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A B S T R A C T 

W e provide a comprehensive assessment of the predict ive power of combinat ions 
of dynamic stochastic general equ i l i b r ium (DSGE) models for G D P growth, inf lat ion, 
and the interest rate i n the euro area. W e employ a battery of static and dynamic 
poo l ing weights based on Bayesian mode l averaging pr inciples, pred ic t ion pools, and 
dynamic factor representations, and enterta in six different DSGE specif ications and five 
pred ic t ion we igh t ing schemes. Our results indicate that exp lo i t ing mixtures of DSGE 
models produces compet i t ive forecasts compared to ind i v idua l specif ications for both 
po int and density forecasts over the last three decades. A l though these combinat ions do 
not tend to systematical ly achieve super ior forecast performance, we f ind improvements 
for part icular periods o f t ime and variables w h e n us ing pred ic t ion pool ing, dynamic 
mode l averaging, and combinat ions o f forecasts based o n Bayesian predict ive synthesis. 
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1. Introduction 

Dynamic stochastic general equ i l ib r ium (DSGE) models 

have become the workhorse of modern macroeconomic 

" The authors would like to thank two anonymous referees for 
very helpful comments on an older version of the paper. Financial 
support from the Czech Science Foundation, Grants 17-14263S and 
21-10562S, is gratefully acknowledged. This work was supported by 
the Ministry of Education, Youth, and Sports of the Czech Republic 
through the e-INFRA CZ (ID: 90140). Jesus Crespo Cuaresma gratefully 
acknowledges funding from IIASA, Austria and the National Member 
Organizations, Austria that support the institute. Niko Hauzenberger 
gratefully acknowledges financial support from the Jubilaumsfonds of 
the Oesterreichische Nationalbank (OeNB, grant no. 18718). 

* Corresponding author at: Vienna University of Economics and 
Business, Austria. 

E-mail address: jcrespo@wu.ac.at (J. Crespo Cuaresma). 

research, due to their internal consistency and their abi l ­

ity to assess the effects of policy shocks i n a rigorous 

manner. 

In spite of their importance i n modern economic anal­

ysis, the exist ing results concerning their out-of-sample 

forecasting abil i ty are mixed. A series of studies have 

assessed the predictive abil i ty of different types of DSGE 

models. Christoffel et al . (2011) examine the 

out-of-sample predictive abil i ty of the European Central 

Bank's N e w Area-Wide M o d e l ( N A W M ) , the DSGE model 

used to create projections of macroeconomic variables 

by the monetary authorities of the euro area. The re­

sults in Christoffel et al. (2011) indicate that this DSGE 

model , as compared to other alternative reduced-form 

specifications, provides good predictions for a set of 12 

different macroeconomic variables. The predictive accu­

racy of DSGE models, however, does not necessarily re­

main stable over t ime. Del Negro et al . (2016) provide 
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evidence that forecasts produced using a Smets-Wouters 
type of DSGE model (Smets & Wouters , 2003, 2007) w i t h 
financial frictions perform particularly w e l l i n periods of 
financial tu rmoi l ( in particular in the Great Recession), 
but that the predictive accuracy of the model tends to 
suffer in t ranquil periods. The forecast quali ty of DSGE 
structures that include financial frictions has also been as­
sessed by Kolasa and Rubaszek (2015), and improvements 
in forecast abil i ty are reported in episodes of financial 
tu rmoi l w h e n housing market frictions are included in 
the model , al though no systematic gains i n predictive 
performance are found in more stable periods. 

Another strand of the literature on macroeconomic 
forecasting has shown interest i n analyzing predictive 
combinations based on a wide range of models, rather 
than focusing on a single specification, an idea that dates 
back to the work by Bates and Granger (1969). Amisano 
and Geweke (2017), for instance, find improvements in 
out-of-sample predict ion errors for macroeconomic var i ­
ables i n the US by pool ing forecasts from different 
macroeconomic models using Bayesian predictive dis t r i ­
butions. 

In this study, we evaluate the forecast abil i ty of 
weighted combinations of six different DSGE models for 
GDP growth, inflation, and the interest rate in the euro 
area, making use of several predict ion combinat ion tech­
niques. Our analysis expands the work by Wolters (2015), 
w h i c h assesses the forecast accuracy of four DSGE mod­
els for the US, as w e l l as the potential predictive gains 
obtained by using combinations of these. W e entertain 
six different DSGE specifications for the euro area and 
five forecast combinat ion methods, both static and dy­
namic, and evaluate point forecasts as w e l l as density 
predictions. Our set of predict ion combinat ion techniques 
contains some of the forecast pool ing techniques enter­
tained i n exist ing studies for DSGE models (Wolters, 2015, 
for example), as w e l l as more novel methods based on 
the opt imiza t ion of weights, that can potentially be t ime-
varying and evolve according to flexible laws of motion. 
In particular, we use static weights based on principles 
of Bayesian model averaging and predict ion pools, and 
dynamic weights that bu i ld upon dynamic (latent) factor 
representations of the variables of interest. 

The combinat ion techniques employed i n our anal­
ysis result in significantly different weight ing schemes 
across models. W h i l e dynamic Bayesian model averag­
ing and combinations based on dynamic factors lead to 
pooled forecasts w h i c h assign positive weights to a l l of 
the DSGE specifications, the technique based on predic­
t ion pools acts as a dynamic model selection tool, as­
signing weights close to zero to most individual model 
predictions over the out-of-sample period. The potential 
gains in predictive accuracy that can be exploi ted are spe­
cific to sub-periods, variables, and forecasting horizons, 
w i t h no one-size-fits-all predictive combinat ion strategy, 
ensuring systematic improvements in a l l situations. 

The rest of this paper is organized as follows. Section 2 
introduces the DSGE models used in the analysis, and 
Section 3 presents the predictive density combinat ion 
methods. Section 4 shows the results of the out-of-sample 
forecasting exercise, and Section 5 concludes. 
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2. The battery of DSGE models 

2.1. Individual DSGE models 

For our empir ica l analysis, we use a battery of DSGE 
models for the euro area. Their specifications differ i n size, 
complexity, and the particular features highlighted. Since 
the analysis is conducted on a set of three core macroe­
conomic variables (GDP growth, inflation, and the interest 
rate), we ensure that these three observable variables are 
c o m m o n across a l l models. The sparsest model enter­
tained is a basic three-equation N e w Keynesian model, 
w h i c h serves as a benchmark in terms of s implici ty . The 
model presented i n Cogley et al . (2010) also requires 
only three basic observable variables, but introduces two 
addit ional shocks and al lows the inflation target to change 
over t ime. The specification by Christensen and Dib (2008) 
adds investment and money as addit ional observable var i ­
ables. This group of models is extended w i t h three more 
complex specifications that share the set of observable 
variables of the model by Smets and Wouters (2007): GDP 
growth, inflation, the interest rate, consumpt ion growth, 
investment growth, real wage growth, and hours worked. 
The specification by Justiniano et al . (2011) contains the 
relative price of consumpt ion to investment as the eighth 
observable variable, whereas Del Negro et al . (2015) add 
spread and inflation expectations as observable variables 
to the model ing framework and a l low the shocks to be of 
a non-stationary nature. The group of DSGE specifications 
used spans model structures w h i c h differ i n the mecha­
nisms highlighted for the transmission of macroeconomic 
shocks. Tracking the predictive abil i ty of such models over 
t ime can thus help us grasp changes in the relative impor­
tance of particular theoretical channels as determinants of 
macroeconomic dynamics in the euro area. 

Table 1 lists the models entertained, together w i t h 
their corresponding abbreviations (which are used in the 
description of the results of the analysis and i n a l l sub­
sequent figures and tables), and summarizes information 
about the number of observable variables, the number of 
exogenous shocks, and the ma in features of each model . 
The particular observable variables included i n each one 
of the DSGE models are presented in Table 2. 

2.2. Data 

The models i n Table 1 are estimated using quarterly 
data for the euro area i n its 19-country composi t ion. 
The database spans information from 1970Q3 to 2019Q1 
and thus contains 195 quarterly observations. The core 
of the database is sourced from the Area W i d e M o d e l 
( A W M ) presented in Fagan et al. (2005) and updated and 
extended by Brand and Toulemonde (2015). The original 
A W M database is updated using data from the European 
Central Bank or Eurostat since the 1990s and is extended 
by populat ion and hours worked from the Total Economy 
Database and Eurostat. Data on monetary aggregates are 
obtained directly from the OECD. W e use t ime series 
compi led by Gilchrist and Mojon (2018) for the interest 
rate spread variable. Inflation expectations are sourced 
from the European Central Bank's Survey of Professional 
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Table 1 
Euro area DSGE models used in the forecasting exercise. 

