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We provide a comprehensive assessment of the predictive power of combinations
of dynamic stochastic general equilibrium (DSGE) models for GDP growth, inflation,
and the interest rate in the euro area. We employ a battery of static and dynamic
pooling weights based on Bayesian model averaging principles, prediction pools, and
dynamic factor representations, and entertain six different DSGE specifications and five
prediction weighting schemes. Our results indicate that exploiting mixtures of DSGE
models produces competitive forecasts compared to individual specifications for both
point and density forecasts over the last three decades. Although these combinations do
not tend to systematically achieve superior forecast performance, we find improvements
for particular periods of time and variables when using prediction pooling, dynamic
model averaging, and combinations of forecasts based on Bayesian predictive synthesis.
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1. Introduction

Dynamic stochastic general equilibrium (DSGE) models
ave become the workhorse of modern macroeconomic
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research, due to their internal consistency and their abil-
ity to assess the effects of policy shocks in a rigorous
manner.

In spite of their importance in modern economic anal-
ysis, the existing results concerning their out-of-sample
forecasting ability are mixed. A series of studies have
assessed the predictive ability of different types of DSGE
models. Christoffel et al. (2011) examine the
out-of-sample predictive ability of the European Central
Bank’s New Area-Wide Model (NAWM), the DSGE model
used to create projections of macroeconomic variables
by the monetary authorities of the euro area. The re-
sults in Christoffel et al. (2011) indicate that this DSGE
model, as compared to other alternative reduced-form
specifications, provides good predictions for a set of 12
different macroeconomic variables. The predictive accu-
racy of DSGE models, however, does not necessarily re-
main stable over time. Del Negro et al. (2016) provide
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evidence that forecasts produced using a Smets–Wouters
type of DSGE model (Smets & Wouters, 2003, 2007) with
financial frictions perform particularly well in periods of
financial turmoil (in particular in the Great Recession),
but that the predictive accuracy of the model tends to
suffer in tranquil periods. The forecast quality of DSGE
structures that include financial frictions has also been as-
sessed by Kolasa and Rubaszek (2015), and improvements
in forecast ability are reported in episodes of financial
turmoil when housing market frictions are included in
the model, although no systematic gains in predictive
performance are found in more stable periods.

Another strand of the literature on macroeconomic
orecasting has shown interest in analyzing predictive
ombinations based on a wide range of models, rather
han focusing on a single specification, an idea that dates
ack to the work by Bates and Granger (1969). Amisano
nd Geweke (2017), for instance, find improvements in
ut-of-sample prediction errors for macroeconomic vari-
bles in the US by pooling forecasts from different
acroeconomic models using Bayesian predictive distri-
utions.
In this study, we evaluate the forecast ability of

eighted combinations of six different DSGE models for
DP growth, inflation, and the interest rate in the euro
rea, making use of several prediction combination tech-
iques. Our analysis expands the work by Wolters (2015),
hich assesses the forecast accuracy of four DSGE mod-
ls for the US, as well as the potential predictive gains
btained by using combinations of these. We entertain
ix different DSGE specifications for the euro area and
ive forecast combination methods, both static and dy-
amic, and evaluate point forecasts as well as density
redictions. Our set of prediction combination techniques
ontains some of the forecast pooling techniques enter-
ained in existing studies for DSGE models (Wolters, 2015,
or example), as well as more novel methods based on
he optimization of weights, that can potentially be time-
arying and evolve according to flexible laws of motion.
n particular, we use static weights based on principles
f Bayesian model averaging and prediction pools, and
ynamic weights that build upon dynamic (latent) factor
epresentations of the variables of interest.

The combination techniques employed in our anal-
sis result in significantly different weighting schemes
cross models. While dynamic Bayesian model averag-
ng and combinations based on dynamic factors lead to
ooled forecasts which assign positive weights to all of
he DSGE specifications, the technique based on predic-
ion pools acts as a dynamic model selection tool, as-
igning weights close to zero to most individual model
redictions over the out-of-sample period. The potential
ains in predictive accuracy that can be exploited are spe-
ific to sub-periods, variables, and forecasting horizons,
ith no one-size-fits-all predictive combination strategy,
nsuring systematic improvements in all situations.
The rest of this paper is organized as follows. Section 2

ntroduces the DSGE models used in the analysis, and
ection 3 presents the predictive density combination
ethods. Section 4 shows the results of the out-of-sample

orecasting exercise, and Section 5 concludes.
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2. The battery of DSGE models

2.1. Individual DSGE models

For our empirical analysis, we use a battery of DSGE
models for the euro area. Their specifications differ in size,
complexity, and the particular features highlighted. Since
the analysis is conducted on a set of three core macroe-
conomic variables (GDP growth, inflation, and the interest
rate), we ensure that these three observable variables are
common across all models. The sparsest model enter-
tained is a basic three-equation New Keynesian model,
which serves as a benchmark in terms of simplicity. The
model presented in Cogley et al. (2010) also requires
only three basic observable variables, but introduces two
additional shocks and allows the inflation target to change
over time. The specification by Christensen and Dib (2008)
adds investment and money as additional observable vari-
ables. This group of models is extended with three more
complex specifications that share the set of observable
variables of the model by Smets and Wouters (2007): GDP
growth, inflation, the interest rate, consumption growth,
investment growth, real wage growth, and hours worked.
The specification by Justiniano et al. (2011) contains the
relative price of consumption to investment as the eighth
observable variable, whereas Del Negro et al. (2015) add
spread and inflation expectations as observable variables
to the modeling framework and allow the shocks to be of
a non-stationary nature. The group of DSGE specifications
used spans model structures which differ in the mecha-
nisms highlighted for the transmission of macroeconomic
shocks. Tracking the predictive ability of such models over
time can thus help us grasp changes in the relative impor-
tance of particular theoretical channels as determinants of
macroeconomic dynamics in the euro area.

Table 1 lists the models entertained, together with
their corresponding abbreviations (which are used in the
description of the results of the analysis and in all sub-
sequent figures and tables), and summarizes information
about the number of observable variables, the number of
exogenous shocks, and the main features of each model.
The particular observable variables included in each one
of the DSGE models are presented in Table 2.

2.2. Data

The models in Table 1 are estimated using quarterly
data for the euro area in its 19-country composition.
The database spans information from 1970Q3 to 2019Q1
and thus contains 195 quarterly observations. The core
of the database is sourced from the Area Wide Model
(AWM) presented in Fagan et al. (2005) and updated and
extended by Brand and Toulemonde (2015). The original
AWM database is updated using data from the European
Central Bank or Eurostat since the 1990s and is extended
by population and hours worked from the Total Economy
Database and Eurostat. Data on monetary aggregates are
obtained directly from the OECD. We use time series
compiled by Gilchrist and Mojon (2018) for the interest
rate spread variable. Inflation expectations are sourced
from the European Central Bank’s Survey of Professional
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Table 1
Euro area DSGE models used in the forecasting exercise.
Reference Name Observables Shocks Features

3-equation basic NK model NKModel 3 3 IS, PC, Taylor rule
Cogley et al. (2010) CPS 2010 3 5 Inflation target can change over time
Christensen and Dib (2008) CD 2008 5 5 Financial frictions as in Bernanke et al. (1999)
Smets and Wouters (2007) SW 2007 7 7 Deterministic growth rate driven by labor-augmenting

technological progress
Justiniano et al. (2011) JPT 2011 8 8 Two investment shocks
Del Negro et al. (2015) DNGS 2015 9 9 Smets and Wouters (2007) with financial frictions +

spread and inflation expectations as observables
Table 2
DSGE models: Observable variables.

CPS 2010 CD 2008 SW 2007 JPT 2011 DNGS 2015
NKModel

Output ✓ ✓ ✓ ✓ ✓
Inflation ✓ ✓ ✓ ✓ ✓
Interest rate ✓ ✓ ✓ ✓ ✓
Consumption ✓ ✓ ✓
Investment ✓ ✓ ✓ ✓
Hours worked ✓ ✓ ✓
Wage ✓ ✓ ✓
Money supply (M1) ✓
Relative investment price ✓
Spread ✓
Inflation expectations ✓
Forecasters. The longest-term forecast available was se-
lected, which spans four to five years ahead. Growth rates
are calculated as quarter-on-quarter differences of logs,
and the interest rate is calculated per quarter. Details
on the sources of the different variables are provided in
Appendix A.

