

Microbial Drug Resistance: http://mc.manuscriptcentral.com/mdr

Novel antimicrobial genetic elements in methicillin-resistant Macrococcus armenti

Journal:	Microbial Drug Resistance
Manuscript ID	MDR-2022-0162.R2
Manuscript Type:	Letter to the Editor
Date Submitted by the Author:	n/a
Complete List of Authors:	Keller, Jennifer; Universität Bern, Institute of Veterinary Bacteriology Schwendener, Sybille; Universität Bern, Institute of Veterinary Bacteriology Nováková, Dana; Masaryk University, Department of Experimental Biology Pantůček, Roman; Masaryk University, Department of Experimental Biology Perreten, Vincent ; Universität Bern, Institute of Veterinary Bacteriology
Keyword:	Antibiotics, Molecular Characterization, Veterinary Microbiology, Resistance
Manuscript Keywords (Search Terms):	WGS, antibiotic resistance, Staphylococcaceae, MLS, McRImecD
Abstract:	N/A

2 3 4	1	Novel antimicrobial genetic elements in methicillin-resistant Macrococcus armenti
5 5 7	2	Authors and affiliations: Jennifer Eleonora Keller ¹ , Sybille Schwendener ¹ , Dana Nováková ² ,
3 Ə 10	3	Roman Pantůček ³ , Vincent Perreten ¹
11 12 13	4	¹ Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern,
14 15	5	Switzerland
16 17 18	6	² Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of
19 20 21	7	Science, Masaryk University, Brno, Czech Republic.
22 23	8	³ Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty
24 25 26	9	of Science, Masaryk University, Brno, Czech Republic.
27 28 29	10	Corresponding Author Details: Vincent Perreten, vincent.perreten@unibe.ch, tel.: +41 31
30 31	11	684 24 30
32 33 34 35	12	Running head: Antimicrobial genetic elements in M. armenti
36 37	13	Keywords: WGS, aminoglycoside, Staphylococcaceae, antimicrobial resistance, MLS _B ,
38 39 40	14	McRI _{mecD}
41 42	15	Authorship contribution statement
43	16	Author smp contribution statement
44	17	Conceptualization: JE Keller, S. Schwendener, R. Pantůček, V. Perreten
45 46	18	Data curation: J.E. Keller, S. Schwendener, D. Nováková, R. Pantůček, V. Perreten
40 47	19	Formal Analysis: J.E. Keller, S. Schwendener, D. Nováková, R. Pantůček
48	20	Funding acquisition: R. Pantůček, V. Perreten
49	21	Investigation: J.E. Keller, S. Schwendener, D. Nováková, R. Pantůček, V. Perreten
50	22	Methodology: J.E. Keller, S. Schwendener, D. Nováková,
51 52	23	Project administration: V. Perreten
53	24	Resources: V. Perreten, R. Pantůček
54	25	Software: J.E. Keller, S. Schwendener,
55	26	Supervision: V. Perreten
56	27	Validation: J.E. Keller, S. Schwendener, D. Nováková, R. Pantůček, V. Perreten
57 58	28	Visualization: J.E. Keller, S. Schwendener, D. Nováková, R. Pantůček, V. Perreten
59 59	29 20	Writing – original draft: J.E. Keller
50	30 21	Writing – review & editing: J.E. Keller, S. Schwendener, D. Nováková, R. Pantůček, V.
	31	Perreten

Dear Editor:

Macrococcus belongs to the commensal flora of mammals, but some of the species have been occasionally recovered from infection sites in animals and humans.¹ They have the capacity to acquire antimicrobial resistance genes on different types of mobile genetic elements including the methicillin resistance genes *mecB* and *mecD* on staphylococcal cassette chromosome *mec* (SCCmec) elements SCCmecB and SCCmecD, Macrococcus resistance islands (McRI_{mecD}), and *mecB*-containing plasmids.¹ *M. armenti* was described as a new species colonizing the nasal cavities and skin of calves and pigs in 2022.² Following this description, two Macrococcus sp. strains sharing the same SmaI pulsotype (CCM 2607= B-P 25 and CCM 2609 = B-P 26) isolated from pig-derived samples (origin not specified, but either skin of pigs or bacon) in 1963 and deposited in the Czech Collection of Microorganisms (CCM) were also classified as *M. armenti.*³ Here, we determined the antimicrobial susceptibility and compared whole genome sequences of recent strains isolated in 2017, 2019 and 2021 and one of the oldest strains from the 1960s to identify mobile genetic elements containing resistance genes and their genomic locations. The complete genomes of *M. armenti* were obtained by hybrid assembly with Unicycler v0.4.4 software (https://github.com/rrwick/Unicycler) using Illumina and Oxford Nanopore technologies (ONT) reads for JEK37^T, JEK46, JEK29, JEK12, 17Msa1131, 19Msa0295 and 19Msa0966² and using IonTorrent and ONT sequence reads for strain CCM 2609. Antimicrobial resistance genes were detected using ResFinder 4.1 (https://cge.food.dtu.dk/services/ResFinder/). Minimal inhibitory concentrations (MICs) of 20 antimicrobials were determined by broth microdilution susceptibility testing in Müller-Hinton broth containing 5% laked horse blood using SensititreTM EUST plates (Thermo Fischer Scientific) and a 96-well plate containing 2-fold dilutions of oxacillin (Sigma–Aldrich) ranging from 0.5 to 256 mg/L following the standard M07 of the Clinical and Laboratory

Microbial Drug Resistance

1 2
2 3 4
5
6 7
8 9
10 11
12 13
14 15
16 17
18 19
20 21
22 23
24 25
26 27
28 29
30 31
32 33
34 35
36 37
38 39
40
41 42 43
43 44 45
45 46 47
48
50
52
53 54
55 56
57 58
59 60

57	Standards Institute (CLSI). Interpretation of the MICs was performed using CLSI and
58	EUCAST clinical resistance breakpoints set for <i>Staphylococcus</i> spp. (Table S1).
59	All strains were susceptible (MIC in parentheses) to chloramphenicol, ciprofloxacin,
60	gentamicin, kanamycin, linezolid, quinupristin/dalfopristin, rifampin, sulfamethoxazole,
61	tetracycline, trimethoprim, and vancomycin (Table S1). The strains also showed low MICs for
62	mupirocin and variable MICs for tiamulin and streptomycin for which no breakpoints are
63	available. All strains, except CCM 2607 and CCM 2609, were resistant to oxacillin and
64	penicillin and contained the methicillin resistance gene mecD (Table S1). Three of the mecD-
65	containing strains exhibited an MIC lower than the MIC resistance breakpoint of cefoxitin (\geq
66	$8 \mu g/ml$) used for the detection of methicillin resistance in <i>S. aureus</i> , indicating that oxacillin
67	should be preferred to predict methicillin resistance in M. armenti, as already proposed for
68	other Macrococcus species. ⁴ Nevertheless, further larger studies are still needed to determine
69	whether oxacillin or cefoxitin best predicts methicillin resistance in Macrococcus spp. Strains
70	19Msa0295, JEK29, JEK12 and JEK46 were resistant to erythromycin (MIC >8µg/ml),
71	showed inducible resistance to clindamycin as determined by the D-zone test and contained
72	the macrolide-lincosamide-streptogramin B (MLS _B) resistance gene $erm(45)$. ⁵ Strains
73	19Msa0966 and 19Msa0295 exhibited high MIC to streptomycin (MIC >32 μ g/ml) and
74	harbored the streptomycin O-adenylyl transferase gene ant(6)-Ia. All strains except
75	17Msa1131 were also resistant to fusidic acid (MIC 2–4 μ g/ml) but encoded no known
76	resistance genes (Table S1).
77	The locations of the antimicrobial resistance genes on integrated mobile genetic elements
78	were analyzed by BLASTN comparative analysis and illustrated using easyFig v2.1 (Figure
79	1). The mecD gene was located in the chromosomal resistance island inserted downstream of