Reference Name Observables Shocks Features 

3-equation basic NI< model NKModel 3 3 IS, PC, Taylor rule 
Cogley et al. (2010) CPS 2010 3 5 Inflation target can change over time 
Christensen and Dib (2008) CD 2008 5 5 Financial frictions as in Bernanke et al. (1999) 
Smets and Wouters (2007) SW 2007 7 7 Deterministic growth rate driven by labor-augmenting 

technological progress 
Justiniano et al. (2011) JPT 2011 8 8 Two investment shocks 
Del Negro et al. (2015) DNGS 2015 9 9 Smets and Wouters (2007) with financial frictions + 

spread and inflation expectations as observables 

Table 2 
DSGE models: Observable variables. 

CPS 2010 
NKModel 

CD 2008 SW 2007 JPT 2011 DNGS 2015 

Output / / / / / 

Inflation / / / / / 

Interest rate / / / / / 

Consumption / / / 

Investment / / / / 

Hours worked / / / 

Wage / / / 

Money supply ( M l ) / 

Relative investment price / 

Spread / 

Inflation expectations / 

Forecasters. The longest-term forecast available was se­
lected, w h i c h spans four to five years ahead. Growth rates 
are calculated as quarter-on-quarter differences of logs, 
and the interest rate is calculated per quarter. Details 
on the sources of the different variables are provided in 
Appendix A. 

The data transformations performed to the model var i ­
ables correspond to those used in Smets and Wouters 
(2007). Real consumption, investment, and GDP are d i ­
vided by populat ion and transformed to g rowth rates. 
Hours worked are d iv ided by populat ion and logged. In­
flation is defined as the growth rate of the GDP deflator. 
The nomina l wage is deflated by the GDP deflator and 
transformed to g rowth rates. The interest rates are short-
term market interest rates. The monetary aggregate M l 
is deflated by the GDP deflator, d iv ided by population, 
and transformed to growth rates. Finally, the relative price 
of investment is calculated as the investment deflator 
divided by the consumpt ion deflator, and transformed to 
growth rates. 

2.3. Detrending macroeconomic variables 

The macroeconomic variables used in the estimation 
of DSGE specifications are often highly persistent and 
need to be detrended using methods that are consis­
tent w i t h the theoretical framework used in the model . 
For some exist ing models, the authors specify the par­
ticular filter employed to detrend the variables, whi le 
in other cases, these details are not specified (see, e.g., 
Gorodnichenko & Ng, 2010). Delle Chiaie (2009) investi­
gates the effects of detrending observable variables w i t h 
the Hodrick-Prescot t (HP) filter and a linear trend in 
the model by Smets and Wouters (2003), and finds that 
structural parameter estimates are rather sensitive to 
the choice of a particular filtering method. Consequently, 

forecasting performance may be significantly affected by 
the choice of a detrending approach. 

The original contributions on w h i c h we base our i n ­
dividual specifications use different detrending meth­
ods for the macroeconomic variables. W h i l e Christensen 
and Dib (2008) use the HP filters, Smets and Wouters 
(2007)—and models that bu i ld upon a s imilar s t ruc tu re -
introduce some of the observable variables i n first dif­
ferences w h e n est imating the parameters of the DSGE 
specification. Gorodnichenko and Ng (2010) offer a per­
spective of detrending approaches commonly used i n a 
broader literature by compi l ing the detrending methods 
employed i n 21 different models. The list of data filters 
used in various DSGE models shows a predominance of 
linear detrending, HP filtering, and first difference trans­
formations. Our analysis employs several approaches used 
in the literature, whi le keeping the detrending method 
identical across a l l models considered. By doing so, we 
a im to separate the influence on forecasting performance 
of core model features, such as financial frictions or flexi­
ble inflation targets, from that of the trend formulation. In 
our baseline detrending specification, we use the data for 
GDP (and its sub-components) i n first differences. Time 
series w h i c h present higher persistence are filtered using 
one-sided HP filters. 1 

Alternatively, we also assess the forecasting performance of our 
models employing the filtering strategy proposed by Del Negro et al. 
(2015), Justiniano et al. (2011), and Smets and Wouters (2007) and 
find evidence that our baseline detrending approach leads to superior 
forecasting performance in the majority of cases (see Table C.4 in 
Appendix C). We also perform the analysis using different detrending 
approaches, such as using the (one-sided) HP filter for all data series, 
employing the regression-based data filter introduced in Hamilton 
(2018), and demeaning the times series in the models. The results for 
these alternative detrending specifications can be found in Appendix C. 
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2.4. Estimation and predictive densities 

Each one of the models employed in the forecasting 
exercise is estimated recursively using Bayesian methods, 
starting w i t h a sample size composed by 78 observations 
(corresponding to the t ime frame from 1970Q3-1989Q4) 
and adding one quarter at a t ime to the sample up to a 
m a x i m u m of 195 observations (corresponding to the full 
sample, w h i c h spans the period from 1970Q3-2019Q1). 
Addit ional ly, we perform the forecasting exercise of esti­
mat ing the models w i t h a rol l ing w i n d o w of 60 observa­
tions. The models are estimated using a m i n i m u m of a half 
m i l l i on Metropol is-Hast ings replications in two chains for 
the N K M o d e l , one mi l l i on replications for CD 2008 and 
CPS 2010, two mi l l i on replications for JPT 2011 and S W 
2007, and a m i n i m u m of four m i l l i o n replications for the 
DNGS 2015 model . To ensure convergence of the Markov 
chain, the checks i n Brooks and Gelman (1998) are per­
formed and, i f these fail, the number of replications is 
increased unt i l convergence of the posterior distributions 
is achieved. W e use a Monte Carlo-based opt imizat ion 
routine to ensure that the opt imal acceptance ratio of the 
Met ropol i s -Has t ing algori thm is reached, and we discard 
90% of the replications as burn- ins . 2 

Forecasts are computed using 10,000 draws from the 
posterior dis t r ibut ion for every estimated model and each 
in-sample period. In each instance, we calculate one- to 
four-step-ahead out-of-sample forecasts of GDP growth, 
inflation, and the interest rate, w h i c h correspond to pe­
riods ranging from 1990Q1 to 2018Q4. The analysis of 
forecasts is conducted after imposing back the trend of 
the observable variables, so as to ensure comparabil i ty 
across detrending approaches. 

3. Predictive combinations of DSGE models 

In this section, we outline the forecast combinat ion 
methods employed to average the predictions of our set 
of models. Each DSGE model typical ly includes a differ­
ent set of observables, targets a specific feature of the 
economy, and thus provides its o w n characterization of 
the economy by imposing different (structural) dynamics 
on the macroeconomic variables of interest. Some smal l -
scale DSGE models abstract from the interaction between 
developments in the real economy, the labor market, and 
the financial sectors, whi le others include features and 
mechanisms related to these linkages. W e concentrate 
exclusively on one- and four-step-ahead predictive densi­
ties of GDP growth, inflation, and the interest rate, w h i c h 
are c o m m o n to a l l the specifications used. W e assess and 
combine the jo in t predictive density of these three var i ­
ables, as w e l l as their corresponding marginal predictive 
densities. 

In the fol lowing, we illustrate the methods we use to 
combine predictive densities by focusing on a scalar t ime 
series y t + 1 and the one-step-ahead horizon. W i t h only m i ­
nor adjustments, these techniques work analogously for 
the jo in t predictive densities and for the multi-step-ahead 
horizon. In our analysis, we therefore consider predictive 

All models are estimated using Dynare (Adjemian et al., 2011). 
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densities for y t + 1 , w h i c h are available from K different 
DSGE models. Each DSGE model , indexed by j = 1 , . . . , K, 
incorporates information up to t ime r to generate a pre­
dictive density p/(y t +i |Zj(t)) for period t +1. The informa­
t ion set Xj(t) typical ly consists of the target variable y ] : t = 
iy\, • • • ,yt)'< as w e l l as of the information up to t ime t 
provided by addit ional variables specific to that partic­
ular DSGE model . W e a i m to combine the K predictive 
densities {Pj(yt+i |2j(t)) }jli using a K x 1 weights vector 
oot+i = (o>i,t+i, • • • , o>K,t+\)' that is specific to the one-
step-ahead forecast hor izon and potentially t ime-varying. 
The combined predictive density f o r y t + i is then given by 

K 

P ( y t + 1 | i 1 ( t ) , . . . ,iK(t)) = J2wit+m (yt+il^jCO) • ( i ) 
j = l 

Eq. (1) directly relates to the Bayesian predictive syn­
thesis of M c A l i n n et al . (2019), M c A l i n n and Wes t (2019), 
where w t + i is described as a dynamic synthesis func­
t i o n . 3 This synthesis function can incorporate different 
objectives based on policy targets and historical perfor­
mance up to period r, and nests tradit ional approaches to 
forecast combination, such as predict ion pools (Geweke 
& Amisano, 2011; Hal l & Mi tche l l , 2007) and Bayesian 
dynamic model averaging (Koop & Korobil is , 2012, 2013; 
Raftery et al., 2010). W e start by discussing a simple static 
weight ing scheme imply ing w t + 1 = co, and then turn to 
more general approaches based on using dynamic weights 
for the predictive densities. 

