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A B S T R A C T   

Human exposure to organic contaminants is widespread. Many of these contaminants show adverse health effects 
on human population. Human biomonitoring (HBM) follows the levels and the distribution of biomarkers of 
exposure (BoE), but it is usually done in a targeted manner. Suspect and non-targeted screening (SS/NTS) tend to 
find BoE in an agnostic way, without preselection of compounds, and include finding evidence of exposure to 
predicted, unpredicted known and unknown chemicals. 

This study describes the application of high-resolution mass spectrometry (HRMS)-based SS/NTS workflow for 
revealing organic contaminants in urine of a cohort of 200 children from Slovenia, aged 6–9 years. The children 
originated from two regions, urban and rural, and the latter were sampled in two time periods, summer and 
winter. We tentatively identified 74 BoE at the confidence levels of 2 and 3. These BoE belong to several classes 
of pharmaceuticals, personal care products, plasticizers and plastic related products, volatile organic compounds, 
nicotine, caffeine and pesticides. The risk of three pesticides, atrazine, amitraz and diazinon is of particular 
concern since their use was limited in the EU. Among BoE we tentatively identified compounds that have not yet 
been monitored in HBM schemes and demonstrate limited exposure data, such as bisphenol G, polyethylene 
glycols and their ethers. Furthermore, 7 compounds with unknown use and sources of exposure were tentatively 
identified, either indicating the entry of new chemicals into the market, or their metabolites and transformation 
products. Interestingly, several BoE showed location and time dependency. 

Globally, this study presents high-throughput approach to SS/NTS for HBM. The results shed a light on the 
exposure of Slovenian children and raise questions on potential adverse health effects of such mixtures on this 
vulnerable population.   

1. Introduction 

Humans are continuously exposed to a variety of external factors. 
Either physical, psychological or chemical, all of these factors make up 
the exposome. Chemical exposome involves exposure to hundreds of 
different chemicals, which usually occur at low levels. They originate 
from variety of sources, as for the example the environment, diet and 
personal care products (PCPs). With various biological effects and con-
nected to genetic susceptibility, these chemicals are involved in etiology 
of many human diseases. As many as 80–85% of diseases have been 
reported to be linked to the exposure to environmental chemicals (Uppal 

et al., 2016). Children, with their biological systems and organs at 
various stages of development and less advanced elimination of con-
taminants are particularly sensitive to adverse effects caused by expo-
sure (Ferguson et al., 2017), so it is of great importance to 
comprehensively describe their chemical exposome and subsequent 
biological responses. 

To study the exposome, several approaches have been applied, such 
as stationary sensing, wearable devices and personal sensors (Niedz-
wiecki et al., 2019), however measuring external levels does not directly 
reflect the internal dose which actually affects biological endpoints. 
Hence, more answers have been offered by human biomonitoring (HBM) 
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that provides aggregated data of the exposures by targeting the chem-
icals of concern and their metabolites in biological matrices (Ganzleben 
et al., 2017). Conceptually, HBM can reflect temporal and spatial trends 
of exposure to environmental chemicals, and can serve as a measure of 
the efficiency of policy regulations (Pourchet et al., 2020). However, as a 
consequence of using traditional biomonitoring schemes and by 
following a limited number of only predetermined compounds, the 
chemicals that are not specifically targeted remain unidentified, with 
unknown levels, biological effects, and therefore uncharacterized risk. 
To define exposures holistically and to keep in time with rapidly 
emerging new chemicals in industrial and consumer products, 
non-targeted analysis (NTA) and suspect-screening (SS) approaches 
show promise to fill this gap. However, at present the analytical meth-
odologies for SS/NTA human biological samples are still severely vague 
and represent a challenge for further development, optimization and 
validation (Pourchet et al., 2020). 

Liquid chromatography (LC) hyphenated to high-resolution mass 
spectrometry (HRMS) is frequently used in non-targeted metabolomics 
(Schrimpe-Rutledge et al., 2016), however its employment in the 
exposomics involves several specificities. For example, a large number 
of endogenous metabolites are present in biological specimens in high 
quantities, while xenobiotics, being the focus of exposomics, are nor-
mally present at very low levels in the range of μg/L and lower. They 
often coelute and chromatographically overlap with endogenous me-
tabolites, hindering their detectability. Furthermore, in many cases and 
particularly in urine biomarkers of exposure (BoE) are not parent com-
pounds but their phase I and/or II metabolites, which may have not yet 
been identified and linked to their parent compounds. This increases the 
chemical diversity and complexity of compound identification, which is 
the bottleneck of NTA workflow. Given that BoE are present at very low 
levels, their tandem MS (MS2) spectra are difficult to obtain at sufficient 
quality. The MS2 spectra are used to identify the compounds by manual 
interpretation, by matching with spectral libraries, or by using in-silico 
fragmentation tools (Getzinger and Ferguson, 2020). The use of chem-
informatics in structural annotation of exposome-related compounds is 
in detail elaborated in the recent review by Ljoncheva et al. (2020), 
whereas mass spectral libraries were addressed by Vinaixa et al. (2016). 