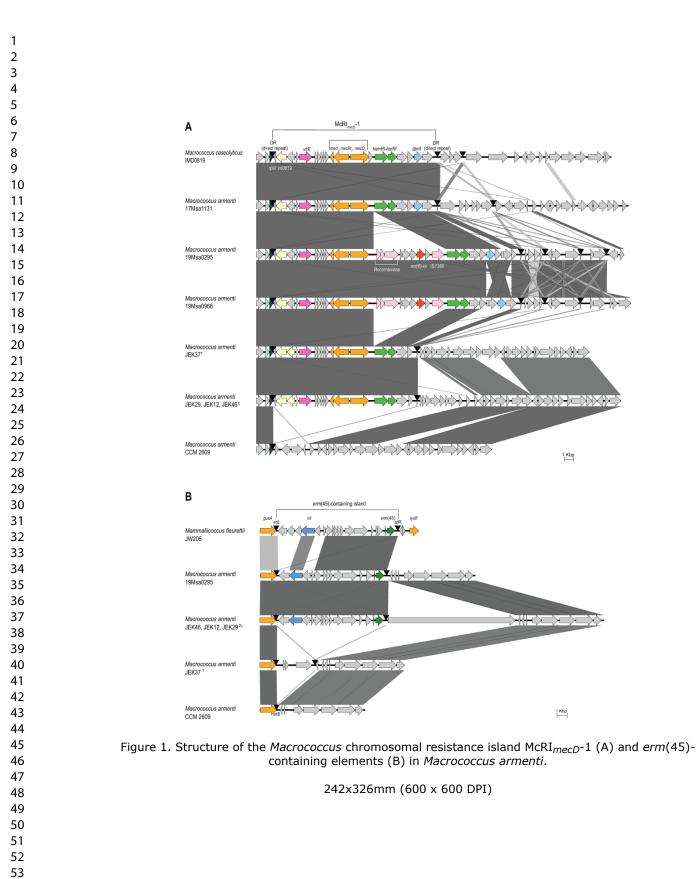
80 the *rpsI* gene, designated McRI_{*mecD*}-1, following a previously established classification

81 system.¹ However, strains JEK37^T, JEK29, JEK46 and JEK12 did not contain the DNA

recombination mediator protein gene *dprA*, and strains 19Msa0295 and 19Msa0966 contained

2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
-	

1


83	an insertion of 7,980 bp between the mecD and hsmRI-hsrRI genes (Figure 1A). This insertion
84	contained the <i>ant(6)-Ia</i> gene and was delimited by open reading frames (<i>orfs</i>) encoding a
85	recombinase and a transposase of an insertion sequence of the IS1380 family (Figure 1A).
86	This structure was also found in Enterococcus faecium plasmids (e.g., GenBank acc. nos.
87	LR134110.1 and CP093943.1) and chromosome (GenBank acc. no. LR135169.1) as well as
88	within an integrative and conjugative element (ICESsu _{SC84}) in Streptococcus suis (GenBank
89	acc. no. FM252031.1). The <i>erm</i> (45) gene was present on a 10,439-bp chromosomal element
90	flanked by two direct repeats (DRs) downstream of the guaA gene, similar to
91	Mammaliicoccus fleuretti, where it was first described as a SAPI-like genomic island ⁵ (Figure
92	1B). The regions flanking the $erm(45)$ gene were identical in both genera, but the 5'-end
93	region containing a similar putative site-specific tyrosine integrase (int) differed in both
94	elements. The M. armenti strains also contained diverse plasmids and putative prophages as
95	identified by PHASTER, but none of these elements contained antimicrobial resistance genes
96	(Table S2).
97	This comparative genomic analysis of decades-old and more recent isolates showed that <i>M</i> .
98	armenti acquired antimicrobial resistance genes through the integration of mobile genetic
99	elements similar to those found in other Macrococcus and Mammaliicoccus species, as well
100	as in Enterococcus and Streptococcus. It also highlighted that additional antimicrobial
101	resistance genes such as $ant(6)$ -Ia can insert into McRI _{mecD} . The presence of different types of
102	mobile genetic elements in <i>M. armenti</i> again underlines the propensity of <i>Macrococcus</i> to
103	evolve and adapt its genetic material to survive antimicrobial selective pressure, as is
104	commonly exerted in animal husbandry.
105	
106	GenBank/EMBL/DDBJ accession numbers: The complete genome sequences of strains