The data transformations performed to the model vari-
bles correspond to those used in Smets and Wouters
2007). Real consumption, investment, and GDP are di-
ided by population and transformed to growth rates.
ours worked are divided by population and logged. In-
lation is defined as the growth rate of the GDP deflator.
he nominal wage is deflated by the GDP deflator and
ransformed to growth rates. The interest rates are short-
erm market interest rates. The monetary aggregate M1
s deflated by the GDP deflator, divided by population,
nd transformed to growth rates. Finally, the relative price
f investment is calculated as the investment deflator
ivided by the consumption deflator, and transformed to
rowth rates.

.3. Detrending macroeconomic variables

The macroeconomic variables used in the estimation
f DSGE specifications are often highly persistent and
eed to be detrended using methods that are consis-
ent with the theoretical framework used in the model.
or some existing models, the authors specify the par-
icular filter employed to detrend the variables, while
n other cases, these details are not specified (see, e.g.,
orodnichenko & Ng, 2010). Delle Chiaie (2009) investi-
ates the effects of detrending observable variables with
he Hodrick–Prescott (HP) filter and a linear trend in
he model by Smets and Wouters (2003), and finds that
tructural parameter estimates are rather sensitive to
he choice of a particular filtering method. Consequently,
1822
forecasting performance may be significantly affected by
the choice of a detrending approach.

The original contributions on which we base our in-
dividual specifications use different detrending meth-
ods for the macroeconomic variables. While Christensen
and Dib (2008) use the HP filters, Smets and Wouters
(2007)—and models that build upon a similar structure—
introduce some of the observable variables in first dif-
ferences when estimating the parameters of the DSGE
specification. Gorodnichenko and Ng (2010) offer a per-
spective of detrending approaches commonly used in a
broader literature by compiling the detrending methods
employed in 21 different models. The list of data filters
used in various DSGE models shows a predominance of
linear detrending, HP filtering, and first difference trans-
formations. Our analysis employs several approaches used
in the literature, while keeping the detrending method
identical across all models considered. By doing so, we
aim to separate the influence on forecasting performance
of core model features, such as financial frictions or flexi-
ble inflation targets, from that of the trend formulation. In
our baseline detrending specification, we use the data for
GDP (and its sub-components) in first differences. Time
series which present higher persistence are filtered using
one-sided HP filters.1

1 Alternatively, we also assess the forecasting performance of our
models employing the filtering strategy proposed by Del Negro et al.
(2015), Justiniano et al. (2011), and Smets and Wouters (2007) and
find evidence that our baseline detrending approach leads to superior
forecasting performance in the majority of cases (see Table C.4 in
Appendix C). We also perform the analysis using different detrending
approaches, such as using the (one-sided) HP filter for all data series,
employing the regression-based data filter introduced in Hamilton
(2018), and demeaning the times series in the models. The results for
these alternative detrending specifications can be found in Appendix C.
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2.4. Estimation and predictive densities

Each one of the models employed in the forecasting
xercise is estimated recursively using Bayesian methods,
tarting with a sample size composed by 78 observations
corresponding to the time frame from 1970Q3–1989Q4)
nd adding one quarter at a time to the sample up to a
aximum of 195 observations (corresponding to the full
ample, which spans the period from 1970Q3–2019Q1).
dditionally, we perform the forecasting exercise of esti-
ating the models with a rolling window of 60 observa-

ions. The models are estimated using a minimum of a half
illion Metropolis–Hastings replications in two chains for

he NKModel, one million replications for CD 2008 and
PS 2010, two million replications for JPT 2011 and SW
007, and a minimum of four million replications for the
NGS 2015 model. To ensure convergence of the Markov
hain, the checks in Brooks and Gelman (1998) are per-
ormed and, if these fail, the number of replications is
ncreased until convergence of the posterior distributions
s achieved. We use a Monte Carlo-based optimization
outine to ensure that the optimal acceptance ratio of the
etropolis–Hasting algorithm is reached, and we discard
0% of the replications as burn-ins.2
Forecasts are computed using 10,000 draws from the

osterior distribution for every estimated model and each
n-sample period. In each instance, we calculate one- to
our-step-ahead out-of-sample forecasts of GDP growth,
nflation, and the interest rate, which correspond to pe-
iods ranging from 1990Q1 to 2018Q4. The analysis of
orecasts is conducted after imposing back the trend of
he observable variables, so as to ensure comparability
cross detrending approaches.

. Predictive combinations of DSGE models

In this section, we outline the forecast combination
ethods employed to average the predictions of our set
f models. Each DSGE model typically includes a differ-
nt set of observables, targets a specific feature of the
conomy, and thus provides its own characterization of
he economy by imposing different (structural) dynamics
n the macroeconomic variables of interest. Some small-
cale DSGE models abstract from the interaction between
evelopments in the real economy, the labor market, and
he financial sectors, while others include features and
echanisms related to these linkages. We concentrate
xclusively on one- and four-step-ahead predictive densi-
ies of GDP growth, inflation, and the interest rate, which
re common to all the specifications used. We assess and
ombine the joint predictive density of these three vari-
bles, as well as their corresponding marginal predictive
ensities.
In the following, we illustrate the methods we use to

ombine predictive densities by focusing on a scalar time
eries yt+1 and the one-step-ahead horizon. With only mi-
nor adjustments, these techniques work analogously for
the joint predictive densities and for the multi-step-ahead
horizon. In our analysis, we therefore consider predictive

2 All models are estimated using Dynare (Adjemian et al., 2011).
1823
densities for yt+1, which are available from K different
DSGE models. Each DSGE model, indexed by j = 1, . . . , K ,
incorporates information up to time t to generate a pre-
dictive density pj(yt+1|Ij(t)) for period t+1. The informa-
tion set Ij(t) typically consists of the target variable y1:t =

(y1, . . . , yt )′, as well as of the information up to time t
rovided by additional variables specific to that partic-
lar DSGE model. We aim to combine the K predictive
ensities {pj(yt+1|Ij(t))}Kj=1 using a K × 1 weights vector
t+1 = (ω1,t+1, . . . , ωK ,t+1)′ that is specific to the one-
tep-ahead forecast horizon and potentially time-varying.
he combined predictive density for yt+1 is then given by

(yt+1|I1(t), . . . , IK (t)) =

K∑
j=1

ωj,t+1pj
(
yt+1|Ij(t)

)
. (1)

Eq. (1) directly relates to the Bayesian predictive syn-
hesis of McAlinn et al. (2019), McAlinn and West (2019),
here ωt+1 is described as a dynamic synthesis func-
ion.3 This synthesis function can incorporate different
bjectives based on policy targets and historical perfor-
ance up to period t , and nests traditional approaches to

orecast combination, such as prediction pools (Geweke
Amisano, 2011; Hall & Mitchell, 2007) and Bayesian

ynamic model averaging (Koop & Korobilis, 2012, 2013;
aftery et al., 2010). We start by discussing a simple static
eighting scheme implying ωt+1 = ω, and then turn to
ore general approaches based on using dynamic weights

or the predictive densities.

qual static weights

An obvious starting point to combine predictions from
ifferent DSGE models, which provides a benchmark to
valuate different weighting schemes, is to use

1,t+1 = · · · = ωK ,t+1 = 1/K .

Since ωj,t+1 > 0 and
∑K

j=1 ωj,t+1 = 1, the combination
of predictive densities also constitutes a predictive den-
sity (Geweke & Amisano, 2011; Hall & Mitchell, 2007).
This agnostic approach neglects the fact that different
models might not be equally suitable for prediction at
different time periods, and does not provide updates of
the corresponding weights as information is gained about
the differential predictive ability of model specifications.
An equal weighting scheme is commonly found to be a
good competitor in terms of out-of-sample forecasting
accuracy, as it tends to hedge against large forecast errors
of single specifications (see Timmermann, 2006).

