

Current Challenges of Cyber Threat and Vulnerability Identification Using Public Enumerations

Lukáš Sadlek, Pavel Čeleda, Daniel Tovarňák

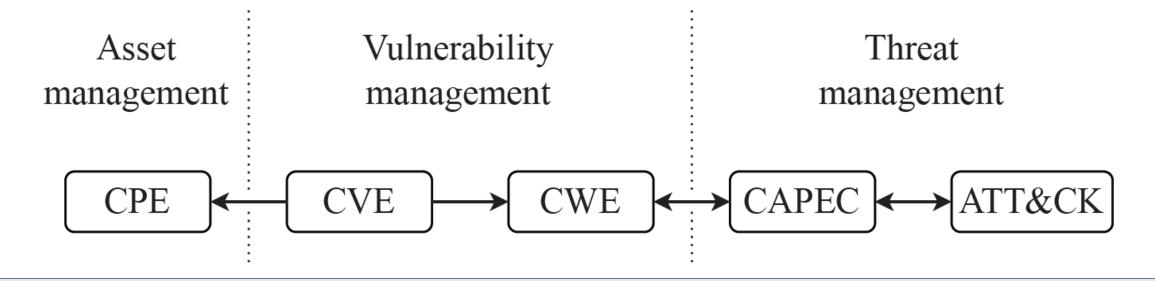
CONCORDIA

Public Enumerations

Identification of cyber threats and vulnerabilities

- Reveals events jeopardizing assets
- Enumerations provide vocabulary

Enumerations


- Common Vulnerabilities and Exposures (CVE)
- Common Weakness Enumeration (CWE)
- Common Platform Enumeration (CPE)
- Common Attack Pattern Enumeration and Classification (CAPEC)
- MITRE ATT&CK

Enumeration Entries and References

Identifier	Name / Description	Identifier	Name / Description
CVE-2021-44228	Log4Shell vulnerability	CAPEC-486	UDP flood
cpe:2.3:o:debian:debian_	CPE match string for Debian 11.0	CAPEC-98	Phishing
linux:11.0:*:*:*:*:*:*:*		T1566 (in ATT&CK)	
CWE-94	Code injection	T1110 (in ATT&CK)	Brute force

Research Question

1) What are the *current challenges* of vulnerability and cyber threat identification using enumerations and data about assets?

Vulnerability Identification – I

General scheme

- 1. Obtain CPE match string
- 2. Find corresponding **CVEs**
- Methods for obtaining data
 - Active and passive monitoring, log management
- Example approaches for constructing CPE identifiers
 - Banner grabbing obtains responses from open ports
 - Fingerprinting captures network connection properties

CONCORDIA

Vulnerability Identification – II

Challenges

- Asset management
- Vulnerability discovery precision
- Amount of data
- Implementation of CPE specifications

Research directions

- Interoperability of existing approaches
- Current IT environments types of assets

Threat Identification – I

- Methods
 - Graph-based events and their relationships
 - Machine learning classification
 - Natural Language Processing entities from CTI reports
 - Ontologies CTI models and cyber threat inference

The use of enumerations

- Data sources
- Ground truth
- Ontology's entities

Threat Identification – II

Challenges

- Unstructured CTI reports
- Lack of visibility and amount of data
- Maturity of methods
 - TTPs describe the attacker's behavior

Research directions

- Interoperability of existing approaches
- Machine learning for threat identification

Research Questions

2) What is the **usability of MITRE ATT&CK** for threat modeling when only **network monitoring** is used as a source of data?

3) What is the *interoperability of* public *enumerations using references* between their entries?

Analysis of Enumerations

- Analyses
 - MITRE ATT&CK and network traffic
 - **References** between enumerations
 - Accomplished in Q1/2022
- Dataset
 - CVEs from the NVD
 - CWE and CAPEC from official websites
 - Enterprise ATT&CK matrix from the **official Github repository**

CONCORDIA

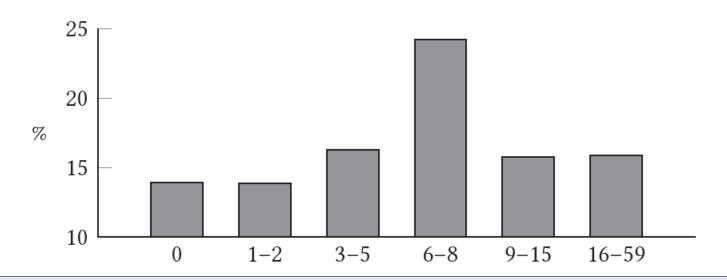
MITRE ATT&CK and Network Traffic

Motivation

- ATT&CK techniques visible on the network level
- Results
 - 131 out of 707 techniques
 - **13** out of 14 **tactics**

