J 2022

Anxiety in Duckweed–Metabolism and Effect of Diazepam on Lemna minor

LAMACZOVÁ, Adéla, Tomáš MALINA, Klára ODEHNALOVÁ, Radka OPATŘILOVÁ, Petra PŘIBILOVÁ et. al.

Basic information

Original name

Anxiety in Duckweed–Metabolism and Effect of Diazepam on Lemna minor

Authors

LAMACZOVÁ, Adéla (203 Czech Republic, guarantor, belonging to the institution), Tomáš MALINA (203 Czech Republic), Klára ODEHNALOVÁ (203 Czech Republic), Radka OPATŘILOVÁ (203 Czech Republic, belonging to the institution), Petra PŘIBILOVÁ, Štěpán ZEZULKA (203 Czech Republic), Blahoslav MARŠÁLEK (203 Czech Republic) and Eliška MARŠÁLKOVÁ

Edition

WATER, Basel, MDPI, 2022, 2073-4441

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

30104 Pharmacology and pharmacy

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 3.400

RIV identification code

RIV/00216224:14160/22:00126390

Organization unit

Faculty of Pharmacy

UT WoS

000796106900001

Keywords in English

Lemna minor; benzodiazepines; diazepam; oxazepam; temazepam; nordazepam; ecotoxicology; surface water; aquatic plants; phytoremediation

Tags

Tags

International impact, Reviewed
Změněno: 9/8/2022 09:30, JUDr. Sabina Krejčiříková

Abstract

V originále

The fate of pharmaceuticals in the human body, from their absorption to excretion is well studied. However, medication often leaves the patient’s body in an unchanged or metabolised, yet still active, form. Diazepam and its metabolites, ranging up to 100 µg/L, have been detected in surface waters worldwide; therefore, the question of its influence on model aquatic plants, such as duckweed (Lemna minor), needs to be addressed. Lemna was cultivated in a Steinberg medium containing diazepam in three concentrations—0.2, 20, and 2000 µg/L. The activity of superoxide dismutase (SOD) and catalase (CAT), leaf count, mass, and the fluorescence quantum yield of photosynthesis were assessed. The medium was also analysed by LC-MS/MS to determine the concentration of diazepam metabolites. Our results show no negative impact of diazepam on Lemna minor, even in concentrations significantly higher than those that are ecotoxicologically relevant. On the contrary, the influence of diazepam on Lemna suggests growth stimulation and a similarity to the effect diazepam has on the human body. The comparison to the human body may be accurate because γ-Aminobutyric acid-like (GABA-like) receptors responsible for the effect in humans have also been recently described in plants. Therefore, our results can open an interesting scientific area, indicating that GABA receptors and interference with benzodiazepines are evolutionarily much older than previously anticipated. This could help to answer more questions related to the reaction of aquatic organisms to micropollutants such as psychopharmaceuticals.