Dynamic Bayesian model averaging

A natural choice of model weights can be achieved by
pooling forecasts according to particular model selection
criteria (for example, based on the predictive marginal
likelihood or past forecast performance). For a given set

3 Del Negro et al. (2016) and McAlinn and West (2019) provide
a formal treatment of the decision problem concerning the choice of
time-varying weights ω .
t+1



J. Čapek, J. Crespo Cuaresma, N. Hauzenberger et al. International Journal of Forecasting 39 (2023) 1820–1838

n

w
m
(

o
t
w

ω

w
s
i
m
w
w
p
a

B

i
t
o
p
d
t
d
d
b
B
t

y

w

o
m
v
t
l
p
a

ω

w
i
K
w
a
t
(
t
f
w
t
p
e
w
e
o

of priors over specifications, traditional Bayesian model
averaging (BMA) approaches give models with a higher
marginal likelihood more support while downweighting
models with deficient predictive characteristics. Follow-
ing Raftery et al. (2010) and Koop and Korobilis (2012,
2013), we consider posterior weights for individual spec-
ifications based on their (discounted) historical predictive
likelihood, a procedure known as dynamic model averag-
ing (DMA). According to this literature, DMA consists of a
prediction equation

ωj,t+1|t =
ωδj,t|t∑K
k=1 ω

δ
k,t|t

,

and an updating equation

ωj,t+1|t+1 =

pj
(
y(r)t+1|Ij(t)

)
× ωj,t+1|t∑K

k=1 pk
(
y(r)t+1|Ik(t)

)
× ωk,t+1|t

.

Here, ωt+1|t = (ω1,t+1|t , . . . , ωK ,t+1|t )′ denotes a K ×

1 vector of predictive weights at period t + 1 based
on historical forecast performance up to t , ωt+1|t+1 =

(ω1,t+1|t+1, . . . , ωK ,t+1|t+1)′ is a K × 1 vector of updated
weights, and pj

(
y(r)t+1|Ij(t)

)
refers to the one-step-ahead

predictive density for model j evaluated at the realized
value y(r)t+1 (i.e., the predictive likelihood).4 Moreover, a
forgetting factor δ ∈ (0, 1) discounts past predictive
performance more heavily, while more recent predictive
likelihoods receive more weight. In the empirical appli-
cation, we set δ = 0.95, implying that the predictive
likelihood four quarters (i.e., one year) in the past receives
around 80% of the weight of the predictive likelihood of
the most recent quarter.5 The DMA algorithm, moreover,
is easy to implement without the need for any simulation
techniques.

Prediction pools

Recent approaches to forecast combination assess the
set of model-specific forecasts as if it was a portfolio of
predictions, which must be chosen optimally with respect
to a particular loss function (see, inter alia, Geweke &
Amisano, 2011, 2012; Hall & Mitchell, 2007; Pettenuzzo &
Ravazzolo, 2016). Following Geweke and Amisano (2011),
the loss function is defined as a function of historical log
predictive scores, which gives rise to optimal weights af-
ter minimization. Similar to BMA and DMA methods, this
approach ensures that forecasts from DSGE models with
poor predictive abilities are downweighted, and those
computed from specifications that predict more success-
fully receive higher weights. Information up to time t is
available in order to choose the predictive weight ωt+1|t

4 By construction, both ωj,t+1|t and ωj,t+1|t+1 , for j = 1, . . . , K , are
on-negative, and the elements in both ωt+1|t and ωt+1|t+1 sum to one.
5 This choice is consistent with Koop and Korobilis (2012, 2013),
ho suggest defining δ ∈ [0.95, 1]. If δ = 1, past predictive perfor-
ance is not discounted and the weights are defined according to the

predictive) marginal likelihood.
 i

1824
ptimally. The negative weighted historical log predic-
ive scores/likelihoods are minimized with respect to the
eights vector ω:

t+1|t = min
ω

⎧⎨⎩−

t−1∑
τ=1

δt−τ log

⎛⎝ K∑
j=1

ωjpj(y
(r)
τ+1|Ij(τ ))

⎞⎠⎫⎬⎭ ,

here δ again denotes a discount factor that serves the
ame purpose as in the DMA procedure by assigning
ncreasing weight to the most recent predictive perfor-
ance. We additionally impose the restriction that
eights are non-negative and sum to one. Note that
e use standard numerical optimization algorithms for
rediction pools, which are therefore easy to implement
nd computationally fast.

ayesian predictive synthesis with a dynamic factor model

As noted by Del Negro et al. (2016), the predictive abil-
ty of particular specifications may be affected by struc-
ural breaks in the parameters governing the dynamics
f macroeconomic variables. Such changes in predictive
ower should be addressed when combining the K pre-
ictive densities over time, and thus the mapping from
he forecasts of each model to the combined predictive
ensity should be adjusted accordingly. Eq. (1) can be
irectly related to a dynamic factor model, as proposed
y McAlinn and West (2019) in the context of dynamic
ayesian predictive synthesis (BPS) methods, by defining
he synthesis function as
(r)
t+1 = F ′

t+1ωt+1 + ϵt+1, ϵt+1 ∼ N (0, ξ ),

here we define the latent factors F t+1 =
(
ŷ1,t+1, . . . ,

ŷK ,t+1
)′ with ŷj,t+1, for j = 1, . . . K , being a draw from the

ne-step-ahead predictive density pj(yt+1|Ij(t)) of each
odel j for period t + 1. Further, ωt+1 refers to time-
arying loadings, and the shock in the observation equa-
ion ϵt+1 is Gaussian with zero mean and variance ξ . The
atent loadings (or states), that relate the draws from the
redictive distributions to the realized value y(r)t+1 evolve
ccording to a random walk:

t+1 = ωt + ηt+1, ηt+1 ∼ N (0,Ψ ),

here ηt+1 refers to a K × 1 vector of Gaussian state
nnovations, which are centered on zero and feature a
×K variance–covariance matrix Ψ . In contrast to equal
eighting, DMA, and predictive pooling, the weights ωt+1
re no longer necessarily non-negative and do not need
o sum up to one. ωt+1 are thus to be interpreted as
time-varying) calibration parameters relating draws from
he predictive densities to the actual realization y(r)t+1. A
urther difference from other weighting schemes is that
e consider a measurement error ϵt+1 in the observa-
ion equation that explicitly accounts for model incom-
leteness (see, e.g., Aastveit et al., 2018; Hoogerheide
t al., 2010; McAlinn & West, 2019). Moreover, the latent
eights ωt+1 are allowed to be correlated among mod-
ls via a full variance–covariance matrix Ψ , which not
nly determines the amount of time variation introduced

n ωt+1, but also takes into account the dependencies
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between individual predictive specifications that share
similar characteristics.

We use weakly informative priors, which are standard
n the literature for dynamic factor models. This implies
he use of a multivariate normal prior for ω0, an inverse
amma prior for ξ , and an inverse Wishart prior for Ψ .
e repeat this procedure for R draws from the predictive
ensity and explicitly account for a potentially non-trivial
orm of the predictive densities of the DSGE models. To
stimate the model we rely on standard Bayesian esti-
ation techniques used for time-varying parameter mod-
ls. In particular, we use a Gibbs sampler which iterates
hrough these R draws. Conditional on all other quantities,
e update the latent states ωt+1 with a standard forward

filtering backward sampling (FFBS) algorithm (Carter &
Kohn, 1994; Frühwirth-Schnatter, 1994). In a next step,
conditional on the time-varying calibration parameters,
we independently draw the observation equation vari-
ance ξ and the state equation variance–covariance matrix
Ψ . All steps involve standard conditional posteriors (for
details, see McAlinn & West, 2019). Moreover, by using
the filtering step in the FFBS algorithm, we directly obtain
the predictive weights ωt+1|t , which are used to combine
the most recent predictive densities when the realiza-
tion is not yet available. The MCMC algorithm of the
dynamic factor model is somewhat more computationally
demanding than the approximate procedure of DMA and
the numerical optimization used for the pooling approach.
However, compared to sequential Monte Carlo techniques
such as particle filters (see, e.g., Billio et al., 2013; Del
Negro et al., 2016), the computational burden can still be
considered light.