JEK37^T, JEK46, JEK29, JEK12, 17Msa1131, 19Msa0295, 19Msa0966 and CCM 2609 have been deposited into GenBank under accession numbers CP083608-CP083609, CP083604-108

1 2			
2 3 4	109	CP0836	507, CP083602-CP083603, CP083598-CP083601, CP083595-CP083597, CP083594,
5	110	CP0835	592-CP08359 and CP094348-CP094350.
6 7			
8 9 10	111	Fundin	g
11 12 13	112	This stu	dy was financed by internal funds of the Institute of Veterinary Bacteriology,
14 15	113	Univers	sity of Bern, Bern, Switzerland, to V.P. (REF-660-50) and by the project National
16 17	114	Institute	e of Virology and Bacteriology (Programme EXCELES, ID Project No.
18 19 20	115	LX22N	PO5103) - Funded by the European Union - Next Generation EU to R.P.
21 22 23	116	Acknow	wledgments
24 25 26	117	We than	nk Veronika Vrbovská and Tibor Botka for sequencing the CCM 2609 genome,
27 28	118	Vojtech	Kovarovic for its assembly (Masaryk University, Brno, Czech Republic), and
29 30	119	Alexano	dra Collaud (Institute of Veterinary Bacteriology, University of Bern, Bern,
31 32 33	120	Switzer	land) for technical assistance.
34 35 36	121	Referei	nces
37 38	122	1.	Schwendener S., and Perreten V. 2022. The <i>bla</i> and <i>mec</i> families of beta-lactam
39	122		resistance genes in the genera <i>Macrococcus</i> , <i>Mammaliicoccus</i> and <i>Staphylococcus</i> : an
40	124		in-depth analysis with emphasis on <i>Macrococcus</i> . J Antimicrob Chemother 77: 1796-
41	124		1827.
42	126		Keller J.E., Schwendener S., Overesch G., et al. 2022. Macrococcus armenti sp.
43 44	127		nov., a novel bacterium isolated from the skin and nasal cavities of healthy pigs and
45	128		calves. Int J Syst Evol Microbiol 72: 005245.
46	129		Jeffries L., Cawthorne M.A., Harris M., et al. 1967. Distribution of menaquinones
47	130		in aerobic Micrococcaceae. Nature 215: 257-9.
48	131		Keller J.E., Schwendener S., Neuenschwander J., et al. 2022. Prevalence and
49	132		characterization of methicillin-resistant <i>Macrococcus</i> spp. in food producing animals
50 51	133		and meat in Switzerland in 2019. Schweiz Arch Tierheilkd 164: 153-164.
52	134		Wipf J.R., Schwendener S., Nielsen J.B., et al. 2015. The new macrolide-
53	135		lincosamide-streptogramin B resistance gene <i>erm</i> (45) is located within a genomic
54	136		island in <i>Staphylococcus fleurettii</i> . Antimicrob Agents Chemother 59: 3578-81.
55	130		
56	137		
57 58			
58 59			
60			

