J 2022

Recombinant Human Collagen Hydrogel Rapidly Reduces Methylglyoxal Adducts within Cardiomyocytes and Improves Borderzone Contractility after Myocardial Infarction in Mice

MCLAUGHLIN, Sarah, Veronika SEDLÁKOVÁ, Qingzhou ZHANG, Brian MCNEILL, David SMYTH et. al.

Basic information

Original name

Recombinant Human Collagen Hydrogel Rapidly Reduces Methylglyoxal Adducts within Cardiomyocytes and Improves Borderzone Contractility after Myocardial Infarction in Mice

Authors

MCLAUGHLIN, Sarah, Veronika SEDLÁKOVÁ (203 Czech Republic, belonging to the institution), Qingzhou ZHANG, Brian MCNEILL, David SMYTH, Richard SEYMOUR, Darryl R DAVIS, Marc RUEL, Marjorie BRAND, Emilio I ALARCON (guarantor) and Erik J SUURONEN

Edition

Advanced Functional Materials, Wrinheim, Wiley-VCH Verlag, 2022, 1616-301X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

30201 Cardiac and Cardiovascular systems

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 19.000

RIV identification code

RIV/00216224:14110/22:00126033

Organization unit

Faculty of Medicine

UT WoS

000801089200001

Keywords in English

collagen hydrogels; erythroid differentiation regulator 1; methylglyoxal; myocardial infarction; ventricular remodeling

Tags

Tags

International impact, Reviewed
Změněno: 31/1/2023 11:02, Mgr. Tereza Miškechová

Abstract

V originále

Methylglyoxal (MG) production after myocardial infarction (MI) leads to advanced glycation end-product formation, adverse remodeling, and loss of cardiac function. The extracellular matrix (ECM) is a main target for MG glycation. This suggests that ECM-mimicking biomaterial therapies may protect the post-MI environment by removing MG. In this study, mechanisms by which a recombinant human collagen type I hydrogel therapy confers cardioprotection are investigated. One-week post-MI, mice receive intramyocardial injection of hydrogel or PBS. The hydrogel improves border zone contractility after 2 days, which is maintained for 28 days. RNA sequencing shows that hydrogel treatment decreases the expression of erythroid differentiation regulator 1, a factor associated with apoptosis. Hydrogel treatment reduces cardiomyocyte apoptosis and oxidative stress at 2 days with greater myocardial salvage seen at 28 days. The hydrogel located at the epicardial surface is modified by MG, and less MG-modified proteins are observed in the underlying myocardium of hydrogel-treated mice. Biomaterials that can be a target for MG glycation may act as a sponge to remove MG from the myocardium post-MI. This leads to less oxidative stress, greater survival and contractility of cardiomyocytes, which altogether suggests a novel mechanism by which biomaterials improve function of the infarcted heart.