The DECO approach

In addition to the combination methods outlined
above, we consider the dynamic predictive density com-
bination (DECO) approach of Billio et al. (2013). Like BPS,
DECO allows for the specification of time-varying weights
that evolve according to a flexible law of motion, and
accounts for model incompleteness:

y(r)t+1 = F ′

t+1ωt+1 + ϵt+1, ϵt+1 ∼ N (0, ξ ), (2)

with ωt+1 relating draws from the predictive densities to
the actual realization y(r)t+1 and considering a Gaussian-
distributed measurement error ϵt+1.

The main difference from BPS lies in the state equation
that governs the evolution of the weights ωt+1 and thus
the learning mechanism used in prediction. Instead of as-
suming that the weights evolve according to a multivari-
ate random walk with a full variance–covariance matrix
Ψ , a non-linear link function between the elements in
ωt+1 and K independent dynamic latent processes ζt+1 =

(ζ1,t+1, . . . , ζK ,t+1)′ is introduced:

ωj,t+1 =
exp(ζj,t+1)∑K
j=1 exp(ζj,t+1)

, for j = 1, . . . , K .

This logistic link function does not allow for the use
of unconstrained calibration parameters via a synthesis
function, as in BPS, since it restricts the elements in ω
t+1

1825
to be non-negative and sum to one. These restrictions thus
effectively result in a non-linear state-space model, where
Eq. (2) can be interpreted as a dynamic location mixture
with a fixed variance. In what follows, ζt+1 encodes the
learning mechanism and governs the weight dynamics.
Each element in ζt+1 evolves according to independent
andom walks:

j,t+1 = ζj,t + ηj,t+1, ηj,t+1 ∼ N (0, ψj), for j = 1, . . . , K .

ere, ηj,t+1 denotes element-specific state innovations
ith zero mean and variance ψj. In DECO, the state inno-
ation variances ψj encode the learning mechanism and
epend on a scoring rule preselected by the researcher,
discount factor δ, and a number of past observations τ
onsidered. For example, if the scoring rule indicates that
he predictive performance of some particular model has
eteriorated for the past realized values, the mechanism
llows for the corresponding adjustment of the weights
y increasing ψj, thus introducing time variation in ωj,t+1.
equential Monte Carlo techniques are commonly used
or such a non-linear state-space model. For the empirical
mplementation of DECO, we specify the key learning
yperparameters according to the following standard set-
ing: we use the Kullback–Leibler scoring rule, set the
umber of past realized values to τ = 9, and the discount
actor δ = 0.95. The remaining parameters are estimated
rom the data. For the particle filter, moreover, we define
0 particles and use an additional smoothing factor of
.01.6

. Forecasting macroeconomic variables in the euro
rea using DSGE models

We start by quantitatively assessing the predictive
bility differences across DSGE models, before moving to
he analysis of the potential improvements in forecast-
ng quality from combining the predictions of individual
odels, and of the dynamics of predictive weights over

he out-of-sample period.

.1. Overall forecast performance of individual DSGE models

The top panel of Table 3 presents the forecasting per-
ormance of individual DSGE models, which are estimated
ecursively over the out-of-sample period. We present the
oot mean squared forecast error (RMSE) ratios, as well as
he average log predictive Bayes factors (LPBFs), defined
s the difference in average log predictive scores (LPSs),
or one-step-ahead and four-step-ahead predictions. For
he RMSEs, Table 3 also shows the results of Diebold–
ariano tests of equal predictive performance (Diebold &
ariano, 1995), and for the LPSs, those of the Amisano–
iacomini tests (Amisano & Giacomini, 2007). In both
ases, the equality of predictive ability is tested using
he SW2007 model as the benchmark specification. The
esults of this predictive ability analysis based on rolling
indow estimation (instead of parameter estimates based

6 An efficient algorithm for this approach is implemented in the
DeCo toolbox in Matlab (see Casarin et al., 2015) for one-step-ahead
forecasts.
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Table 3
Forecasting performance of recursively estimated DSGE models and combinations of these models.
Target variable(s) DSGE model

CD 2008 CPS 2010 DNGS 2015 JPT 2011 NKmodel SW 2007

One step ahead

Joint 1.246*** 0.929** 1.069** 1.196*** 0.889** 0.320
(−0.194) (0.340***) (−0.063**) (−0.452) (0.159*) (0.125)

GDP growth 1.277*** 0.938 1.069** 1.206*** 0.885* 0.511
(−0.236**) (0.064*) (−0.069) (−0.224***) (0.102***) (−0.777)

Inflation 1.033 0.858*** 1.064 1.107** 0.896** 0.194
(−0.013) (0.117***) (0.036***) (−0.089) (0.019*) (0.022)

Interest rate 1.122 0.973* 1.088 1.291*** 1.016 0.085
(−0.011*) (0.138***) (−0.017) (−0.167***) (0.012) (0.819)

Four steps ahead

Joint 1.115 0.981 1.017 1.176*** 0.941** 0.379
(0.228) (0.419***) (0.308***) (−0.255***) (0.418***) (−1.219)

GDP growth 1.115 0.996 1.037* 1.148** 0.963 0.573
(−0.162) (−0.041) (−0.043) (−0.241***) (−0.026) (−0.865)

Inflation 1.099 0.863 0.938 1.375*** 0.775** 0.220
(0.268***) (0.388***) (0.268***) (−0.006) (0.331***) (−0.396)

Interest rate 1.128 0.988 0.968 1.148*** 0.940 0.234
(0.051***) (0.122***) (0.089***) (−0.038*) (0.162***) (−0.101)

Combination method

EQ DMA POOL BPS DECO

One step ahead

Joint 1.061* 0.926 0.936 0.993 0.941
(0.085) (0.328***) (0.330***) (0.164***) (0.226***)

GDP growth 1.074* 0.928 0.942 1.003 0.949
(−0.006) (0.072***) (0.085***) (−0.011) (−0.145***)

Inflation 0.958 0.877** 0.884** 0.929** 0.872***
(0.028) (0.082) (0.115***) (0.109***) (0.307***)

Interest rate 1.102 1.086 0.994 0.925 0.987
(0.017) (0.102***) (0.123***) (0.118***) (0.158***)

Four steps ahead

Joint 1.070** 0.999 0.985 0.926
(0.321***) (0.440***) (0.448***) (0.673***)

GDP growth 1.089** 1.015 1.005 0.974
(−0.020) (0.008) (−0.037) (−0.013)

Inflation 1.019 0.896 0.871 0.831**
(0.234***) (0.365***) (0.386***) (0.396***)

Interest rate 0.997 0.991 0.961 0.667**
(0.108**) (0.143***) (0.150***) (0.409**)

Notes: The table shows root mean squared errors (RMSEs), and average log predictive Bayes factors (LPBFs) in parentheses,
relative to the SW 2007 model. Bold numbers indicate the best performing DSGE model as well as the best performing
combination method that obtains the smallest RMSE ratio (largest LPBF). The SW 2007 column (highlighted in gray) shows
the actual RMSEs and log predictive scores (LPSs) of our benchmark. Asterisks indicate statistical significance relative to the
SW 2007 model at the 1% (***), 5% (**), and 10% (*) significance levels in terms of Diebold and Mariano (1995) tests for RMSEs
and Amisano and Giacomini (2007) tests for LPSs.
on enlarging the in-sample period recursively) can be
found in Appendix B, and the results based on alternative
detrending methods are presented in Appendix C. The
forecast error measures are presented for the joint vector
of GDP growth, inflation, and the interest rate, as well as
for these three variables individually.

We start by considering the overall forecasting ability
or the group of macroeconomic variables, reflected in the
haracteristics of the joint predictive distribution. The re-
ults in the top panel of Table 3 for the full out-of-sample
eriod indicate that the simple NKModel has particularly
ood predictive ability compared to other DSGE specifi-
ations with more complex model structures. In terms of
he joint accuracy of point forecasts (i.e., for the full vector
f variables) as measured by the average RMSEs, this
pecification outperforms all other DSGE models for both
1826
one-step-ahead and four-step-ahead predictions. Consid-
ering each variable individually, the quality of point pre-
dictions of the NKModel appears particularly high for
four-step-ahead predictions.