The main objective of the study was to demonstrate a simple and 
high-throughput workflow for NTA and SS of HBM samples, and to 
provide a proof-of-concept for analysis of children’s chemical exposome. 
In this context, we aimed to characterize the exposure of Slovenian 
children from urban and rural regions, the latter in two seasons, in order 
to distinguish between possible temporary and spatial trends. 

2. Materials and methods 

2.1. Study design and population 

The study involved children aged from 6 to 9 years from urban and 
rural regions of Slovenia. We recruited 200 participants, of which 100 
participants resided in the capital city of Slovenia and represented the 
urban part of the population. The remaining 100 participants resided in 
a region in the Eastern Slovenia, which is predominantly rural and 
characterized by intense agricultural activity. Due to the seasonal vari-
ations in agricultural practice, rural participants provided two samples, 
one in winter and the second at the beginning of summer, reflecting time 
periods with low and high intensity of nearby agricultural activity. 
Altogether, we obtained 300 samples of first morning urine. 

Urban participants were recruited within CROME-LIFE + project 
(‘Cross-Mediterranean Environment and Health Network’, 2013–2017) 
(Stajnko et al., 2019), while rural participants within the national CRP 
project ‘Exposure of children and adolescents to selected chemicals 
through their habitat environment (2016–2019)’ (Stajnko et al., 2020). 
The eligibility criteria for the participants were to have resided in the 
selected region for at least 3 years and to not receive medication for any 
chronic liver or kidney disease. The population consisted of 50% female 

and 50% male participants, which was consistent also within location 
and sampling-time subgroups. 

Parents or legal guardians provided the informed written consent 
and were able to withdraw from the study at any time. Ethical permis-
sions were granted by Republic of Slovenia National Medical Ethics 
Committee (65/09/14 and 0120–118/2017/3). 

2.2. Sample collection 

Participants provided their first morning urine in the collection 
vessels, distributed by the organizer institution (Jožef Stefan Institute, 
Ljubljana, Slovenia). Samples were immediately aliquoted at the labo-
ratory of the Clinical Chemistry and Biochemistry Institute of the Uni-
versity Medical Centre Ljubljana into 2 mL criovials, frozen on site with 
solid ice, and transported to Jožef Stefan Institute, where they were 
stored at − 80 ◦C until the analysis. 

2.3. Sample preparation 

The sample preparation procedure was based on our in-house 
developed method (Tkalec et al., 2022). Briefly, 1 mL of urine was 
spiked with the internal standard (13C3-caffeine and ethyl paraben-13C6) 
at 3 ng/mL and deconjugated with 250 U/mL of β-glucuronidase 
(Abalone, purified) for 18 h at 37 ◦C. The samples were then extracted 
on Oasis HLB 60 mg 96-well plates, which were preconditioned with 1 
mL of acetonitrile (ACN), methanol (MeOH) and water, respectively. 
After loading, the sorbent was washed with 1 mL of 5 vol/vol % MeOH in 
water and eluted with 1.5 mL 10 vol/vol % MeOH in ACN. The eluates 
were dried under a gentle stream of nitrogen and kept frozen, before 
being reconstituted in 50 μL of MeOH prior to the analysis. 

2.4. UHPLC-HRMS2 

Compounds were separated based on previously published method 
(Tkalec et al., 2022). In short, the separation was performed on the 
Shimadzu LC-30AD UHPLC using Waters Acquity HSS-T3 (2.1 × 100 
mm, 1.8 μm) reversed phase column with water (A) and ACN (B) as 
mobile phases. Elution gradient was: 5–15% B (0.01–1 min), 15–25% B 
(1–5 min), 25–40% B (5–8 min), 40–60% B (8–18 min), 60–75% B 
(18–22 min), 75–85% B (22–24 min), 85–100% B (24–28 min), 100-5% 
B (28–30 min), 5% B, 30–35 min. Flow rate was 0.3 mL/min, column 
was heated to 35 ◦C. The injection volume was 1 μL. 