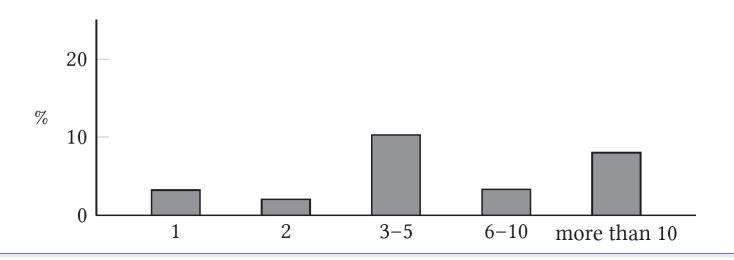
Conclusion

 ATT&CK can be used for threat modeling based on network traffic

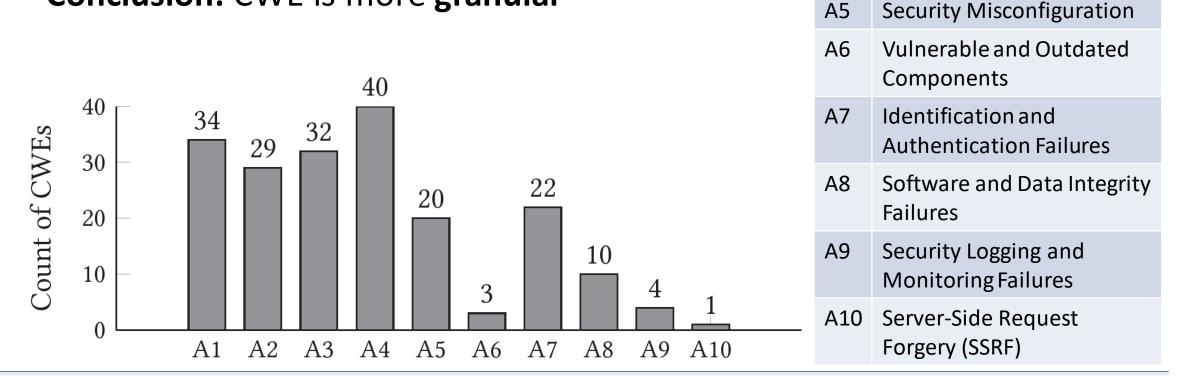

Data Source	Count of Techniques	
Command	256	
Process	253	
File	192	
Network Traffic	131	
Windows Registry	69	
Application Log	55	
Module	50	

CAPEC and CVE References

- Motivation: determine attack patterns for CVE vulnerabilities
- **Results:** approximately **30%** of CVEs mapped to 1-5 CAPEC entries
- Conclusion: references do not allow determining CAPEC entries



ATT&CK and CVE References


- Motivation: determine ATT&CK techniques for CVE vulnerabilities
- **Results:** more than **73%** of CVEs have no related ATT&CK techniques
- **Conclusion:** references **do not** allow determining ATT&CK techniques

CWE and OWASP Top Ten

- Motivation: mapping to other catalogs
- **Results:** CWEs for OWASP Top Ten categories
- Conclusion: CWE is more granular

CONCORDIA

Broken Access Control

Cryptographic Failures

Injections

Insecure Design

A1

A2

A3

A4

Summary

Research questions

- 1. Current challenges
- 2. Usability of MITRE ATT&CK with network monitoring
- 3. Interoperability between **enumerations** using their **references**

Results of our work

- Full paper ACM Digital Library
 - <u>https://doi.org/10.1145/3538969.3544458</u>
- Supplementary materials scripts for downloading data and analyses on Zenodo
 - <u>https://doi.org/10.5281/zenodo.6659657</u>

Contact

Research Institute CODE Carl-Wery-Straße 22 81739 Munich Germany

contact@concordia-h2020.eu

Follow us

www.concordia-h2020.eu

www.twitter.com/concordiah2020

www.facebook.com/concordia.eu

www.linkedin.com/in/concordia-h2020

www.youtube.com/concordiah2020