The quality of point forecasts from the NKModel par-
tially translates to good performance in density forecast-
ing (as measured by the LPBFs) in both of the predic-
tion horizons considered. The joint density predictions of
the NKModel specification, however, appear less accurate
than those of the CPS2010 model, which includes five
structural shocks instead of the three of the NKModel. The
focus of the CPS2010 specification on offering a structural
modeling framework for inflation dynamics (based on the
inclusion of changes in the inflation target in the model)
is successful at improving out-of-sample density predic-
tions for this variable compared to the rest of the DSGE
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models entertained. Furthermore, the average predictive
performance of the CPS2010 model for short-run density
forecasts of the interest rate is also the best among the
set of models considered.

The particularly good forecasting ability of models that
nclude a small number of observable variables is broadly
obust to the use of different detrending methods and to
he use of parameter estimates based on a rolling sample
nstead of on recursive estimation (see Appendices B and
).

.2. Overall forecast performance of predictive combinations

The comparison of results concerning predictive ability
resented in Table 3 indicates that using forecast combi-
ations can lead to improvements in average predictive
bility over the full out-of-sample period. The best in-
ividual models in terms of forecasting ability at short
orizons outperform all of the combination methods for
DP growth and jointly for all three variables. Concentrat-
ng on point prediction performance and both analyzed
orizons, individual DSGE models predict GDP and infla-
ion better than any combination scheme considered. The
ombinations, on the other hand, outperform individual
SGE specifications at predicting the interest rate. Com-
ining predictions of DSGE models also delivers better
esults for density forecasting inflation, and yields the
est results when evaluating the longer horizon of joint
redictive performance.
Since the forecasting ability results of single DSGE

pecifications and their combinations for the full sample
ay be driven by differences in out-of-sample predic-

ive quality in sub-periods of the out-of-sample inter-
al chosen, a more detailed analysis of the dynamics
f the weights that combination methods assign to dif-
erent DSGE models appears necessary. In the following
ub-section, we analyze the dynamics of the predictive
eights for the different averaging methods entertained,
hus moving beyond average forecast quality and turning
o the assessment of changes in predictive accuracy over
ime.

.3. The dynamics of predictive weights

We start by assessing the dynamics in the relative
redictive ability of DSGE models by studying the evolu-
ion of predictive weights along the hold-out sample for
ur three target variables: GDP growth, inflation, and the
nterest rate. For each observable variable, we combine
he predictions from DSGE models using statistics based
n marginal predictive densities rather than on the joint
redictive density of all target variables. One key advan-
age of this approach is that the weights used to com-
ine predictive densities are thus specific to each variable
nd reflect changes in the relative forecasting ability of
ach DSGE specification for that particular phenomenon.
e calibrate the weights for each forecast combination

cheme with at least eight quarters (1990Q1 to 1991Q4)
or the first period of our hold-out sample (1992Q1) and
mploy δ = 0.95.
Figs. 1 and 2 show the weights obtained for each

odel and target variable in the hold-out sample period
1827
for one-step-ahead (Fig. 1) and four-step-ahead forecasts
(Fig. 2). The weighting schemes across forecast horizons
are relatively similar, indicating a certain degree of sta-
bility of the predictive power of DSGE models across
forecast horizons. In spite of the fact that the loss func-
tions in the DMA and prediction pool methods are both
based on log predictive scores, we observe substantial
differences in the magnitude of the weights obtained for
these two approaches. The weights in the prediction pool
approach typically suggest a dynamic model selection
scheme where single models tend to receive a weight
close to one in a given period of time, while DMA usually
assigns positive weights to forecasts from all different
DSGE models. For the combination approach based on
Bayesian predictive synthesis, weights (corresponding to
factor loadings) are positive and relatively similar across
models for the majority of periods. However, during the
financial crisis, individual negative factor loadings can be
observed, implying a reversal of the sign of the prediction
of the respective DSGE model in the combined forecast for
these quarters.

Focusing on one-step-ahead weights, the first row of
panels in Fig. 1 shows the results for the different combi-
nation techniques for GDP growth. For DMA, we observe
that CPS2010 and NKModel tend to dominate in terms of
predictive ability prior to the financial crisis. In the sub-
sequent years, and in particular after the debt crisis in the
euro area, the relevance of CPS2010 within the group of
combined predictions decreases in favor of SW2007. For
prediction pooling, the distribution of weights shows the
importance of predictions from CPS2010 and NKModel for
the combined forecast in particular periods, with SW2007
gaining importance only in the aftermath of the debt
crisis. Both the DMA and DECO combination schemes give
high weights to predictions from CPS2010 and NKModel,
and the weights from DECO reflect the importance of fore-
casts from DNGS2015 until the mid-2000s. The distribu-
tion of weights implied by Bayesian predictive synthesis
is much more uniform and stable over time.

The second row of panels in Fig. 1 depicts the dynamics
of weighting schemes for inflation as a target variable for
one-step-ahead forecasts. Using DMA, the highest weights
are assigned to CPS2010 and DNGS2015, with the latter
gaining importance during the financial crisis. Both of
these models are designed with a focus on tracking infla-
tion dynamics: CPS2010 features a time-varying inflation
target, and DNGS2015 includes inflation expectations, op-
erationalized by making use of data from the Survey of
Professional Forecasters. With prediction pools, a qual-
itatively similar scheme appears, with weights close to
unity alternating between these two DSGE models, and
predictions from DNGS2015 being particularly important
during the financial crisis years. Bayesian predictive syn-
thesis and DECO assign practically identical stable weights
across models for the full period.

For interest rate predictions, the resulting weighting
schemes are presented in the third row of panels in
Fig. 1. In general, for the interest rate we observe a more
persistent pattern in the weighting scheme, similar to
that found for inflation. The DMA method leads to large
and stable weights for CPS2010 throughout the hold-out
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Fig. 1. Evolution of model weights over the hold-out sample for one-step-ahead predictions. Notes: The figure shows four different weighting schemes
or the three target variables: GDP growth, inflation, and the interest rate. For BPS and DECO we use the posterior mean as a point estimate.
ample, with the exception of the period corresponding
o the financial crisis, when DNGS2015 and NKModel
eceive relatively larger weights. The results from predic-
ion pools are qualitatively similar, with forecasts from
PS2010 receiving weights close to unity throughout the
eriod, except for in the mid-1990s and during the finan-
ial crisis, where predictions from SW2007 and DNGS2015
lay a small role. As in the case of inflation, for inter-
st rates, Bayesian predictive synthesis and DECO as-
ign stable and similar weights to the individual model
redictions throughout the hold-out sample.
For four-step-ahead forecasts of GDP growth, Fig. 2

hows a partly similar evolution of the weights for DMA
ombinations, but with weights that are more spread
cross DSGE specifications, especially before the financial
risis. In contrast to one-step-ahead predictions, for the
onger horizon, the forecasts of GDP growth from SW2007
ain importance during the euro area debt crisis period,
nd weights in the last part of our hold-out sample are
ore uniformly spread across DSGE specifications. For
utput, the combination chosen by prediction pooling
eads to a more erratic weighting scheme prior to the
inancial crisis as compared to one-step-ahead predic-
ions. Output growth forecasts from CD2008 gain rele-
ance right before the financial crisis, as do those from
KModel and SW2007 in the aftermath of the debt cri-
is in the euro area. The weights from the combination
1828
method based on Bayesian predictive synthesis for four-
step-ahead forecasts roughly resemble those found for
one-step-ahead predictions.