The UHPLC was coupled to Orbitrap Fusion™ Tribrid™ Mass Spec-
trometer (Thermo Fisher Scientific Inc., Waltham, MA). Heated elec-
trospray ionization (HESI) was used as the ionization source, at the spray 
voltage of +4500 V or − 3500 V, sheath gas flow 40 L/min, nebulizer 
auxilliary gas 15 L/min, and sweep gas 2 L/min. The ion transfer 
capillary was heated to 350 ◦C. The full-scan mass acquisition covered 
the mass range of 100–900 m/z and was performed at the resolution of 
120 000 FWHM (full width at half maximum at m/z 200) while MS2 data 
was acquired with the resolution of 60 000 FWHM at the collision en-
ergy of 20 eV. The automatic gain control (AGC) was 5 × 105 ions and 
maximum injection time 50 ms. Cycle time was 0.8 s. 

2.4.1. Inclusion list for suspect screening 
To enable efficient suspect screening, a suspect inclusion list was 

used during data acquisition. Suspect list included 801 entries of 
calculated m/z values for molecular ions of xenobiotic compounds 
compiled from Exposome Explorer (Neveu et al., 2017), T3DB (Wishart 
et al., 2015) and HBM4EU priority substances and pesticides and their 
1st phase metabolites considered in the Harmonized SPECIMEN study 
(https://www.hbm4eu.eu/). The inclusion list contained entries of 
various classes of contaminants, including pesticides, plasticizers, 
plastic-related chemicals, PCPs and persistent organic pollutants. Each 
matching ion within the mass error of ±5 ppm was fragmented and its 
MS2 was recorded in the ion trap (IT) segment of Orbitrap Fusion™ 
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Tribrid™ Mass Spectrometer. Hence, the MS2 of the matching ions from 
our suspect list were recorded at the unit resolution. Such procedure 
enabled simultaneous SS/NTA screening. 

2.5. Quality control (QC) procedures 

QC was maintained at several levels, i.e. by QC samples, procedural 
blanks, solvent blanks and by the predetermined acquisition order. 

QC samples were prepared by pooling 200 μL of samples, and spiking 
the pool with the isotopically labelled internal standards at 3 ng/mL and 
with a mixture of non-labelled standards to the final concentration of 20 
ng/mL. The list of the standards used for QC is presented in Table SI-1. 
Caffeine-13C3 was used as an internal standard for following positive 
mode acquisition, while ethyl paraben-13C6 was used for the negative 
ionization mode. After spiking, the QC samples were processed 
following the same way as the investigated samples (see 2.3 Sample 
preparation). 

The standards were monitored in real-time during data acquisition to 
ensure the control over the performance of the analytical system. After 
data acquisition, mass errors, RT drifts and trends in areas of native 
standards were checked to assess the quality of data acquisition. Batch 
acquisition was considered satisfactory when RT of the spiked standards 
were within ±0.4 min, and parent ion mass accuracy within ±5 ppm. 
Areas of the standards were plotted and screened for any increasing or 
decreasing trends. Figure SI-5 presents areas of native standards across 
QC samples, while SI-QC_parameters.xlsx tabulates areas, mass accu-
racies and retention time drifts for each monitored standard. Internal 
standards were checked after acquisition in the final aligned feature list 
and any sample without corresponding feature with RT drifts and mass 
error within specified limits of 0.4 min and 5 ppm, respectively, was 
rejected. Areas of internal standards for each sample are plotted in 
Figure SI-6. Accompanying plotting of standards in QCs, IS area plot 
served as an additional measure of quality for data acquisition. 

Procedural blanks were prepared by storing frozen LC-MS water for 
three months in the same criovials as those used for storing the actual 
samples. They were subsequently spiked with isotopically labelled in-
ternal standards at the same concentration as the actual urine samples, 
and processed according to the standard sample preparation procedure 
(see 2.3 Sample preparation) to eliminate analytical artifacts. The pro-
cedural blanks were prepared in triplicate. 

2.5.1. Acquisition order 
At the beginning of the sequence, four solvent blanks and five QC 

sample replicates were injected to check the starting system’s perfor-
mance and the integrity of the QC samples. Afterwards, procedural 
blanks were injected. Randomly ordered samples were analysed in 
batches. At the beginning of each batch, a solvent blank and a QC sample 
were injected. QC samples and solvent blanks were injected per every 15 
investigated samples. Each QC sample replicate was injected no more 
than ten times and the order of the injected QC replicates was alter-
nating to avoid non-random trends. 