Equal static weights 

A n obvious starting point to combine predictions from 
different DSGE models, w h i c h provides a benchmark to 
evaluate different weight ing schemes, is to use 

Since &>j,t+i > 0 and 5Z /L i ^l/.t+i = 1> the combinat ion 
of predictive densities also constitutes a predictive den­
sity (Geweke & Amisano, 2011; Hal l & Mi tche l l , 2007). 
This agnostic approach neglects the fact that different 
models might not be equally suitable for predict ion at 
different t ime periods, and does not provide updates of 
the corresponding weights as information is gained about 
the differential predictive abil i ty of model specifications. 
A n equal weight ing scheme is commonly found to be a 
good competi tor i n terms of out-of-sample forecasting 
accuracy, as it tends to hedge against large forecast errors 
of single specifications (see T immermann , 2006). 

Dynamic Bayesian model averaging 

A natural choice of model weights can be achieved by 
pool ing forecasts according to particular model selection 
criteria (for example, based on the predictive marginal 
l ike l ihood or past forecast performance). For a given set 

i Del Negro et al. (2016) and McAlinn and West (2019) provide 
a formal treatment of the decision problem concerning the choice of 
time-varying weights o ) t + i . 
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of priors over specifications, tradit ional Bayesian model 
averaging (BMA) approaches give models w i t h a higher 
marginal l ike l ihood more support whi le downweigh t ing 
models w i t h deficient predictive characteristics. Fo l low­
ing Raftery et al . (2010) and Koop and Korobil is (2012, 
2013), we consider posterior weights for indiv idual spec­
ifications based on their (discounted) historical predictive 
l ikel ihood, a procedure k n o w n as dynamic model averag­
ing ( D M A ) . According to this literature, D M A consists of a 
predict ion equation 

co 
m3,t+\\t 

%t\t 

2-,k=\ Mk,t\t 

and an updating equation 

;,t+i|t 

Here, w t + 1 | t = ( a> i j t + i | t <oK,t+i\tY denotes a K x 
1 vector of predictive weights at period t + 1 based 
on historical forecast performance up to r, w t+i|t+i = 
(»i,t+i|t+i, • • • , o>K,t+\\t+\)' is a If x 1 vector of updated 
weights, and pj (y^\Xj(t)j refers to the one-step-ahead 
predictive density for model j evaluated at the realized 
value y£li (i.e., the predictive l ike l ihood) . 4 Moreover, a 
forgetting factor 8 e {0,1) discounts past predictive 
performance more heavily, whi le more recent predictive 
l ikelihoods receive more weight. In the empir ica l appl i ­
cation, we set S = 0.95, imp ly ing that the predictive 
l ikel ihood four quarters (i.e., one year) i n the past receives 
around 80% of the weight of the predictive l ike l ihood of 
the most recent quarter. 5 The D M A algori thm, moreover, 
is easy to implement wi thout the need for any s imulat ion 
techniques. 

Prediction pools 

Recent approaches to forecast combinat ion assess the 
set of model-specific forecasts as i f it was a portfolio of 
predictions, w h i c h must be chosen opt imal ly w i t h respect 
to a particular loss function (see, inter alia, Geweke & 
Amisano, 2011, 2012; Hal l & Mi tche l l , 2007; Pettenuzzo & 
Ravazzolo, 2016). Fol lowing Geweke and Amisano (2011), 
the loss function is defined as a function of historical log 
predictive scores, w h i c h gives rise to opt imal weights af­
ter min imiza t ion . Similar to B M A and D M A methods, this 
approach ensures that forecasts from DSGE models w i t h 
poor predictive abilities are downweighted , and those 
computed from specifications that predict more success­
fully receive higher weights. Information up to t ime r is 
available in order to choose the predictive weight wt+i|t 

By construction, both <w,.t+i|t and COJ 5 , t + i | t + ! , for j = 1, , K, are 
non-negative, and the elements in both o ) t + i | t and ( u t + i | t + i sum to one. 

•* This choice is consistent with Koop and Korobilis (2012, 2013), 
who suggest defining S e [0.95, 1]. If S = 1, past predictive perfor­
mance is not discounted and the weights are defined according to the 
(predictive) marginal likelihood. 

optimally. The negative weighted historical log predic­
tive scores/likelihoods are min imized w i t h respect to the 
weights vector co: 

o> t+i|t = m m 

J = 1 

where S again denotes a discount factor that serves the 
same purpose as in the D M A procedure by assigning 
increasing weight to the most recent predictive perfor­
mance. W e addit ionally impose the restriction that 
weights are non-negative and sum to one. Note that 
we use standard numerical opt imizat ion algorithms for 
predict ion pools, w h i c h are therefore easy to implement 
and computat ional ly fast. 

Bayesian predictive synthesis with a dynamic factor model 

As noted by Del Negro et al . (2016), the predictive abi l ­
ity of particular specifications may be affected by struc­
tural breaks i n the parameters governing the dynamics 
of macroeconomic variables. Such changes in predictive 
power should be addressed w h e n combin ing the K pre­
dictive densities over time, and thus the mapping from 
the forecasts of each model to the combined predictive 
density should be adjusted accordingly. Eq. (1) can be 
directly related to a dynamic factor model , as proposed 
by M c A l i n n and Wes t (2019) in the context of dynamic 
Bayesian predictive synthesis (BPS) methods, by defining 
the synthesis function as 

where we define the latent factors F t + ] = ( y i , t + i , • • •, 
y/c,t+i) ' w i t h y J j t + i , for j = \,...K, being a d raw from the 
one-step-ahead predictive density pj{yt+\\Xj(t)) of each 
model j for period t + 1. Further, a> t + ] refers to t ime-
varying loadings, and the shock i n the observation equa­
t ion et+i is Gaussian w i t h zero mean and variance §. The 
latent loadings (or states), that relate the draws from the 
predictive distributions to the realized value y[r^ evolve 
according to a random walk: 

wt+ i =(*t + ?t+i> Vt+i ~ M 0 , 

where j j t + ] refers to a K x 1 vector of Gaussian state 
innovations, w h i c h are centered on zero and feature a 
K x K variance-covariance matr ix In contrast to equal 
weight ing, D M A , and predictive pooling, the weights a> t + ] 

are no longer necessarily non-negative and do not need 
to sum up to one. a> t + ] are thus to be interpreted as 
(time-varying) calibration parameters relating draws from 
the predictive densities to the actual realization y^_v A 
further difference from other weight ing schemes is that 
we consider a measurement error e t + i i n the observa­
t ion equation that expl ici t ly accounts for model incom­
pleteness (see, e.g., Aastveit et al., 2018; Hoogerheide 
et al., 2010; M c A l i n n & West, 2019). Moreover, the latent 
weights ( » t + ] are a l lowed to be correlated among mod­
els via a full variance-covariance matrix <f, w h i c h not 
only determines the amount of t ime variat ion introduced 
in a>t+i, but also takes into account the dependencies 
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between individual predictive specifications that share 
similar characteristics. 

W e use weakly informative priors, w h i c h are standard 
in the literature for dynamic factor models. This implies 
the use of a multivariate normal prior for w 0 , an inverse 
Gamma prior for §, and an inverse Wishar t prior for 
W e repeat this procedure for R draws from the predictive 
density and expl ic i t ly account for a potentially non-tr ivial 
form of the predictive densities of the DSGE models. To 
estimate the model we rely on standard Bayesian esti­
mat ion techniques used for t ime-varying parameter mod­
els. In particular, we use a Gibbs sampler w h i c h iterates 
through these R draws. Condit ional on a l l other quantities, 
we update the latent states a> t + ] w i t h a standard forward 
filtering backward sampling (FFBS) a lgori thm (Carter & 
Kohn, 1994; Fruhwirth-Schnatter, 1994). In a next step, 
condit ional on the t ime-varying calibration parameters, 
we independently d raw the observation equation var i ­
ance f and the state equation variance-covariance matrix 

A l l steps involve standard condit ional posteriors (for 
details, see M c A l i n n & West, 2019). Moreover, by using 
the filtering step in the FFBS algori thm, we directly obtain 
the predictive weights w t+i|t. w h i c h are used to combine 
the most recent predictive densities w h e n the realiza­
t ion is not yet available. The M C M C algori thm of the 
dynamic factor model is somewhat more computat ional ly 
demanding than the approximate procedure of D M A and 
the numerical opt imiza t ion used for the pool ing approach. 
However, compared to sequential Monte Carlo techniques 
such as particle filters (see, e.g., Bi l l io et al., 2013; Del 
Negro et al., 2016), the computat ional burden can st i l l be 
considered light. 