The evolution of weighting schemes along the hold-
out sample for inflation predictions at the four-step-ahead
horizon is relatively similar to that for the one-step-ahead
predictions. The pooling combination scheme selects the
CPS2010 model for almost the whole time period un-
der study, as in the case of the shorter prediction hori-
zon. More notable differences across prediction horizons
can be found for DMA combinations. For the longer pre-
diction horizon, the JPT2011 and SW2007 models are
assigned almost zero weight, while DNGS2015 receives
higher weight in the aftermath of the debt crisis in the
euro area. The particular characteristics of the DNGS2015
model, which includes financial frictions and aims to ex-
plain the dynamics of output and inflation after financial
shocks, make it conceptually adequate for predictions
in the environment of debt distress. The Bayesian pre-
dictive synthesis combination method results in roughly
uniformly distributed weights across models.

Finally, the results for interest rate predictions at the
four-step-ahead horizon, presented in the last row of
Fig. 2, differ strongly from those obtained for one-step-
ahead forecasts. The predictions of the CPS2010 model,
which obtained the highest weights using DMA and pre-
diction pools for the shorter-term horizon, now receive
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Fig. 2. Evolution of model weights over the hold-out sample for four-step-ahead predictions. Notes: The figure shows three different weighting
chemes for the three target variables: GDP growth, inflation, and the interest rate. For BPS we use the posterior mean as a point estimate. Note
hat DECO is only used for the one-step-ahead horizon.
ow weights over the hold-out sample and are replaced by
he NKModel for the majority of the hold-out period, with
he weights for CD2008 and DNGS2015 being prominent
uring the outbreak of the financial crisis.
The results of the analysis of the evolution of weight

stimates for combinations of DSGE model predictions
llustrate the stark differences in weights across forecast
ooling methods and over time. The fact that the com-
ination method based on prediction pools acts as a dy-
amic model-selection device contrasts with the
eighting schemes resulting from the other approaches
ntertained in the exercise, which tend to lead to compos-
te predictions with positive weights for all specifications.
he relative predictive performance of these combination
1829
approaches along the hold-out sample, as well as that of
individual model forecasts, is explored in more detail in
the next section.7

4.4. Predictive ability of individual specifications and fore-
cast combinations: Variation over time

In this section, we examine the variation over time of
the predictive performance of the individual DSGE models
and the forecast combinations. We concentrate on the

7 The evolution of predictive weights across methods and over time
for rolling samples can be found in Appendix B.
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Fig. 3. Evolution of average log predictive Bayes factors (LPBFs) relative to the SW 2007 model. Combination methods. Notes: The gray shaded areas
ndicate OECD recessions for the euro area. Note that DECO is only used for the one-step-ahead horizon.
nalysis of the evolution of log predictive Bayes factors, as
measure for the marginal likelihood, over the hold-out
ample.
Fig. 3 presents the predictive performance of forecasts

ased on the different weighting schemes across vari-
bles and forecast horizons by means of log predictive
ayes factors relative to the SW2007 model. In panel a) of
ig. 3, the results for one-step-ahead forecasts are shown.
he overall evolution of the predictive ability of forecast
ombination methods at this prediction horizon presents
imilar dynamics across most of the approaches, with im-
rovements in predictive ability over the hold-out sample
nd a relatively stable forecasting performance at the end
f the out-of-sample period. A notable exception is the
ECO scheme, especially for output growth and inflation.
ractically all forecast combination methods tend to per-
orm poorly at the very beginning of our hold-out sample
ompared to the SW2007 benchmark, a feature that is
ikely related to the imprecise estimation of weights.8

Considering the joint set of macroeconomic variables
f interest as a whole, the predictive ability of prediction
ooling and DMA tends to be similar and to dominate
ll other combination methods after the mid-1990s, a
esult which is mostly driven by their ability to provide
recise predictions of GDP growth. Combinations of fore-
asts based on the DECO method, on the other hand,

8 We also perform the exercise based on rolling samples instead
of a recursive reestimation scheme, and the results are presented
in Appendix B. The relative forecasting ability of individual models
does not change qualitatively, while the performance of combination
schemes with respect to the SW2007 benchmark tends to worsen, thus
lending support to this conclusion.
1830
dominate the other combination alternatives when pre-
dicting inflation and interest rates after the mid-1990s. In
contrast to the results obtained for the shorter-term hori-
zon, the Bayesian predictive synthesis method of forecast
averaging systematically outperforms the other predictive
combinations for the joint group of observable macroeco-
nomic variables after the mid-1990s at the longer horizon.
The predictive quality shown by this method is fueled
by its performance at predicting interest rates in the
longer term, while in the other two variables, the forecast
error appears comparable to that of other combination
methods.

In Fig. 4 we present the log predictive Bayes factors
of individual specifications over the hold-out period with
respect to the benchmark model, SW2007. A comparison
across DSGE models reveals a systematically good rel-
ative predictive performance of the CPS2010 model (in
particular after the mid-1990s) that extends to all three
variables and to both forecasting horizons. In addition, a
worsening in forecast ability of some specifications with
respect to the SW2007 benchmark during the financial
crisis and in its aftermath can be observed for many
of the individual DSGE specifications. This is particularly
the case for CD2008 at both horizons, but the loss of
predictive quality also takes place in other specifications
and is asymmetric across macroeconomic variables, with
GDP growth forecasts being the most affected. The loss
of predictive power triggered by the financial crisis is
in many cases persistent, and relative predictive scores
(as measured by the log predictive Bayes factor) do not
always reach the level they had prior to the crisis. An
interesting exception to this stylized fact is the inflation
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Fig. 4. Evolution of average log predictive Bayes factors (LPBFs) relative to the SW 2007 model. DSGE models. Notes: The gray shaded areas indicate
ECD recessions for the euro area.
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redictions from the DNGS2015 model, whose specifi-
ation incorporates a more sophisticated assessment of
nflation expectations than the rest of the DSGE mod-
ls used, and whose predictive ability for this variable
mproves in the crisis period.

A comparison of the predictive ability of forecast com-
inations and individual DSGE models over the hold-out
eriod reveals that in some periods and for particular
ariables, weighted averages of forecasts achieve higher
nd less volatile log predictive Bayesian factors. However,
he results show that it is not possible to find a one-
ize-fits-all method to combine predictions from DSGE
odels that would provide systematically superior pre-
ictions for all variables under scrutiny and over the full
eriod studied. The difficulty in finding such a forecast
veraging method for our sample is related to the par-
icular characteristics of the economic area being studied.
he existence of cross-country heterogeneity in shock
ransmission mechanisms and macroeconomic outcomes
cross euro area economies, in particular since the onset
f the sovereign bond crisis, is widely documented in the
iterature (see Burriel & Galesi, 2018; Holton & d’Acri,
018, just to name two recent examples). The difference
n shock propagation between countries in the euro area
ggregate poses particular challenges in terms of how
hey can be accommodated in DSGE specifications such
s those entertained in our analysis.

. Conclusions

The results of our analysis show that combining fore-
asts from DSGE models does not systematically lead to
mprovements in predictive ability for macroeconomic
1831
ariables for the euro area over the full period under
crutiny, which spans the last three decades. For some
ariables and periods, predictive weighting schemes are
ble to reach superior forecasting performance over in-
ividual DSGE specifications. In particular, the gains in
he predictive ability of forecast combinations of DSGE
odels are larger in the last part of our sample.
The weighting schemes implied by the combination

ethods employed are fundamentally different across
echniques. Weighting based on prediction pools tends
o lead to forecasts based on dynamic model selection,
ssigning zero weights to many individual model predic-
ions over the out-of-sample period. DMA and weighting
ased on dynamic factors, on the other hand, results
n combined forecasts with positive weights for practi-
ally all of the DSGE specifications. The forecasting per-
ormance of individual DSGE models and combinations
hereof systematically worsens during the financial cri-
is with respect to the benchmark, although the loss
f predictive power and the volatility of forecast errors
ppear larger in individual specifications as compared to
redictive combinations.
The results of our analysis may be significantly affected

y the focus on the euro area economy, which is char-
cterized by differences in the propagation of macroeco-
omic shocks across the countries that compose it. The
uite of DSGE models employed in our forecasting ex-
rcise does not contain any specification that explicitly
ddresses the differential structural characteristics of the
uro area. In this context, the results of our analysis
hould be considered very conservative estimates of the
otential of predictive combination methods combined
ith forecasts from DSGE models. Refining the theoretical
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structure of the models employed for predictive combi-
nations to address the particularities of the euro area is
likely to be a fruitful avenue of further research building
upon the analysis presented here.
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Appendix A. Data

See Table A.1.

