Detailed Information on Publication Record
2023
Segmentation and Tracking of Mammary Epithelial Organoids in Brightfield Microscopy
HRADECKÁ, Lucia, David WIESNER, Jakub SUMBAL, Zuzana SUMBALOVÁ KOLEDOVÁ, Martin MAŠKA et. al.Basic information
Original name
Segmentation and Tracking of Mammary Epithelial Organoids in Brightfield Microscopy
Authors
HRADECKÁ, Lucia (703 Slovakia, belonging to the institution), David WIESNER (203 Czech Republic, belonging to the institution), Jakub SUMBAL (203 Czech Republic, belonging to the institution), Zuzana SUMBALOVÁ KOLEDOVÁ (703 Slovakia, belonging to the institution) and Martin MAŠKA (203 Czech Republic, guarantor, belonging to the institution)
Edition
IEEE Transactions on Medical Imaging, 2023, 0278-0062
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10200 1.2 Computer and information sciences
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 10.600 in 2022
RIV identification code
RIV/00216224:14330/23:00130029
Organization unit
Faculty of Informatics
UT WoS
000907160700023
Keywords in English
organoid segmentation; organoid tracking; brightfield microscopy; deep learning; image synthesis
Tags
International impact, Reviewed
Změněno: 7/4/2024 22:32, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
We present an automated and deep-learningbased workflow to quantitatively analyze the spatiotemporal development of mammary epithelial organoids in twodimensional time-lapse (2D+t) sequences acquired using a brightfield microscope at high resolution. It involves a convolutional neural network (U-Net), purposely trained using computer-generated bioimage data created by a conditional generative adversarial network (pix2pixHD), to infer semantic segmentation, adaptive morphological filtering to identify organoid instances, and a shape-similarity-constrained, instance-segmentation-correcting tracking procedure to reliably cherry-pick the organoid instances of interest in time. By validating it using real 2D+t sequences of mouse mammary epithelial organoids of morphologically different phenotypes, we clearly demonstrate that the workflow achieves reliable segmentation and tracking performance, providing a reproducible and laborless alternative to manual analyses of the acquired bioimage data.
Links
GA21-20374S, research and development project |
| ||
MUNI/A/1145/2021, interní kód MU |
| ||
MUNI/G/1446/2018, interní kód MU |
|