The DECO approach 

In addi t ion to the combinat ion methods out l ined 
above, we consider the dynamic predictive density c o m ­
bination (DECO) approach of Bi l l io et al . (2013). Like BPS, 
DECO allows for the specification of t ime-varying weights 
that evolve according to a flexible l aw of motion, and 
accounts for model incompleteness: 

yfl, = F ' t + 1 w t + 1 + € t + u e t + i ~ Af{0, §), (2) 

w i t h o ) t + ] relating draws from the predictive densities to 
the actual realization y[r^ and considering a Gaussian-
distributed measurement error € t + \ . 

The main difference from BPS lies i n the state equation 
that governs the evolut ion of the weights a> t + ] and thus 
the learning mechanism used in prediction. Instead of as­
suming that the weights evolve according to a mul t ivar i ­
ate random walk w i t h a full variance-covariance matrix 

a non-linear l ink function between the elements in 
w t +i and K independent dynamic latent processes £ t + ] = 
( f i , t+i , • • • , fr,t+i)' is introduced: 

exp(& 

E ^ e x p ( £ , 
for j = 1 K. 

t+ij 

to be non-negative and sum to one. These restrictions thus 
effectively result in a non-linear state-space model , where 
Eq. (2) can be interpreted as a dynamic location mixture 
w i t h a fixed variance. In what follows, £ t + ] encodes the 
learning mechanism and governs the weight dynamics. 
Each element i n £ t + ] evolves according to independent 
random walks : 

? j , t + i = ft, + »7j, t +i, »7j, t+i ~ Af(0, Vo), for )=-[,..., K. 

Here, fy-.t+i denotes element-specific state innovations 
w i t h zero mean and variance i/fj. In DECO, the state inno­
vat ion variances 1/0 encode the learning mechanism and 
depend on a scoring rule preselected by the researcher, 
a discount factor S, and a number of past observations r 
considered. For example, if the scoring rule indicates that 
the predictive performance of some particular model has 
deteriorated for the past realized values, the mechanism 
allows for the corresponding adjustment of the weights 
by increasing tp-j, thus introducing t ime variat ion in cojtt+\. 
Sequential Monte Carlo techniques are commonly used 
for such a non-linear state-space model . For the empir ical 
implementa t ion of DECO, we specify the key learning 
hyperparameters according to the fol lowing standard set­
ting: we use the Kul lback-Leib ler scoring rule, set the 
number of past realized values to r = 9, and the discount 
factor 8 = 0.95. The remaining parameters are estimated 
from the data. For the particle filter, moreover, we define 
50 particles and use an addit ional smoothing factor of 
0.01. 6 

4. Forecasting macroeconomic variables in the euro 
area using DSGE models 

W e start by quantitatively assessing the predictive 
ability differences across DSGE models, before moving to 
the analysis of the potential improvements in forecast­
ing quali ty from combin ing the predictions of individual 
models, and of the dynamics of predictive weights over 
the out-of-sample period. 

4.1. Overall forecast performance of individual DSGE models 

The top panel of Table 3 presents the forecasting per­
formance of individual DSGE models, w h i c h are estimated 
recursively over the out-of-sample period. W e present the 
root mean squared forecast error (RMSE) ratios, as w e l l as 
the average log predictive Bayes factors (LPBFs), defined 
as the difference in average log predictive scores (LPSs), 
for one-step-ahead and four-step-ahead predictions. For 
the RMSEs, Table 3 also shows the results of D i e b o l d -
Mariano tests of equal predictive performance (Diebold & 
Mariano, 1995), and for the LPSs, those of the A m i s a n o -
Giacomini tests (Amisano & Giacomini , 2007). In both 
cases, the equality of predictive abil i ty is tested using 
the SW2007 model as the benchmark specification. The 
results of this predictive abil i ty analysis based on rol l ing 
w i n d o w est imation (instead of parameter estimates based 

This logistic l ink function does not a l low for the use 
of unconstrained calibration parameters via a synthesis 
function, as in BPS, since it restricts the elements i n a> t + ] 

6 An efficient algorithm for this approach is implemented in the 
DeCo toolbox in Matlab (see Casarin et al., 2015) for one-step-ahead 
forecasts. 
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Table 3 
Forecasting performance of recursively estimated DSGE models and combinations of these models. 

Target variable(s) DSGE model 

CD 2008 CPS 2010 DNGS 2015 JPT 2011 NKmodel SW 2007 

One step ahead 

Joint 1.246*" 0.929** 1.069** 1.196*** 0.889** 0.320 
(-0.194) (0.340***) (-0.063**) (-0.452) (0.159*) (0.125) 

GDP growth 1.277*** 0.938 1.069** 1.206*** 0.885* 0.511 
(-0.236**) (0.064*) (-0.069) (-0.224***) (0.102***) (-0.777) 

Inflation 1.033 0.858*** 1.064 1.107** 0.896** 0.194 
(-0.013) (0.117***) (0.036***) (-0.089) (0.019*) (0.022) 

Interest rate 1.122 0.973* 1.088 1.291*** 1.016 0.085 
(-0.011*) (0.138***) (-0.017) (-0.167***) (0.012) (0.819) 

Four steps ahead 

Joint 1.115 0.981 1.017 1.176*** 0.941** 0.379 
(0.228) (0.419***) (0.308***) (-0.255***) (0.418***) (-1.219) 

GDP growth 1.115 0.996 1.037* 1.148** 0.963 0.573 
(-0.162) (-0.041) (-0.043) (-0.241***) (-0.026) (-0.865) 

Inflation 1.099 0.863 0.938 1.375*** 0.775** 0.220 
(0.268***) (0.388***) (0.268***) (-0.006) (0.331***) (-0.396) 

Interest rate 1.128 0.988 0.968 1.148*** 0.940 0.234 
(0.051***) (0.122***) (0.089***) (-0.038*) (0.162***) (-0.101) 

Combination method 

EQ DMA POOL BPS DECO 

One step ahead 

Joint 1.061* 0.926 0.936 0.993 0.941 
(0.085) (0.328***) (0.330***) (0.164***) (0.226***) 

GDP growth 1.074* 0.928 0.942 1.003 0.949 
(-0.006) (0.072***) (0.085***) (-0.011) (-0.145***) 

Inflation 0.958 0.877** 0.884" 0.929** 0.872*** 
(0.028) (0.082) (0.115***) (0.109***) (0.307***) 

Interest rate 1.102 1.086 0.994 0.925 0.987 
(0.017) (0.102***) (0.123***) (0.118***) (0.158***) 

Four steps ahead 

Joint 1.070** 0.999 0.985 0.926 
(0.321***) (0.440***) (0.448***) (0.673***) 

GDP growth 1.089** 1.015 1.005 0.974 
(-0.020) (0.008) (-0.037) (-0.013) 

Inflation 1.019 0.896 0.871 0.831** 
(0.234***) (0.365***) (0.386***) (0.396***) 

Interest rate 0.997 0.991 0.961 0.667** 
(0.108**) (0.143***) (0.150***) (0.409**) 

Notes: The table shows root mean squared errors (RMSEs), and average log predictive Bayes factors (LPBFs) in parentheses, 
relative to the SW 2007 model. Bold numbers indicate the best performing DSGE model as well as the best performing 
combination method that obtains the smallest RMSE ratio (largest LPBF). The SW 2007 column (highlighted in gray) shows 
the actual RMSEs and log predictive scores (LPSs) of our benchmark. Asterisks indicate statistical significance relative to the 
SW 2007 model at the \% (***), 5% (**), and 10% (*) significance levels in terms of Diebold and Mariano (1995) tests for RMSEs 
and Amisano and Giacomini (2007) tests for LPSs. 

on enlarging the in-sample period recursively) can be 

found in Appendix B, and the results based on alternative 

detrending methods are presented in Append ix C. The 

forecast error measures are presented for the jo in t vector 

of GDP growth, inflation, and the interest rate, as w e l l as 

for these three variables individual ly. 