Figure legend

4 5		
6 7	139	Figure 1. Structure of the <i>Macrococcus</i> chromosomal resistance island $McRI_{mecD}$ -1 (A) and
8 9	140	erm(45)-containing elements (B) in Macrococcus armenti. Genes are represented by arrows
10 11 12	141	and are color-coded: (A) light yellow, integrase <i>int0819</i> ; pink, potential virulence factor gene
13 14	142	virE; orange, mecD operon genes; green, genes hsmRI-hsrRI encoding a restriction-
15 16	143	modification system; light blue, DNA recombination-mediator protein gene dprA; light pink,
17 18	144	recombinases and transposase of IS1380; red, aminoglycoside adenylyl transferase gene
19 20 21	145	ant(6)-Ia; (B) orange, GMP synthase gene guaA and transcriptional regulator gene lysR; blue,
21 22 23	146	integrase int; green, 23S rRNA methyltransferase gene erm(45) for macrolide-lincosamide-
24 25	147	streptogramin B (MLS _B) resistance. Integration sites are indicated by black arrows
26 27	148	representing direct repeats (DRs) in McRI _{mecD} -1 (A) and attachment (attL, attR) and
28 29 30	149	integration (attB) sites in erm(45)-containing elements (B). Gray connections indicate regions
31 32	150	sharing 74% to 100% nucleotide (nt) sequence identity. 1) The displayed regions of M.
33 34	151	armenti strains JEK12, JEK29 and JEK46 share the same structure with >99.9% nt sequence
35 36 37	152	identity; 2) The displayed regions of <i>M. armenti</i> strains JEK12, JEK29 and JEK46 share
38 39	153	>99.7% nt sequence identity. T, type strain. Figures were generated using Easyfig software
40 41	154	and Microsoft PowerPoint.
42 43	155	
44 45 46	156	
47 48	157	Supplementary Tables
49 50	158	Table S1. Minimal inhibitory concentrations (MICs) of antimicrobials and resistance genes
51 52 53	159	for Macrococcus armenti.
53 54 55	160	
56 57	161	Table S2. Acquired genetic elements and their genomic locations in Macrococcus armenti.
58 59		
60		

Supplementary	Table S1. Minimal inhibitory concentrations (MICs) of antibiotics and
	antibiotics resistance genes for <i>Macrococcus armenti</i>

Antibiotics and antibiotic	Resistance	MIC [in µg/ml] of antibiotics and presence of resistance genes for <i>M. armenti</i> strains									
resistance genes ^{a)}	breakpoints ^{b)}	JEK29	JEK37	JEK12	JEK46	19Msa0966	19Msa0295	17Msa1131	CCM2607	CCM2609	
Oxacillin mecD	≥1	64 +	256 +	64 +	128 +	16 +	16 +	>256 +	≤0.5	≤0.5 -	
Cefoxitin mecD	≥ 8	16 +	>16 +	≤0.5 +	16 +	2+	2+	>16 +	≤0.5	≤0.5	
Penicillin mecD	≥0.25	>2 +	>2 +	>2 +	>2 +	2+	2 +	>2 +	≤0.12	≤0.12	
Erythromycin erm(45)	≥8	>8 +	≤0.25	>8 +	>8 +	≤0.25	>8 +	≤0.25	≤0.25	≤0.25	
Clindamycin erm(45)	≥4	1°) +	0.25	0.5 ^{c)} +	1°) +	0.25	0.25 ^{c)} +	0.25	0.25	0.5	
Streptomycin ant(6)-Ia	NA	8-	8 -	≤4 -	8 -	>32 +	>32 +	8 -	≤4 -	≤4 -	
Gentamicin	≥16	≤1	≤1	≤1	≤1	≤ 1	≤ 1	≤1	≤1	≤1	
Kanamycin	>8	≤4	≤4	≤4	≤4	≤4	≤4	≤4	≤4	≤4	
Tetracycline	≥16	≤0.5	≤0.5	≤0.5	≤0.5	≤0.5	≤0.5	≤0.5	≤0.5	≤0.5	
Rifampicin	≥4	≤0.016	≤0.016	≤0.016	≤0.016	≤0.016	≤0.016	≤0.016	≤0.016	≤0.016	
Fusidic acid	>1	4	2	4	4	4	4	≤0.5	2	2	
Chloramphenicol	≥32	≤4	≤4	≤4	≤4	≤4	≤4	≤4	≤4	≤4	
Tiamulin	NA	4	>4	4	>4	>4	>4	>4	>4	>4	
Quinupristin/Dalfopristin	≥4	≤0.5	≤0.5	≤0.5	≤0.5	≤0.5	1	≤0.5	1	1	
Vancomycin	≥32	≤1	≤1	≤1	2	≤ 1	≤1	≤1	≤1	≤1	
Ciprofloxacin	≥4	≤0.25	≤0.25	≤0.25	≤0.25	≤0.25	≤0.25	≤0.25	≤0.25	≤0.25	
Linezolid	≥ 8	≤1	≤1	≤1	≤1	≤1	≤1	≤1	≤1	≤1	
Mupirocin	NA	1	1	2	1	≤0.5	1	1	1	1	
Trimethoprim	≥16	≤2	≤2	≤2	≤2	≤2	≤2	≤2	8	8	
Sulfamethoxazole	≥512	≤64	≤64	≤64	≤64	≤64	≤64	≤64	≤64	≤64	

