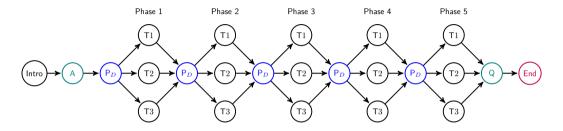
MUNI C4E

Designing Adaptive Cybersecurity Hands-on Training

Pavel Šeda, Jan Vykopal, Pavel Čeleda, Igor Ignác vykopal@ics.muni.cz

Masaryk University, Czech Republic

October 11, 2022 @ FIE'22 conference


Common Cybersecurity Hands-on Classes

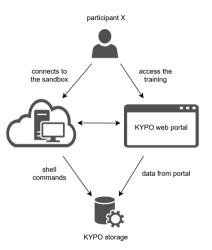
- Learners **interact with networks** of full-fledged operating systems and devices that **emulate real-world systems**.
- Learners' interaction is **driven by a learning environment** with or without a human instructor's assistance.
- Each student or team works with an **own instance** of the lab environment.

$$(Intro \rightarrow (I \rightarrow Q \rightarrow P1 \rightarrow P2 \rightarrow \cdots \rightarrow PN \rightarrow Q \rightarrow End)$$

Generic structure of training with several phases (P), optional questionnaires (Q), and informative phases (I).

Adaptive Training Format

- A a pre-training assessment,
- T_x a task *x*,
- Q a post-training questionnaire,
- P_D a phase decision node.
- Published at FIE '21 (https://ieeexplore.ieee.org/document/9637252).
- Integrated into KYPO Cyber Range Platform.


Adaptive Training – Metrics From Learning Environment

Data from portal

- Pre-training assessment
- Submitted answers
- Time to complete the task
- Solution displayed

Data from virtual hosts

Shell commands typed

Adaptive Training – Tutor Model

The model uses the metrics to evaluate the participants' performance and to assign a suitable task.

$$\boldsymbol{W}^{(x)} = \left(\boldsymbol{w}_{ij}^{(x)}\right), i = 1, \dots, m, \quad j = \alpha, \beta, \gamma, \delta, \varepsilon$$
(1)

$$f(x) = \frac{\sum_{i=1}^{x} \left[p_i w_{i\alpha}^{(x)} + s_i \left(k_i w_{i\beta}^{(x)} + a_i w_{i\gamma}^{(x)} + t_i w_{i\delta}^{(x)} + w_{i\varepsilon}^{(x)} \right) \right]}{\sum_{i=1}^{x} \left(w_{i\alpha}^{(x)} + w_{i\beta}^{(x)} + w_{i\gamma}^{(x)} + w_{i\delta}^{(x)} + w_{i\varepsilon}^{(x)} \right)}$$

$$\mathcal{T}_y = egin{cases} n_x, & ext{if } f(x) ext{ is equal to 0} \ ext{trunc}(n_x[1-f(x)])+1, & ext{otherwise} \end{cases}$$

(3)

(2)

Setting Up the Model in the Learning Environment

Questionnaire Answered		Completed in Time		Keyword Used		Solution Displayed		Submitted Answers		Related Phase		
0	0	1	\$	0	0	1	\$	0	0	3. Getting to know the environment	Allowed Wrong Answer Limit (Default 1	0) *
0	\$	1	\$	0	<>	1	\$	0	<>	4. Looking for server's IP address	Allowed Commands Limit (Default 10)	
0	0	1	<>	0	0	1	\diamond	1	0	5. Connect to the server	Estimated Duration (Default 10) *	
1	\$	0	\bigcirc	0	\Diamond	0	0	0	0	6. Find interesting files	5	

Pavel Šeda et al. • Designing Adaptive Cybersecurity Hands-on Training • October 11, 2022 @ FIE'22 conference

7/16

Problem Statement

Complexity of the design of adaptive training for instructor

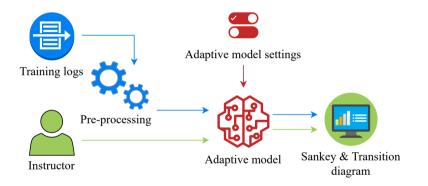
- Differences between variant tasks in a phase.
- Relations between phases and pre-training assessment.

Time-consuming testing of the designed training

- Adaptive training format requires setting many metrics and parameters.
- Learning environment does not aid the design process.

Goal of the Paper

Design a process and supporting tool to ease the design and analysis of adaptive training.

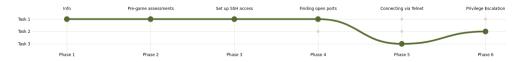

Expectations

- Time-saving and effectiveness of preparation of training for instructors
- Increased learning efficiency
- Increased learning experience
- Decreased training failure rate
- Participants finish the training in an allocated (expected) time

Proposed Design Process

- Learning Environment Preparation
- Setting Learning Objectives
- Base Tasks Design
- Variant Tasks Design
- Data Gathering and Evaluation
- Testing

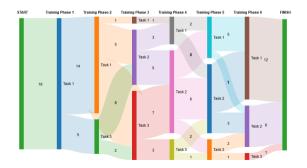
Tool Assisting Instructor (Training Designer)



Tool: Pre-training Module

Input: Performance matrix set by an instructor

Output: **Transition graph of a single trainee** through training phases


Pavel Šeda et al. • Designing Adaptive Cybersecurity Hands-on Training • October 11, 2022 @ FIE'22 conference

Tool: Post-training Module

Input: Configurable model of the training instance

- Processes data collected from finished training sessions.
- Same interface as for setting the tutor model.

Output: Sankey diagram representing pathways of all participants

Conclusion

Original process of designing adaptive training

- No guidance for preparation
- High complexity of the preparation
- Time-consuming testing of settings of the tutor model

Proposed adaptive training design process

- Increased efficiency of adaptive training design
- Reduced time for instructors
- Increased participants' experience from the training

Ongoing work

• Testing the tool and design process with new trainings.

Publicly Available Contributions

KYPO Cyber Range Platform source code

☆ https://gitlab.ics.muni.cz/muni-kypo-crp

KYPO Cyber Range Platform documentation

https://docs.crp.kypo.muni.cz

Full paper and slides

https://is.muni.cz/publication/2223817/

Stay in Touch

Jan Vykopal

▼ vykopal@ics.muni.cz

KYPO Cyber Range Platform

Cybersecurity Laboratory

MUNI C4E

EUROPEAN UNION

European Structural and Investment Funds Operational Programme Research, Development and Education

C 4 E . C Z