W e start by considering the overall forecasting abil i ty 

for the group of macroeconomic variables, reflected in the 

characteristics of the jo in t predictive distr ibution. The re­

sults i n the top panel of Table 3 for the full out-of-sample 

period indicate that the simple N K M o d e l has particularly 

good predictive abil i ty compared to other DSGE specifi­

cations w i t h more complex model structures. In terms of 

the jo in t accuracy of point forecasts (i.e., for the full vector 

of variables) as measured by the average RMSEs, this 

specification outperforms all other DSGE models for both 

one-step-ahead and four-step-ahead predictions. Consid­

ering each variable individual ly, the quali ty of point pre­

dictions of the N K M o d e l appears particularly high for 

four-step-ahead predictions. 

The quali ty of point forecasts from the N K M o d e l par­

tially translates to good performance i n density forecast­

ing (as measured by the LPBFs) in both of the predic­

t ion horizons considered. The jo in t density predictions of 

the N K M o d e l specification, however, appear less accurate 

than those of the CPS2010 model , w h i c h includes five 

structural shocks instead of the three of the N K M o d e l . The 

focus of the CPS2010 specification on offering a structural 

model ing framework for inflation dynamics (based on the 

inclusion of changes i n the inflation target in the model) 

is successful at improving out-of-sample density predic­

tions for this variable compared to the rest of the DSGE 
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models entertained. Furthermore, the average predictive 
performance of the CPS2010 model for short-run density 
forecasts of the interest rate is also the best among the 
set of models considered. 

The particularly good forecasting abil i ty of models that 
include a small number of observable variables is broadly 
robust to the use of different detrending methods and to 
the use of parameter estimates based on a rol l ing sample 
instead of on recursive est imation (see Appendices B and 
C). 

4.2. Overall forecast performance of predictive combinations 

The comparison of results concerning predictive abil i ty 
presented in Table 3 indicates that using forecast combi ­
nations can lead to improvements in average predictive 
ability over the full out-of-sample period. The best i n ­
dividual models in terms of forecasting abil i ty at short 
horizons outperform al l of the combinat ion methods for 
GDP growth and jo in t ly for a l l three variables. Concentrat­
ing on point predict ion performance and both analyzed 
horizons, indiv idual DSGE models predict GDP and infla­
t ion better than any combinat ion scheme considered. The 
combinations, on the other hand, outperform individual 
DSGE specifications at predict ing the interest rate. C o m ­
bining predictions of DSGE models also delivers better 
results for density forecasting inflation, and yields the 
best results w h e n evaluating the longer hor izon of jo int 
predictive performance. 

Since the forecasting abil i ty results of single DSGE 
specifications and their combinations for the full sample 
may be dr iven by differences in out-of-sample predic­
tive quali ty i n sub-periods of the out-of-sample inter­
val chosen, a more detailed analysis of the dynamics 
of the weights that combinat ion methods assign to dif­
ferent DSGE models appears necessary. In the fol lowing 
sub-section, we analyze the dynamics of the predictive 
weights for the different averaging methods entertained, 
thus moving beyond average forecast quali ty and turning 
to the assessment of changes i n predictive accuracy over 
time. 

4.3. The dynamics of predictive weights 

W e start by assessing the dynamics in the relative 
predictive abil i ty of DSGE models by studying the evolu­
t ion of predictive weights along the hold-out sample for 
our three target variables: GDP growth, inflation, and the 
interest rate. For each observable variable, we combine 
the predictions from DSGE models using statistics based 
on marginal predictive densities rather than on the jo int 
predictive density of al l target variables. One key advan­
tage of this approach is that the weights used to c o m ­
bine predictive densities are thus specific to each variable 
and reflect changes in the relative forecasting abil i ty of 
each DSGE specification for that particular phenomenon. 
W e calibrate the weights for each forecast combinat ion 
scheme w i t h at least eight quarters (1990Q1 to 1991Q4) 
for the first period of our hold-out sample (1992Q1) and 
employ S = 0.95. 

Figs. 1 and 2 show the weights obtained for each 
model and target variable i n the hold-out sample period 
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for one-step-ahead (Fig. 1) and four-step-ahead forecasts 
(Fig. 2). The weight ing schemes across forecast horizons 
are relatively similar, indicat ing a certain degree of sta­
bi l i ty of the predictive power of DSGE models across 
forecast horizons. In spite of the fact that the loss func­
tions in the D M A and predict ion pool methods are both 
based on log predictive scores, we observe substantial 
differences i n the magnitude of the weights obtained for 
these two approaches. The weights in the predict ion pool 
approach typical ly suggest a dynamic model selection 
scheme where single models tend to receive a weight 
close to one in a given period of t ime, whi le D M A usually 
assigns positive weights to forecasts from al l different 
DSGE models. For the combinat ion approach based on 
Bayesian predictive synthesis, weights (corresponding to 
factor loadings) are positive and relatively s imilar across 
models for the majority of periods. However, dur ing the 
financial crisis, indiv idual negative factor loadings can be 
observed, imp ly ing a reversal of the sign of the prediction 
of the respective DSGE model i n the combined forecast for 
these quarters. 

Focusing on one-step-ahead weights, the first row of 
panels in Fig. 1 shows the results for the different combi ­
nation techniques for GDP growth. For D M A , we observe 
that CPS2010 and N K M o d e l tend to dominate i n terms of 
predictive abil i ty prior to the financial crisis. In the sub­
sequent years, and in particular after the debt crisis in the 
euro area, the relevance of CPS2010 w i t h i n the group of 
combined predictions decreases i n favor of SW2007. For 
predict ion pooling, the dis t r ibut ion of weights shows the 
importance of predictions from CPS2010 and N K M o d e l for 
the combined forecast in particular periods, w i t h SW2007 
gaining importance only in the aftermath of the debt 
crisis. Both the D M A and DECO combinat ion schemes give 
high weights to predictions from CPS2010 and N K M o d e l , 
and the weights from DECO reflect the importance of fore­
casts from DNGS2015 unt i l the mid-2000s. The dis t r ibu­
t ion of weights impl ied by Bayesian predictive synthesis 
is much more uniform and stable over time. 

The second row of panels in Fig. 1 depicts the dynamics 
of weight ing schemes for inflation as a target variable for 
one-step-ahead forecasts. Using D M A , the highest weights 
are assigned to CPS2010 and DNGS2015, w i t h the latter 
gaining importance dur ing the financial crisis. Both of 
these models are designed w i t h a focus on tracking infla­
t ion dynamics: CPS2010 features a t ime-varying inflation 
target, and DNGS2015 includes inflation expectations, op-
erationalized by making use of data from the Survey of 
Professional Forecasters. W i t h predict ion pools, a qual­
itatively similar scheme appears, w i t h weights close to 
unity alternating between these two DSGE models, and 
predictions from DNGS2015 being particularly important 
dur ing the financial crisis years. Bayesian predictive syn­
thesis and DECO assign practically identical stable weights 
across models for the full period. 

For interest rate predictions, the resulting weight ing 
schemes are presented i n the th i rd row of panels in 
Fig. 1. In general, for the interest rate we observe a more 
persistent pattern i n the weight ing scheme, s imilar to 
that found for inflation. The D M A method leads to large 
and stable weights for CPS2010 throughout the hold-out 
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Fig. 1. Evolution of model weights over the hold-out sample for one-step-ahead predictions. Notes: The figure shows four different weighting schemes 
for the three target variables: GDP growth, inflation, and the interest rate. For BPS and DECO we use the posterior mean as a point estimate. 

sample, w i t h the exception of the period corresponding 
to the financial crisis, w h e n DNGS2015 and N K M o d e l 
receive relatively larger weights. The results from predic­
t ion pools are quali tat ively similar, w i t h forecasts from 
CPS2010 receiving weights close to unity throughout the 
period, except for in the mid-1990s and dur ing the finan­
cial crisis, where predictions from SW2007 and DNGS2015 
play a small role. As in the case of inflation, for inter­
est rates, Bayesian predictive synthesis and DECO as­
sign stable and similar weights to the individual model 
predictions throughout the hold-out sample. 

For four-step-ahead forecasts of GDP growth, Fig. 2 
shows a partly s imilar evolut ion of the weights for D M A 
combinations, but w i t h weights that are more spread 
across DSGE specifications, especially before the financial 
crisis. In contrast to one-step-ahead predictions, for the 
longer horizon, the forecasts of GDP growth from SW2007 
gain importance dur ing the euro area debt crisis period, 
and weights in the last part of our hold-out sample are 
more uniformly spread across DSGE specifications. For 
output, the combinat ion chosen by predict ion pooling 
leads to a more erratic weight ing scheme prior to the 
financial crisis as compared to one-step-ahead predic­
tions. Output g rowth forecasts from CD2008 gain rele­
vance right before the financial crisis, as do those from 
N K M o d e l and SW2007 i n the aftermath of the debt c r i ­
sis i n the euro area. The weights from the combinat ion 

method based on Bayesian predictive synthesis for four-
step-ahead forecasts roughly resemble those found for 
one-step-ahead predictions. 