a) Antibiotic resistance genes and function: ant(6)-Ia, streptomycin nucleotidyltransferase gene; erm(45), macrolide, lincosamide and streptogramin 23S-rRNA methylase gene; mecD, transpeptidase coding gene [PBP2a (penicillin binding protein)] for resistance to all β -lactam antibiotics. +, presence of the gene; -, absence of the gene.

b) The resistance breakpoints presented here are those for *Staphylococcus* spp. from The Clinical and Laboratory Standards Institute (CLSI) for human isolates (CLSI supplement M100, 31st ed., 2022), except for those of fusidic acid and kanamycin which come from EUCAST (www.eucast.org). NA, not available.

c) The inducible resistance to clindamycin was determined by D-test as recommended by the Clinical and Laboratory Standards Institute (CLSI) for staphylococcispp. (CLSI supplement M100, 31st ed., 2022).

Page 9 of 9

Microbial Drug Resistance

	\mathbf{O}	Chromosomal elements											
	Chromosome		McRI _{mecD}	-1	erm(4	5)-containi	ngisland	(Candidate p	orophage	P	lasmids	
Strains	GenBank acc. no.	Position	Size (bp)	Antibiotic resistance gene	Position	Size (bp)	Antibiotic resistance gene	Position	Size (bp)	Closest related phage	Name	Size (bp)	Plasmid GenBanl acc. no
JEK29	CP083602	222687- 238666	15980	mecD	2206741- 2196303	10439	<i>erm</i> (45)	1019793- 1069893 1652445- 1691675	50101 39231	Staphylococcus phage StB12 Staphylococcus phage 2638A	pJEK29	2566	CP08360
JEK37	CP083608	225422- 241401	15980	mecD	V	-	-	1362983- 1399705 1675672- 1729924	36723 54253	<i>Staphylococcus</i> phage phiRS7 <i>Bacillus</i> phage Mgbh1	pJEK37	1451	CP08360
JEK12	CP083598	222687- 238666	15980	mecD	2206 <mark>843-</mark> 2196405	10439	<i>erm</i> (45)	1019730- 1069830 1652382- 1691612	50101 39692	Staphylococcus phage StB12 Staphylococcus phage 2638A	pJEK12-1 pJEK12-2 pJEK12-3	62574 28153 2566	CP08359 CP08360 CP08360
JEK46	CP083604	222778- 238757	15980	mecD	2216171- 2205733	10439	<i>erm</i> (45)	1019821- 1069921 1652473- 1691703	50101 39231	Staphylococcus phage StB12 Staphylococcus phage 2638A	pJEK46-1 pJEK46-2 pJEK46-3	62574 28227 2566	CP08360 CP08360 CP08360
19Msa0966	CP083592	223643- 251043	27401	mecD ant(6)-Ia	-	-	-	1393515- 1436408	42893	Staphylococcus phage StB20	p19Msa0966	25171	CP08359
19Msa0295	CP083594	220880- 248280	27401	mecD ant(6)-Ia	2207271- 2196833	10439	<i>erm</i> (45)	1370838- 1410899 1880388- 1925657	40062 45269	Staphylococcus phage CNPx Listeria phage 2389	-	-	-
17Msa1131	CP083595	221566- 239760	18195	mecD	-	-	-	1023582- 1071604 1415633- 1456733	48023 41101	Bacillus phage PM1 Staphylococcus phage SpT99F3	p17Msa1131-1 p17Msa1131-2	1447 1446	CP08359 CP08359
CCM2609	CP094348	-	-	-	-	-	-	1003 <i>5</i> 39- 1049107	45569	<i>Geobacillus</i> phage TP 84	_	0.	-

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801