Appendix B. Forecasting performance based on rolling
window estimation

See Table B.1 and Figs. B.1–B.4.

Appendix C. Forecasting performance based on alter-
native detrending schemes

See Tables C.1–C.4.
Table A.1
Source of data.

Source Database, mnemonic

Output AWM, Eurostat AWM:YER, Eurostat:namq_10_gdp (Q.CLV10_MEUR.SCA.B1GQ.EA19)
Inflation AWM, Eurostat AWM:YED, Eurostat:namq_10_gdp (Q.PD10_EUR.SCA.B1GQ.EA19)
Interest rate AWM, Eurostat AWM:STN, Eurostat:irt_st_q (Q.IRT_M3.EA)
Consumption AWM, Eurostat AWM:PCR, Eurostat:namq_10_gdp (Q.CLV10_MEUR.SCA.P31_S14_S15.EA19)
Investment AWM, Eurostat AWM:ITR, Eurostat:namq_10_gdp (Q.CLV10_MEUR.SCA.P51G.EA19)
Hours worked Conference Board,

Eurostat
CB:Total Economy Database (‘‘Total Hours Worked’’), Eurostat:namq_10_a10_e
(Q.THS_HW.TOTAL.SCA.EMP_DC.EA19)

Wage AWM, Eurostat AWM:WIN, Eurostat:namq_10_a10 (Q.CP_MEUR.SCA.TOTAL.D1.EA19)
Money supply (M1) OECD MANMM101*
Relative investment price AWM, Eurostat AWM:PCD, ITD, Eurostat:namq_10_gdp (Q.PD10_EUR.SCA.P31_S14_S15.EA19,

Q.PD10_EUR.SCA.P51G.EA19)
Spread Gilchrist and

Mojon (2018)
spr_nfc_bund_ea

Inflation expectations ECB SPF - Survey of Professional Forecasters (SPF.Q.U2.HICP.POINT.LT.Q.AVG)

Population Eurostat demo_pjanbroad (A.NR.Y15-64.T), lfsq_pganws (Q.THS.T.TOTAL.Y15-64.POP.EA19)

Notes: *Although the time series of the monetary aggregate M1 is described as seasonally adjusted in the OECD database, some parts of the series
still exhibit a clear seasonal pattern, which we removed making use of the TRAMO-SEATS method in JDemetra+.
Fig. B.1. Evolution of average log predictive Bayes factors (LPBFs) relative to the SW 2007 model. Notes: The gray shaded areas indicate OECD
ecessions for the euro area. DSGE models are estimated based on a rolling window.
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Fig. B.2. Evolution of average log predictive Bayes factors (LPBFs) relative to the SW 2007 model. Notes: The gray shaded areas indicate OECD
recessions for the euro area. Note that DECO is only used for the one-step-ahead horizon. DSGE models are estimated based on a rolling window.

Fig. B.3. Evolution of model weights over the hold-out sample for one-step-ahead predictions. Notes: The figure shows four different weighting
schemes for the three target variables: output growth, inflation, and the interest rate. For BPS and DECO we use the posterior mean as a point
estimate. DSGE models are estimated based on a rolling window.
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Fig. B.4. Evolution of model weights over the hold-out sample for four-step-ahead predictions. Notes: The figure shows three different weighting
schemes for the three target variables: output growth, inflation, and the interest rate. For BPS we use the posterior mean as a point estimate. Note
that DECO is only used for the one-step-ahead horizon. DSGE models are estimated based on a rolling window.
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Table B.1
Forecasting performance of DSGE models based on rolling window estimation and combinations of these models.
Target variable(s) DSGE model

CD 2008 CPS 2010 DNGS 2015 JPT 2011 NKmodel SW 2007

One step ahead

Joint 1.181 0.947** 1.089* 1.164*** 0.888** 0.319
(−0.295) (0.196***) (−0.187) (−0.543**) (0.146***) (0.501)

GDP growth 1.215 0.957 1.097* 1.165** 0.884** 0.511
(−0.321) (−0.016) (−0.051) (−0.161**) (0.046) (−0.794)

Inflation 0.899 0.850*** 1.011 1.113 0.877*** 0.196
(0.010***) (0.135) (−0.047**) (−0.088) (0.066***) (0.226)

Interest rate 1.264*** 1.085 1.198*** 1.431*** 1.136 0.075
(−0.107) (0.066) (−0.145***) (−0.318***) (0.018) (1.030)

Four steps ahead

Joint 1.017 0.996 1.115 1.079 0.961** 0.382
(−0.328) (−0.036) (−0.155*) (−0.347*) (0.034) (−0.787)

GDP growth 1.022 1.012 1.122 1.082 0.981 0.583
(−0.384) (−0.424) (−0.135) (−0.227**) (−0.330) (−0.877)

Inflation 0.949 0.903 1.026 1.052 0.804** 0.210
(0.127*) (0.230***) (0.074***) (−0.037**) (0.218*) (−0.011)

Interest rate 1.039 0.970 1.135 1.083 0.956 0.233
(−0.170*) (0.111***) (−0.188) (−0.095*) (0.093***) (0.015)

Combination method

EQ DMA POOL BPS DECO

One step ahead

Joint 1.005 1.018 0.932** 1.036 0.951**
(0.150) (0.223***) (0.261***) (−0.010***) (−0.265***)

GDP growth 0.992 1.035 0.935* 1.054 0.962
(0.060**) (0.078*) (0.065) (0.031) (−0.296***)

Inflation 1.071 0.858*** 0.893*** 0.903*** 0.857***
(0.072***) (0.110) (0.090) (0.009***) (0.078***)

Interest rate 1.134** 1.186 1.053 1.033 1.065
(−0.015**) (0.057) (0.067) (−0.015**) (−0.013)

Four steps ahead

Joint 1.066 0.990 1.007 0.922***
(0.241) (0.271) (0.369) (0.437*)

GDP growth 1.082 1.006 1.025 0.967
(−0.013) (0.025) (0.037) (−0.033)

Inflation 0.973 0.882* 0.871 0.842**
(0.138) (0.229***) (0.227***) (0.137)

Interest rate 1.037 0.973 0.995 0.657**
(0.070***) (0.115***) (0.079***) (0.402)

Notes: The table shows root mean squared errors (RMSEs), and average log predictive Bayes factors (LPBFs) in parentheses,
relative to the SW 2007 model. Bold numbers indicate the best performing DSGE model as well as the best combination
method that obtains the smallest RMSE ratio (largest LPBF). The SW 2007 column shows the actual RMSEs and LPSs of our
benchmark. Asterisks indicate statistical significance relative to SW 2007 at the 1% (***), 5% (**), and 10% (*) significance levels
in terms of Diebold and Mariano (1995) tests for RMSEs and Amisano and Giacomini (2007) tests for LPSs.
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Table C.1
Forecasting performance of recursively estimated DSGE models with HP filter detrending.
Target variable(s) DSGE model

CD 2008 CPS 2010 DNGS 2015 JPT 2011 NKmodel SW 2007

One step ahead

Joint 1.078** 0.923** 1.064*** 1.103 0.881*** 0.278
(−0.092**) (0.220***) (−0.221) (−0.313**) (0.085) (0.492)

GDP growth 1.082** 0.920* 1.050*** 1.107 0.853*** 0.446
(−0.066) (0.091***) (−0.030) (−0.092*) (0.154***) (−0.630)

Inflation 1.027 0.928* 1.094 1.020 1.001 0.166
(−0.042*) (0.004*) (−0.040**) (−0.058***) (−0.058***) (0.178)

Interest rate 1.202*** 0.989 1.353*** 1.325*** 1.190** 0.074
(0.021***) (0.151***) (−0.115*) (−0.186***) (−0.033) (0.873)