The evolut ion of weight ing schemes along the hold­
out sample for inflation predictions at the four-step-ahead 
hor izon is relatively similar to that for the one-step-ahead 
predictions. The pool ing combinat ion scheme selects the 
CPS2010 model for almost the whole t ime period un­
der study, as in the case of the shorter predict ion hor i ­
zon. More notable differences across predict ion horizons 
can be found for D M A combinations. For the longer pre­
dict ion horizon, the JPT2011 and SW2007 models are 
assigned almost zero weight, whi le DNGS2015 receives 
higher weight i n the aftermath of the debt crisis in the 
euro area. The particular characteristics of the DNGS2015 
model , w h i c h includes financial frictions and aims to ex­
plain the dynamics of output and inflation after financial 
shocks, make it conceptually adequate for predictions 
in the environment of debt distress. The Bayesian pre­
dictive synthesis combinat ion method results i n roughly 
uniformly distr ibuted weights across models. 

Finally, the results for interest rate predictions at the 
four-step-ahead horizon, presented in the last row of 
Fig. 2, differ strongly from those obtained for one-step-
ahead forecasts. The predictions of the CPS2010 model, 
w h i c h obtained the highest weights using D M A and pre­
dict ion pools for the shorter-term horizon, now receive 
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Fig. 2. Evolution of model weights over the hold-out sample for four-step-ahead predictions. Notes: The figure shows three different weighting 
schemes for the three target variables: GDP growth, inflation, and the interest rate. For BPS we use the posterior mean as a point estimate. Note 
that DECO is only used for the one-step-ahead horizon. 

l ow weights over the hold-out sample and are replaced by 
the N K M o d e l for the majority of the hold-out period, w i t h 
the weights for CD2008 and DNGS2015 being prominent 
dur ing the outbreak of the financial crisis. 

The results of the analysis of the evolut ion of weight 
estimates for combinations of DSGE model predictions 
illustrate the stark differences in weights across forecast 
pool ing methods and over t ime. The fact that the c o m ­
bination method based on predict ion pools acts as a dy­
namic model-select ion device contrasts w i t h the 
weight ing schemes resulting from the other approaches 
entertained i n the exercise, w h i c h tend to lead to compos­
ite predictions w i t h positive weights for al l specifications. 
The relative predictive performance of these combinat ion 

approaches along the hold-out sample, as w e l l as that of 
indiv idual model forecasts, is explored in more detail in 
the next sect ion. 7 

4.4. Predictive ability of individual specifications and fore­
cast combinations: Variation over time 

In this section, we examine the variat ion over t ime of 
the predictive performance of the individual DSGE models 
and the forecast combinations. W e concentrate on the 

7 The evolution of predictive weights across methods and over time 
for rolling samples can be found in Appendix B. 
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Fig. 3. Evolution of average log predictive Bayes factors (LPBFs) relative to the SW 2007 model. Combination methods. Notes: The gray shaded areas 
indicate OECD recessions for the euro area. Note that DECO is only used for the one-step-ahead horizon. 

analysis of the evolut ion of log predictive Bayes factors, as 
a measure for the marginal l ikel ihood, over the hold-out 
sample. 

Fig. 3 presents the predictive performance of forecasts 
based on the different weight ing schemes across var i ­
ables and forecast horizons by means of log predictive 
Bayes factors relative to the SW2007 model . In panel a) of 
Fig. 3, the results for one-step-ahead forecasts are shown. 
The overall evolut ion of the predictive abil i ty of forecast 
combinat ion methods at this predict ion hor izon presents 
similar dynamics across most of the approaches, w i t h i m ­
provements i n predictive abil i ty over the hold-out sample 
and a relatively stable forecasting performance at the end 
of the out-of-sample period. A notable exception is the 
DECO scheme, especially for output g rowth and inflation. 
Practically a l l forecast combinat ion methods tend to per­
form poorly at the very beginning of our hold-out sample 
compared to the SW2007 benchmark, a feature that is 
l ikely related to the imprecise est imation of weights . 8 

Considering the jo in t set of macroeconomic variables 
of interest as a whole , the predictive abil i ty of prediction 
pool ing and D M A tends to be similar and to dominate 
all other combinat ion methods after the mid-1990s, a 
result w h i c h is most ly dr iven by their abil i ty to provide 
precise predictions of GDP growth. Combinations of fore­
casts based on the DECO method, on the other hand, 

We also perform the exercise based on rolling samples instead 
of a recursive reestimation scheme, and the results are presented 
in Appendix B. The relative forecasting ability of individual models 
does not change qualitatively, while the performance of combination 
schemes with respect to the SW2007 benchmark tends to worsen, thus 
lending support to this conclusion. 

dominate the other combinat ion alternatives w h e n pre­
dict ing inflation and interest rates after the mid-1990s. In 
contrast to the results obtained for the shorter-term hor i ­
zon, the Bayesian predictive synthesis method of forecast 
averaging systematically outperforms the other predictive 
combinations for the jo in t group of observable macroeco­
nomic variables after the mid-1990s at the longer horizon. 
The predictive quali ty shown by this method is fueled 
by its performance at predict ing interest rates in the 
longer term, whi le i n the other two variables, the forecast 
error appears comparable to that of other combinat ion 
methods. 

In Fig. 4 we present the log predictive Bayes factors 
of indiv idual specifications over the hold-out period w i t h 
respect to the benchmark model , SW2007. A comparison 
across DSGE models reveals a systematically good rel ­
ative predictive performance of the CPS2010 model ( in 
particular after the mid-1990s) that extends to a l l three 
variables and to both forecasting horizons. In addit ion, a 
worsening in forecast abil i ty of some specifications w i t h 
respect to the SW2007 benchmark dur ing the financial 
crisis and in its aftermath can be observed for many 
of the individual DSGE specifications. This is particularly 
the case for CD2008 at both horizons, but the loss of 
predictive quali ty also takes place in other specifications 
and is asymmetr ic across macroeconomic variables, w i t h 
GDP growth forecasts being the most affected. The loss 
of predictive power triggered by the financial crisis is 
in many cases persistent, and relative predictive scores 
(as measured by the log predictive Bayes factor) do not 
always reach the level they had prior to the crisis. A n 
interesting exception to this stylized fact is the inflation 
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Fig. 4. Evolution of average log predictive Bayes factors (LPBFs) relative to the SW 2007 model. DSGE models. Notes: The gray shaded areas indicate 
OECD recessions for the euro area. 

predictions from the DNGS2015 model , whose specifi­
cation incorporates a more sophisticated assessment of 
inflation expectations than the rest of the DSGE mod­
els used, and whose predictive abil i ty for this variable 
improves i n the crisis period. 

A comparison of the predictive abil i ty of forecast com­
binations and indiv idual DSGE models over the hold-out 
period reveals that i n some periods and for particular 
variables, weighted averages of forecasts achieve higher 
and less volatile log predictive Bayesian factors. However, 
the results show that it is not possible to find a one-
size-fits-all method to combine predictions from DSGE 
models that w o u l d provide systematically superior pre­
dictions for al l variables under scrutiny and over the full 
period studied. The difficulty i n finding such a forecast 
averaging method for our sample is related to the par­
ticular characteristics of the economic area being studied. 
The existence of cross-country heterogeneity in shock 
transmission mechanisms and macroeconomic outcomes 
across euro area economies, in particular since the onset 
of the sovereign bond crisis, is w ide ly documented in the 
literature (see Burr ie l & Galesi, 2018; Hol ton & d'Acri , 
2018, just to name two recent examples). The difference 
in shock propagation between countries i n the euro area 
aggregate poses particular challenges i n terms of how 
they can be accommodated i n DSGE specifications such 
as those entertained i n our analysis. 

5. Conclusions 

The results of our analysis show that combin ing fore­
casts from DSGE models does not systematically lead to 
improvements i n predictive abil i ty for macroeconomic 

variables for the euro area over the full period under 
scrutiny, w h i c h spans the last three decades. For some 
variables and periods, predictive weight ing schemes are 
able to reach superior forecasting performance over i n ­
dividual DSGE specifications. In particular, the gains in 
the predictive abil i ty of forecast combinations of DSGE 
models are larger in the last part of our sample. 

The weight ing schemes impl i ed by the combinat ion 
methods employed are fundamentally different across 
techniques. Weigh t ing based on predict ion pools tends 
to lead to forecasts based on dynamic model selection, 
assigning zero weights to many individual model predic­
tions over the out-of-sample period. D M A and weight ing 
based on dynamic factors, on the other hand, results 
in combined forecasts w i t h positive weights for practi­
cally a l l of the DSGE specifications. The forecasting per­
formance of indiv idual DSGE models and combinations 
thereof systematically worsens dur ing the financial c r i ­
sis w i t h respect to the benchmark, al though the loss 
of predictive power and the volat i l i ty of forecast errors 
appear larger in individual specifications as compared to 
predictive combinations. 

