SIHELNÍK, Slavomír, Oliver BEIER, Ali JAMAATI KENARI, Jun XU, Thomas SEEMANN, Bjoern KRETZSCHMAR, Andreas PFUCH, Sebastian SPANGE, Richard KRUMPOLEC and Dušan KOVÁČIK. Comparison of different atmospheric-pressure plasma sources for controlled decomposition of organic thin-films. In NANOCON 2022: 14th International Conference on Nanomaterials – Research & Application. 2022. ISBN 978-80-88365-07-5.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Comparison of different atmospheric-pressure plasma sources for controlled decomposition of organic thin-films
Authors SIHELNÍK, Slavomír, Oliver BEIER, Ali JAMAATI KENARI, Jun XU, Thomas SEEMANN, Bjoern KRETZSCHMAR, Andreas PFUCH, Sebastian SPANGE, Richard KRUMPOLEC and Dušan KOVÁČIK.
Edition NANOCON 2022: 14th International Conference on Nanomaterials – Research & Application, 2022.
Other information
Original language English
Type of outcome Conference abstract
Field of Study 10305 Fluids and plasma physics
Country of publisher Czech Republic
Confidentiality degree is not subject to a state or trade secret
Organization unit Faculty of Science
ISBN 978-80-88365-07-5
Keywords in English plasma; etching; thin-films; stearic acid; glass
Changed by Changed by: Mgr. Marie Šípková, DiS., učo 437722. Changed: 6/12/2022 09:30.
Abstract
Nanostructured materials are attractive for applications in many industries that demand low-cost manufacturing. Thin-films based on organics are easy to process thanks to their solubility and flexibility, which is advantageous for implementation into mass production. Nowadays, thin organic-based films are successfully used in optical and electronic devices that are made via two basic approaches: bottom-up and top-down. The present study compares various nonthermal plasma sources as tools for removal of organic layers in the scope of top-down methods. Atmospheric-pressure plasma etching is proposed here as a dry, efficient and controllable method for decomposition of organic nanolayers with respect to their thickness without affecting the substrate material. The selection of applied plasma sources is based on different geometry, power input or working and surrounding gas, with respect to areal uniformity and thermal sensitivity of organic coatings. Stearic acid (SA) layers were evaporated on soda-lime glass substrates. Initial layer thickness of 70 nm was evaluated using confocal profilometry. Water contact angle measurements (WCA) of plasma-activated glass were carried out to optimize plasma parameters suitable for efficient decomposition. FTIR analysis was used for detection of SA layer decomposition after plasma exposure. XPS was carried out to reveal the chemical nature of parallel mechanisms involved in plasma-glass interaction. The impact of the tested plasmas on the morphology of soda-lime glass substrate was analysed using AFM.
Links
LM2018097, research and development projectName: Centrum výzkumu a vývoje plazmatu a nanotechnologických povrchových úprav (Acronym: CEPLANT)
Investor: Ministry of Education, Youth and Sports of the CR
PrintDisplayed: 14/7/2024 19:22