J 2023

Closed-form solutions of second-order linear difference equations close to the self-adjoint Euler type

JEKL, Jan

Basic information

Original name

Closed-form solutions of second-order linear difference equations close to the self-adjoint Euler type

Authors

JEKL, Jan (203 Czech Republic, guarantor, belonging to the institution)

Edition

Mathematical Methods in the Applied Sciences, Wiley, 2023, 0170-4214

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 2.900 in 2022

RIV identification code

RIV/00216224:14310/23:00130083

Organization unit

Faculty of Science

UT WoS

000876819700001

Keywords in English

closed-form solution; discrete calculus; Euler-type equation; iterated logarithm

Tags

Tags

International impact, Reviewed
Změněno: 21/3/2023 10:50, Mgr. Marie Šípková, DiS.

Abstract

V originále

This paper is dedicated to obtaining closed-form solutions of linear difference equations which are asymptotically close to the self-adjoint Euler-type difference equation. In this sense, the equation is related to the Euler-Cauchy differential equation y ''+lambda/t^2y = 0. Throughout the paper, we consider a system of sequences which behave asymptotically as an iterated logarithm.

Links

GA20-11846S, research and development project
Name: Diferenciální a diferenční rovnice reálných řádů: kvalitativní analýza a její aplikace
Investor: Czech Science Foundation
MUNI/A/1092/2021, interní kód MU
Name: Specifický výzkum v odborné a učitelské matematice 2022 (Acronym: SV matematika 2022)
Investor: Masaryk University