The results of our analysis may be significantly affected 
by the focus on the euro area economy, w h i c h is char­
acterized by differences in the propagation of macroeco­
nomic shocks across the countries that compose it. The 
suite of DSGE models employed in our forecasting ex­
ercise does not contain any specification that expl ic i t ly 
addresses the differential structural characteristics of the 
euro area. In this context, the results of our analysis 
should be considered very conservative estimates of the 
potential of predictive combinat ion methods combined 
w i t h forecasts from DSGE models. Refining the theoretical 
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structure of the models employed for predictive combi ­

nations to address the particularities of the euro area is 

l ikely to be a fruitful avenue of further research bui ld ing 

upon the analysis presented here. 
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Appendix A. Data 

See Table A . l . 

Appendix B. Forecasting performance based on rolling 
window estimation 

See Table B . l and Figs. B.1-B.4. 

Appendix C. Forecasting performance based on alter­
native detrending schemes 

See Tables C.1-C.4. 

Table A.1 
Source of data. 

Source Database, mnemonic 

Output A W M , Eurostat A W M :YER, Eurostat:namq_10_gdp (Q .CLV10_MEUR .SCA .B1GQ.EA19) 
Inflation A W M , Eurostat A W M : YED, Eurostat:namq_10_gdp (Q.PD10_EUR . SCA .B1GQ.EA19) 
Interest rate A W M , Eurostat AWM:STN, Eurostat:irt_st_q (Q.IRT_M3.EA) 
Consumption A W M , Eurostat AWM:PCR, Eurostat:namq_10_gdp (O_CLV10_MEUR.SCA.P31_S14_S15.EA19) 
Investment A W M , Eurostat AWM:ITR, Eurostat:namq_10_gdp (O_CLV10_MEUR.SCA.P51G.EA19) 
Hours worked Conference Board, CB:Total Economy Database ("Total Hours Worked"), Eurostat:namq_10_al0_e 

Eurostat (Q.THS_HW.TOTAL.SCA.EMP_DC.EA19) 
Wage A W M , Eurostat AWM:WIN, Eurostat:namq_10_al0 (0_.CP_MEUR.SCA.TOTAL.Dl.EA19) 
Money supply ( M l ) OECD MANMM101* 
Relative investment price A W M , Eurostat A W M : PCD, ITD, Eurostat:namq_10_gdp (Q.PD10_EUR.SCA.P31_S14_S15.EA19, 

aPD10_ E U R . S C A .P51G.EA19) 
Spread Gilchrist and spr_nfc_bund_ea 

Mojon (2018) 
Inflation expectations ECB SPF - Survey of Professional Forecasters (SPF.Q.U2.HICP.POINT.LT.Q.AVG) 

Population Eurostat demo_pjanbroad (ANR.Y15-64.T), lfsq_pganws (Q.THS.T.TOTAL.Y15-64.POP.EA19) 

Notes: 'Although the time series of the monetary aggregate M l is described as seasonally adjusted in the OECD database, some parts of the series 
still exhibit a clear seasonal pattern, which we removed making use of the TRAMO-SEATS method in JDemetra+. 
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Fig. B.l. Evolution of average log predictive Bayes factors (LPBFs) relative to the SW 2007 model. Notes: The gray shaded areas indicate OECD 
recessions for the euro area. DSGE models are estimated based on a rolling window. 
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Fig. B.2. Evolution of average log predictive Bayes factors (LPBFs) relative to the SW 2007 model. Notes: The gray shaded areas indicate OECD 
recessions for the euro area. Note that DECO is only used for the one-step-ahead horizon. DSGE models are estimated based on a rolling window. 
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Fig. B.3. Evolution of model weights over the hold-out sample for one-step-ahead predictions. Notes: The figure shows four different weighting 
schemes for the three target variables: output growth, inflation, and the interest rate. For BPS and DECO we use the posterior mean as a point 
estimate. DSGE models are estimated based on a rolling window. 
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Fig. B.4. Evolution of model weights over the hold-out sample for four-step-ahead predictions. Notes: The figure shows three different weighting 
schemes for the three target variables: output growth, inflation, and the interest rate. For BPS we use the posterior mean as a point estimate. Note 
that DECO is only used for the one-step-ahead horizon. DSGE models are estimated based on a rolling window. 
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Table B.l 
Forecasting performance of DSGE models based on rolling window estimation and combinations of these models. 

Target variable(s) DSGE model 

CD 2008 CPS 2010 DNGS 2015 JPT 2011 NKmodel SW 2007 

One step ahead 

Joint 1.181 0.947** 1.089* 1.164*** 0.888** 0.319 
(-0.295) (0.196***) (-0.187) (-0.543**) (0.146***) (0.501) 

GDP growth 1.215 0.957 1.097* 1.165** 0.884** 0.511 
(-0.321) (-0.016) (-0.051) (-0.161**) (0.046) (-0.794) 

Inflation 0.899 0.850*** 1.011 1.113 0.877*** 0.196 
(0.010*") (0.135) (-0.047**) (-0.088) (0.066***) (0.226) 

Interest rate 1.264*** 1.085 1.198*** 1.431*** 1.136 0.075 
(-0.107) (0.066) (-0.145***) (-0.318***) (0.018) (1.030) 

Four steps ahead 

Joint 1.017 0.996 1.115 1.079 0.961** 0.382 
(-0.328) (-0.036) (-0.155*) (-0.347*) (0.034) (-0.787) 

GDP growth 1.022 1.012 1.122 1.082 0.981 0.583 
(-0.384) (-0.424) (-0.135) (-0.227**) (-0.330) (-0.877) 

Inflation 0.949 0.903 1.026 1.052 0.804** 0.210 
(0.127*) (0.230***) (0.074***) (-0.037**) (0.218*) (-0.011) 

Interest rate 1.039 0.970 1.135 1.083 0.956 0.233 
(-0.170*) (0.111***) (-0.188) (-0.095*) (0.093***) (0.015) 

Combination method 

EQ DMA POOL BPS DECO 

One step ahead 

Joint 1.005 1.018 0.932** 1.036 0.951** 
(0.150) (0.223***) (0.261***) (-0.010***) (-0.265***) 

GDP growth 0.992 1.035 0.935* 1.054 0.962 
(0.060**) (0.078*) (0.065) (0.031) (-0.296***) 

Inflation 1.071 0.858*** 0.893*** 0.903*** 0.857*** 
(0.072***) (0.110) (0.090) (0.009***) (0.078***) 

Interest rate 1.134** 1.186 1.053 1.033 1.065 
(-0.015**) (0.057) (0.067) (-0.015**) (-0.013) 

Four steps ahead 

Joint 1.066 0.990 1.007 0.922*** 
(0.241) (0.271) (0.369) (0.437*) 

GDP growth 1.082 1.006 1.025 0.967 
(-0.013) (0.025) (0.037) (-0.033) 

Inflation 0.973 0.882* 0.871 0.842** 
(0.138) (0.229***) (0.227***) (0.137) 

Interest rate 1.037 0.973 0.995 0.657** 
(0.070***) (0.115***) (0.079***) (0.402) 

Notes: The table shows root mean squared errors (RMSEs), and average log predictive Bayes factors (LPBFs) in parentheses, 
relative to the SW 2007 model. Bold numbers indicate the best performing DSGE model as well as the best combination 
method that obtains the smallest RMSE ratio (largest LPBF). The SW 2007 column shows the actual RMSEs and LPSs of our 
benchmark. Asterisks indicate statistical significance relative to SW 2007 at the 1% (***), 5% (**), and 10% (*) significance levels 
in terms of Diebold and Mariano (1995) tests for RMSEs and Amisano and Giacomini (2007) tests for LPSs. 
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Table C.l 
Forecasting performance of recursively estimated DSGE models with HP filter detrending. 

