2022
Historical ferrous slag induces modern environmental problems in the Moravian Karst (Czech Republic)
FAIMON, Jiří; Vít BALDÍK; David BURIÁNEK; Jiří REZ; Jindřich ŠTELCL et. al.Základní údaje
Originální název
Historical ferrous slag induces modern environmental problems in the Moravian Karst (Czech Republic)
Autoři
FAIMON, Jiří (203 Česká republika, garant, domácí); Vít BALDÍK; David BURIÁNEK (203 Česká republika, domácí); Jiří REZ (203 Česká republika, domácí); Jindřich ŠTELCL (203 Česká republika, domácí); Dalibor VŠIANSKÝ (203 Česká republika, domácí); Jan SEDLÁČEK; Martin DOSTALÍK; Jiří NEČAS; Roman NOVOTNÝ; Roman HADACZ; Eva KRYŠTOFOVÁ; Jitka NOVOTNÁ; Pavel MÜLLER; Hana KRUMLOVÁ (203 Česká republika, domácí); Pavel ČÁP; Karolína FAKTOROVÁ; Jan MALÍK; Jakub ROHÁČ; Petr KYCL a Jana JANDERKOVÁ
Vydání
Science of The Total Environment, Elsevier, 2022, 0048-9697
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10505 Geology
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 9.800
Kód RIV
RIV/00216224:14310/22:00127420
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000911741700005
EID Scopus
2-s2.0-85135523781
Klíčová slova anglicky
Ferrous slag; Slag transport/weathering; Rudice Sink – Býčí skála Cave System; Experimental abrasion; Pollutant release; Environmental risk
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 24. 3. 2023 14:04, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
Ferrous slag produced by a historic smelter is washed from a slagheap and transported by a creek through a cave system. Slag filling cave spaces, abrasion of cave walls / calcite speleothems, and contamination of the aquatic environment with heavy metals and other toxic components are concerns. We characterize the slag in its deposition site, map its transport through the cave system, characterize the effect of slag transport, and evaluate the risks to both cave and aqueous environments. The study was based on chemical and phase analysis supported laboratory experiments and geochemical modeling. The slag in the slagheap was dominated by amorphous glass phase (66 to 99 wt%) with mean composition of 49.8 ± 2.8 wt% SiO2, 29.9 ± 1.6 wt% CaO, 13.4 ± 1.2 wt% Al2O3, 2.7 ± 0.3 wt% K2O, and 1.2 ± 0.1 wt% MgO. Minerals such as melilite, plagioclase, anorthite, and wollastonite / pseudowollastonite with lower amounts of quartz, cristobalite, and calcite were detected. Slag enriches the cave environment with Se, As, W, Y, U, Be, Cs, Sc, Cd, Hf, Ba, Th, Cr, Zr, Zn, and V. However, only Zr, V, Co, and As exceed the specified limits for soils (US EPA and EU limits). The dissolution lifetime of a 1 mm3 volume of slag was estimated to be 27,000 years, whereas the mean residence time of the slag in the cave is much shorter, defined by a flood frequency of ca. 47 years. Consequently, the extent of slag weathering and contamination of cave environment by slag weathering products is small under given conditions. However, slag enriched in U and Th can increase radon production as a result of alpha decay. The slag has an abrasive effect on surrounding rocks and disintegrated slag can contaminate calcite speleothems.