Four steps ahead

Joint 1.010 1.018 1.166*** 1.148** 0.989 0.300
(0.113**) (0.069) (−0.182**) (−0.201*) (0.128) (−0.455)

GDP growth 0.976 1.021 1.135*** 1.141** 0.981 0.457
(0.022) (−0.017) (−0.098**) (−0.166***) (0.015) (−0.672)

Inflation 1.134 1.025 1.255*** 1.261** 0.953 0.166
(0.070) (0.101) (0.015) (−0.054) (0.087) (−0.035)

Interest rate 1.105** 0.997 1.270** 1.094 1.064 0.187
(0.070***) (0.076) (−0.115*) (0.003***) (0.082***) (0.111)

Notes: The table shows root mean squared errors (RMSEs), and average log predictive Bayes factors (LPBFs) in
parentheses, relative to the SW 2007 model. Bold numbers indicate the best performing DSGE model that obtains
the smallest RMSE ratio (largest LPBF). The SW 2007 column shows the actual RMSEs and log predictive scores (LPSs)
of our benchmark. Asterisks indicate statistical significance relative to SW 2007 at the 1% (***), 5% (**), and 10% (*)
significance levels in terms of Diebold and Mariano (1995) tests for RMSEs and Amisano and Giacomini (2007) tests
for LPSs.
Table C.2
Forecasting performance of recursively estimated DSGE models with Hamilton filter detrending.
Target variable(s) DSGE model

CD 2008 CPS 2010 DNGS 2015 JPT 2011 NKmodel SW 2007

One step ahead

Joint 1.235*** 0.909*** 0.979 1.104*** 0.901* 0.340
(−0.428**) (0.310) (−0.023) (−0.452***) (0.020) (−0.494)

GDP growth 1.277*** 0.920** 0.988 1.092* 0.878** 0.519
(−0.214***) (0.110***) (0.014) (−0.116***) (0.141***) (−0.821)

Inflation 1.009 0.827*** 0.900* 1.057 0.889 0.250
(−0.103) (0.088**) (0.059) (−0.094) (−0.006**) (−0.124)

Interest rate 1.332*** 1.033 1.116*** 1.469*** 1.296*** 0.120
(−0.074) (0.136***) (−0.054***) (−0.232***) (−0.104***) (0.376)

Four steps ahead

Joint 1.123 0.984 0.990 1.120*** 0.979 0.418
(0.018) (0.256**) (0.188***) (−0.183***) (0.192***) (−1.780)

GDP growth 1.129 1.009* 1.035 1.139 0.993* 0.552
(−0.131) (−0.016) (−0.022) (−0.223***) (−0.030) (−0.864)

Inflation 0.979 0.825 0.786 1.056 0.779 0.315
(0.160***) (0.287***) (0.168***) (0.010) (0.203***) (−0.577)

Interest rate 1.212 1.038 1.022 1.123 1.084 0.347
(0.020) (0.094*) (0.062) (0.015) (0.098) (−0.560)

Notes: The table shows root mean squared errors (RMSEs), and average log predictive Bayes factors (LPBFs) in
parentheses, relative to the SW 2007 model. Bold numbers indicate the best performing DSGE model that obtains
the smallest RMSE ratio (largest LPBF). The SW 2007 column shows the actual RMSEs and log predictive scores (LPSs)
of our benchmark. Asterisks indicate statistical significance relative to SW 2007 at the 1% (***), 5% (**), and 10% (*)
significance levels in terms of Diebold and Mariano (1995) tests for RMSEs and Amisano and Giacomini (2007) tests
for LPSs.
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Table C.3
Forecasting performance of recursively estimated DSGE models with demeaned observables.
Target variable(s) DSGE model

CD 2008 CPS 2010 DNGS 2015 JPT 2011 NKmodel SW 2007

One step ahead

Joint 1.206*** 0.801*** 0.889*** 1.031 0.905 0.373
(−0.734***) (0.512***) (0.242) (−0.356***) (−0.112) (−0.298)

GDP growth 1.025 0.794*** 0.875*** 1.015 0.848** 0.602
(−0.057) (0.203***) (0.117***) (−0.020) (0.076*) (−0.919)

Inflation 2.136*** 0.824*** 0.965 1.066 1.216*** 0.216
(−0.598***) (0.119) (0.136**) (−0.071**) (−0.206***) (−0.124)

Interest rate 1.313*** 0.950 1.020 1.465*** 1.217*** 0.091
(−0.104*) (0.168***) (0.012) (−0.234***) (−0.098***) (0.695)

Four steps ahead

Joint 1.059 0.808*** 0.879*** 1.019 1.139** 0.474
(−0.090) (0.751***) (0.723***) (−0.018) (−0.132) (−1.998)

GDP growth 0.827** 0.809*** 0.888*** 0.958 0.988 0.703
(0.082) (0.134) (0.089) (−0.084) (−0.115**) (−1.036)

Inflation 1.978*** 0.755*** 0.834* 1.169 1.700*** 0.280
(−0.223**) (0.429***) (0.405***) (0.078**) (−0.183***) (−0.625)

Interest rate 1.046 0.837** 0.870 1.171*** 1.279*** 0.319
(0.061) (0.163***) (0.174**) (−0.015) (−0.153**) (−0.388)

Notes: The table shows root mean squared errors (RMSEs), and average log predictive Bayes factors (LPBFs) in
parentheses, relative to the SW 2007 model. Bold numbers indicate the best performing DSGE model that obtains
the smallest RMSE ratio (largest LPBF). The SW 2007 column shows the actual RMSE and log predictive scores of
our benchmark. Asterisks indicate statistical significance relative to SW 2007 at the 1% (***), 5% (**), and 10% (*)
significance levels in terms of Diebold and Mariano (1995) tests for RMSEs and Amisano and Giacomini (2007) tests
for log predictive scores (LPSs).
Table C.4
Forecasting performance of the three recursively estimated DSGE models with the baseline data filtering used for
Table 3 relative to the originally proposed model and data filtering.
Target variable(s) DNGS 2015 JPT 2011 SW 2007

Baseline Original Baseline Original Baseline Original

One step ahead

Joint 0.943* 0.362 1.164*** 0.329 0.944 0.338
(0.470***) (−0.407) (0.114) (−0.441) (0.381) (−0.256)

GDP growth 0.951 0.575 1.195*** 0.516 0.950 0.538
(0.044) (−0.890) (−0.179***) (−0.822) (0.051) (−0.828)

Inflation 0.992 0.208 1.122** 0.192 0.899** 0.216
(0.099**) (−0.041) (0.025) (−0.092) (0.153) (−0.132)

Interest rate 0.660*** 0.139 0.760*** 0.143 0.999 0.085
(0.356***) (0.447) (0.242***) (0.410) (0.101***) (0.719)

Four steps ahead

Joint 0.772*** 0.500 1.027 0.434 0.875*** 0.434
(0.986***) (−1.898) (0.356) (−1.830) (0.742***) (−1.961)

GDP growth 0.918 0.648 1.091** 0.603 0.910* 0.630
(0.117) (−1.025) (−0.105) (−1.001) (0.124) (−0.989)

Inflation 0.639* 0.323 1.292 0.234 0.796* 0.277
(0.257**) (−0.385) (−0.094**) (−0.308) (0.238***) (−0.634)

Interest rate 0.476*** 0.475 0.700** 0.384 0.776** 0.301
(0.609**) (−0.621) (0.391**) (−0.530) (0.289***) (−0.390)

Notes: The table shows root mean squared errors (RMSEs), and average log predictive Bayes factors (LPBFs) in
parentheses of the baseline data filtering relative to the originally proposed data filtering in Del Negro et al. (2015),
Justiniano et al. (2011), and Smets and Wouters (2007), respectively. The columns ‘‘Original‘‘ show the actual RMSEs
and log predictive scores of these benchmarks. Asterisks indicate statistical significance of the ‘‘Baseline’’ relative to
the ‘‘Original" at the 1% (***), 5% (**), and 10% (*) significance levels in terms of Diebold and Mariano (1995) tests for
RMSEs and Amisano and Giacomini (2007) tests for LPSs.
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