D 2022

Learned Indexing in Proteins: Substituting Complex Distance Calculations with Embedding and Clustering Techniques

OĽHA, Jaroslav, Terézia SLANINÁKOVÁ, Martin GENDIAR, Matej ANTOL, Vlastislav DOHNAL et. al.

Basic information

Original name

Learned Indexing in Proteins: Substituting Complex Distance Calculations with Embedding and Clustering Techniques

Authors

OĽHA, Jaroslav (703 Slovakia, belonging to the institution), Terézia SLANINÁKOVÁ (703 Slovakia, belonging to the institution), Martin GENDIAR (703 Slovakia, belonging to the institution), Matej ANTOL (703 Slovakia, belonging to the institution) and Vlastislav DOHNAL (203 Czech Republic, guarantor, belonging to the institution)

Edition

1. vyd. Cham, Similarity Search and Applications, 15th International Conference, SISAP 2022, Bologna, Italy, October 5–7, 2022, Proceedings, p. 274-282, 9 pp. 2022

Publisher

Springer Cham

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10200 1.2 Computer and information sciences

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

References:

Impact factor

Impact factor: 0.402 in 2005

RIV identification code

RIV/00216224:14330/22:00126460

Organization unit

Faculty of Informatics

ISBN

978-3-031-17848-1

ISSN

UT WoS

000874756300022

Keywords in English

Protein database;Embedding non-vector data;Learned metric index;Similarity search;Machine learning for indexing

Tags

International impact, Reviewed
Změněno: 16/8/2023 13:25, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

Despite the constant evolution of similarity searching research, it continues to face challenges stemming from the complexity of the data, such as the curse of dimensionality and computationally expensive distance functions. Various machine learning techniques have proven capable of replacing elaborate mathematical models with simple linear functions, often gaining speed and simplicity at the cost of formal guarantees of accuracy and correctness of querying. The authors explore the potential of this research trend by presenting a lightweight solution for the complex problem of 3D protein structure search. The solution consists of three steps – (i) transformation of 3D protein structural information into very compact vectors, (ii) use of a probabilistic model to group these vectors and respond to queries by returning a given number of similar objects, and (iii) a final filtering step which applies basic vector distance functions to refine the result.

Links

EF16_019/0000822, research and development project
Name: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur
LM2018131, research and development project
Name: Česká národní infrastruktura pro biologická data (Acronym: ELIXIR-CZ)
Investor: Ministry of Education, Youth and Sports of the CR, Czech National Infrastructure for Biological Data
LM2018140, research and development project
Name: e-Infrastruktura CZ (Acronym: e-INFRA CZ)
Investor: Ministry of Education, Youth and Sports of the CR
MUNI/A/1195/2021, interní kód MU
Name: Aplikovaný výzkum v oblastech vyhledávání, analýz a vizualizací rozsáhlých dat, zpracování přirozeného jazyka a aplikované umělé inteligence
Investor: Masaryk University