Target variable(s) DSGE model Target variable(s) 

CD 2008 CPS 2010 DNGS 2015 JPT 2011 NKmodel SW 2007 

One step ahead 

Joint 1.078" 0.923** 1.064*** 1.103 0.881*** 0.278 
(-0 .092") (0.220***) (-0.221) (-0.313**) (0.085) (0.492) 

GDP growth 1.082" 0.920* 1.050*** 1.107 0.853*** 0.446 
(-0.066) (0.091***) (-0.030) (-0.092*) (0.154***) (-0.630) 

Inflation 1.027 0.928* 1.094 1.020 1.001 0.166 
(-0.042*) (0.004*) (-0.040**) (-0.058***) (-0.058***) (0.178) 

Interest rate 1.202*** 0.989 1.353*** 1.325*** 1.190** 0.074 
(0.021***) (0.151***) (-0.115*) (-0.186***) (-0.033) (0.873) 

Four steps ahead 

Joint 1.010 1.018 1.166*** 1.148** 0.989 0.300 
(0.113**) (0.069) (-0.182**) (-0.201*) (0.128) (-0.455) 

GDP growth 0.976 1.021 1.135*** 1.141** 0.981 0.457 
(0.022) (-0.017) (-0.098**) (-0.166***) (0.015) (-0.672) 

Inflation 1.134 1.025 1.255*** 1.261** 0.953 0.166 
(0.070) (0.101) (0.015) (-0.054) (0.087) (-0.035) 

Interest rate 1.105** 0.997 1.270** 1.094 1.064 0.187 
(0.070***) (0.076) (-0.115*) (0.003***) (0.082***) (0.111) 

Notes: The table shows root mean squared errors (RMSEs), and average log predictive Bayes factors (LPBFs) in 
parentheses, relative to the SW 2007 model. Bold numbers indicate the best performing DSGE model that obtains 
the smallest RMSE ratio (largest LPBF). The SW 2007 column shows the actual RMSEs and log predictive scores (LPSs) 
of our benchmark. Asterisks indicate statistical significance relative to SW 2007 at the 1% (***), 5% (**), and 10% (*) 
significance levels in terms of Diebold and Mariano (1995) tests for RMSEs and Amisano and Giacomini (2007) tests 
for LPSs. 

Table C.2 
Forecasting performance of recursively estimated DSGE models with Hamilton filter detrending. 

Target variable(s) DSGE model 

CD 2008 CPS 2010 DNGS 2015 JPT 2011 NKmodel SW 2007 

One step ahead 

Joint 1.235*** 0.909*** 0.979 1.104*** 0.901* 0.340 
(-0.428**) (0.310) (-0.023) (-0.452***) (0.020) (-0.494) 

GDP growth 1.277*** 0.920** 0.988 1.092* 0.878** 0.519 
(-0.214***) (0.110***) (0.014) (-0.116***) (0.141***) (-0.821) 

Inflation 1.009 0.827*** 0.900* 1.057 0.889 0.250 
(-0.103) (0.088**) (0.059) (-0.094) (-0.006**) (-0.124) 

Interest rate 1.332*** 1.033 1.116*** 1.469*** 1.296*** 0.120 
(-0.074) (0.136***) (-0.054***) (-0.232***) (-0.104***) (0.376) 

Four steps ahead 

Joint 1.123 0.984 0.990 1.120*** 0.979 0.418 
(0.018) (0.256**) (0.188***) (-0.183***) (0.192***) (-1.780) 

GDP growth 1.129 1.009* 1.035 1.139 0.993* 0.552 
(-0.131) (-0.016) (-0.022) (-0.223***) (-0.030) (-0.864) 

Inflation 0.979 0.825 0.786 1.056 0.779 0.315 
(0.160***) (0.287***) (0.168***) (0.010) (0.203***) (-0.577) 

Interest rate 1.212 1.038 1.022 1.123 1.084 0.347 
(0.020) (0.094*) (0.062) (0.015) (0.098) (-0.560) 

Notes: The table shows root mean squared errors (RMSEs), and average log predictive Bayes factors (LPBFs) in 
parentheses, relative to the SW 2007 model. Bold numbers indicate the best performing DSGE model that obtains 
the smallest RMSE ratio (largest LPBF). The SW 2007 column shows the actual RMSEs and log predictive scores (LPSs) 
of our benchmark. Asterisks indicate statistical significance relative to SW 2007 at the 1% (***), 5% (**), and 10% (*) 
significance levels in terms of Diebold and Mariano (1995) tests for RMSEs and Amisano and Giacomini (2007) tests 
for LPSs. 
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Table C.3 
Forecasting performance of recursively estimated DSGE models with demeaned observables. 

Target variable(s) DSGE model Target variable(s) 

CD 2008 CPS 2010 DNGS 2015 JPT 2011 NKmodel SW 2007 

One step ahead 

Joint 1.206"* 0.801*** 0.889*** 1.031 0.905 0.373 
(-0.734***) (0.512***) (0.242) (-0.356***) (-0.112) (-0.298) 

GDP growth 1.025 0.794*** 0.875*** 1.015 0.848** 0.602 
(-0.057) (0.203***) (0.117***) (-0.020) (0.076*) (-0.919) 

Inflation 2.136*** 0.824*** 0.965 1.066 1.216*** 0.216 
(-0.598***) (0.119) (0.136**) (-0.071**) (-0.206***) (-0.124) 

Interest rate 1.313*** 0.950 1.020 1.465*** 1.217*** 0.091 
(-0.104*) (0.168***) (0.012) (-0.234***) (-0.098***) (0.695) 

Four steps ahead 

Joint 1.059 0.808*** 0.879*** 1.019 1.139** 0.474 
(-0.090) (0.751***) (0.723***) (-0.018) (-0.132) (-1.998) 

GDP growth 0.827** 0.809*** 0.888*** 0.958 0.988 0.703 
(0.082) (0.134) (0.089) (-0.084) (-0.115**) (-1.036) 

Inflation 1.978*** 0.755*** 0.834* 1.169 1.700*** 0.280 
(-0.223**) (0.429***) (0.405***) (0.078**) (-0.183***) (-0.625) 

Interest rate 1.046 0.837** 0.870 1.171*** 1.279*** 0.319 
(0.061) (0.163***) (0.174**) (-0.015) (-0.153**) (-0.388) 

Notes: The table shows root mean squared errors (RMSEs), and average log predictive Bayes factors (LPBFs) in 
parentheses, relative to the SW 2007 model. Bold numbers indicate the best performing DSGE model that obtains 
the smallest RMSE ratio (largest LPBF). The SW 2007 column shows the actual RMSE and log predictive scores of 
our benchmark. Asterisks indicate statistical significance relative to SW 2007 at the 1% (***), 5% (**), and 10% (*) 
significance levels in terms of Diebold and Mariano (1995) tests for RMSEs and Amisano and Giacomini (2007) tests 
for log predictive scores (LPSs). 

Table C.4 
Forecasting performance of the three recursively estimated DSGE models with the baseline data filtering used for 
Table 3 relative to the originally proposed model and data filtering. 

Target variable(s) DNGS 2015 JPT 2011 SW 2007 Target variable(s) 

Baseline Original Baseline Original Baseline Original 

One step ahead 

Joint 0.943* 0.362 1.164*** 0.329 0.944 0.338 
(0.470***) (-0.407) (0.114) (-0.441) (0.381) (-0.256) 

GDP growth 0.951 0.575 1.195*** 0.516 0.950 0.538 
(0.044) (-0.890) (-0.179***) (-0.822) (0.051) (-0.828) 

Inflation 0.992 0.208 1.122** 0.192 0.899** 0.216 
(0.099**) (-0.041) (0.025) (-0.092) (0.153) (-0.132) 

Interest rate 0.660*** 0.139 0.760*** 0.143 0.999 0.085 
(0.356***) (0.447) (0.242***) (0.410) (0.101***) (0.719) 

Four steps ahead 

Joint 0.772*** 0.500 1.027 0.434 0.875*** 0.434 
(0.986***) (-1.898) (0.356) (-1.830) (0.742***) (-1.961) 

GDP growth 0.918 0.648 1.091" 0.603 0.910* 0.630 
(0.117) (-1.025) (-0.105) (-1.001) (0.124) (-0.989) 

Inflation 0.639* 0.323 1.292 0.234 0.796* 0.277 
(0.257**) (-0.385) (-0.094**) (-0.308) (0.238***) (-0.634) 

Interest rate 0.476*** 0.475 0.700** 0.384 0.776** 0.301 
(0.609**) (-0.621) (0.391**) (-0.530) (0.289***) (-0.390) 

Notes: The table shows root mean squared errors (RMSEs), and average log predictive Bayes factors (LPBFs) in 
parentheses of the baseline data filtering relative to the originally proposed data filtering in Del Negro et al. (2015), 
Justiniano et al. (2011), and Smets and Wouters (2007), respectively. The columns "Original" show the actual RMSEs 
and log predictive scores of these benchmarks. Asterisks indicate statistical significance of the "Baseline" relative to 
the "Original" at the 1% (***), 5% (**), and 10% (*) significance levels in terms of Diebold and Mariano (1995) tests for 
RMSEs and Amisano and Giacomini (2007) tests for LPSs. 
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