, Cheng J, Wu R. computational prediction of RNA-Binding
proteins and binding sites. Int J Mol Sci. 2015;16:26303–17.

	48	 Nanni L, Ghidoni S, Brahnam S. Handcrafted vs. non-handcrafted features
for computer vision classification. Pattern Recognit. 2017;71:158–72.

	49.	 Talukder A, Barham C, Li X, Hu H. Interpretation of deep learning in
genomics and epigenomics. Briefings in Bioinformatics. 2021;22. https://​
doi.​org/​10.​1093/​bib/​bbaa1​77.

	50.	 Simonyan K, Vedaldi A, Zisserman A. Deep Inside Convolutional Net-
works: Visualising Image Classification Models and Saliency Maps. arXiv
[cs.CV]. 2013. http://​arxiv.​org/​abs/​1312.​6034.

	51.	 Zeiler MD, Fergus R. Visualizing and Understanding Convolutional Networks.
In: Computer Vision – ECCV 2014. Springer International Publishing; 2014. p.
818–33. https://​link.​sprin​ger.​com/​chapt​er/​10.​1007/​978-3-​319-​10590-1_​53.

	52.	 Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M. SmoothGrad: removing
noise by adding noise. arXiv [cs.LG]. 2017. http://​arxiv.​org/​abs/​1706.​03825.

	53.	 Bach S, Binder A, Montavon G, Klauschen F, Müller K-R, Samek W. On
pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PLoS One. 2015;10:e0130140.

	54.	 Montavon G, Lapuschkin S, Binder A, Samek W, Müller K-R. Explaining
nonlinear classification decisions with deep Taylor decomposition. Pat-
tern Recognit. 2017;65:211–22.

	55.	 Shrikumar A, Greenside P, Shcherbina A, Kundaje A. Not Just a Black Box:
Learning Important Features Through Propagating Activation Differences.
arXiv [cs.LG]. 2016. http://​arxiv.​org/​abs/​1605.​01713.

	56.	 Sundararajan M, Taly A, Yan Q. Axiomatic Attribution for Deep Networks.
arXiv [cs.LG]. 2017. http://​arxiv.​org/​abs/​1703.​01365.

	57.	 Elsken T, Metzen JH, Hutter F. Neural Architecture Search: A Survey. arXiv
[stat.ML]. 2018. http://​arxiv.​org/​abs/​1808.​05377.

	58.	 Zoph B, Le QV. Neural Architecture Search with Reinforcement Learning.
arXiv [cs.LG]. 2016. http://​arxiv.​org/​abs/​1611.​01578.

	59.	 Zoph B, Vasudevan V, Shlens J, Le QV. Learning Transferable Architectures
for Scalable Image Recognition. arXiv [cs.CV]. 2017. http://​arxiv.​org/​abs/​
1707.​07012.

	60.	 Zhang Z, Park CY, Theesfeld CL, Troyanskaya OG. An automated frame-
work for efficiently designing deep convolutional neural networks in
genomics. Nature Machine Intelligence. 2021;3:392–400.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://pubmed.ncbi.nlm.nih.gov/33272122/
https://pubmed.ncbi.nlm.nih.gov/33272122/
https://doi.org/10.1093/bib/bbaa174
https://doi.org/10.1093/bib/bbaa177
https://doi.org/10.1093/bib/bbaa177
http://arxiv.org/abs/1312.6034
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1605.01713
http://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1808.05377
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012

	ENNGene: an Easy Neural Network model building tool for Genomics
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	User input
	Module 1: preprocessing
	Module 2: training
	Modules 3&4: prediction and evaluation

	Results and discussion
	Ease of use and reproducibility
	Case Study: RBP24 classification—comparison to the state of the art
	Importance of network branches beyond sequence
	Interpretation of predictions
	Future development

	Conclusions
	Availability and requirements

	Acknowledgements
	References