Solvent blanks were used to control sample carryover and were 
injected after every 15th sample. 

2.6. Data processing 

Raw data was first transformed from raw format to mzXML using 
MSConvert and analysed using MzMine 2.53 (Pluskal et al., 2010). The 
processing parameters were optimized to allow for the detection of the 
spiked non-labelled standards and are presented in SI-1. Processing 
thresholds to detect BoE were rather low, resulting in computationally 
demanding amounts of data. Samples that lacked the signal of the in-
ternal standard caffeine-13C3 (9% of samples) were excluded from 
further processing. Any features present in the procedural blanks were 
removed from dataset. Only features with acquired MS2 data were 
filtered out and further subjected to compound annotation. 

2.7. Compound identification 

2.7.1. Non-targeted 
Identification procedure is presented in Fig. 1. After processing we 

submitted all acquired MS2 spectra in one joined.mgf file to Sirius-CSI: 
Finger-ID (Dührkop et al., 2015, 2013). Once candidates were gener-
ated, we selected only the candidates with 100% elemental formula 
match within the mass error of 6 ppm, and highest library matches 
(KEGG, ChEBI or PubChem) with the minimum matching score of 60%. 

The prioritized list of candidates, which passed the above defined 
criteria was exported as.csv file and subsequently manually filtered to 
retain only features matching potential BoE. This was done based on 
reviewing origin and use of candidates by compound databases T3DB 
(Wishart et al., 2015), Exposome Explorer (Neveu et al., 2020) and 
Chemistry Dashboard (Williams et al., 2017). MS2 of each filtered match 
was then examined by manually explaining MS2. For at least 3 most 
abundant fragment ions chemically logical structures were generated at 
the maximum mass error of 7 ppm. If MS2 was successfully explained, 
the candidate identity was tentatively assigned. The NT identification 
data along with molecular formulae of proposed fragments is presented 
in the document SI-NT_spectral_data.xlsx. The MS2 spectra of the 
tentatively annotated compounds are presented in SI-4. 

The same process was repeated with MoNA (Mass Bank of North 
America), mass repository with experimental MS2 data (https://mona.fi 
ehnlab.ucdavis.edu/). The criteria for successful identification were the 
mass error of ≤5 ppm for parent ion and 7 ppm for fragments and cosine 
similarity score ≥0.8, with at least 5 fragment ions matching. In case 
when less than 5 fragment ions were available, then all of them had to 
match. Matching of spectra with less than 3 fragments in MS2 was 
regarded insignificant. 

All putatively identified BoE were then submitted to Feature Based 
Molecular Networking (FBMN) (Wang et al., 2017), clustering features 
with similar fragmentation patterns together. Clustering features were 
then identified by manual interpretation of their MS2 spectra, i.e. by 
comparing MS2 spectra of an unknown feature with structurally 
assigned MS2 spectrum of previously identified compound. 

2.7.2. Suspect screening 
The SS data included parent ion masses from the inclusion list 

(Section 2.4) determined at HR and the corresponding MS2 data at unit 
resolution. This was a consequence of instrumental setup which enabled 
simultaneous execution of NTA and SS; while NT MS2 data was acquired 
by data dependant acquisition (DDA) in Orbitrap analyser, and was 
therefore HR, the MS2 of ions corresponding to masses in suspect list 
were fragmented and acquired in linear ion trap and were LR. The 
reference MS2 spectra were collected from MoNa, but since they were 
scarce, we complemented them by generating an in-silico MS2 spectral 
library using CFM-ID (Allen et al., 2014). Compared to matching with 
MS2 library in NTA the identification parameters were adjusted for SS: 
mass error of molecular error was required to be ≤ 6 ppm, cosine sim-
ilarity score was required to be ≥ 0.8, with at least 5 fragments 
matching. If any of MS2 spectra consisted of less than 5 fragments, then 
matching of all fragments was required. Matching of spectra which 
consisted of less than 3 fragments in MS2 was regarded as insignificant. 

2.8. Regional and temporal differences 

OPLS-DA model was constructed based on putatively identified BoE 
to check for differences between 1) exposure of children in rural and 
urban regions and 2) difference between winter and summer sampling of 
rural population. For statistical analyses urine dilution was corrected 
using specific gravity adjustment (Suwazono et al., 2005), while com-
pound loss during sample preparation and data acquisition was cor-
rected by normalizing the data to area of labelled internal standard 
caffeine-13C3. Models were constructed using Simca 15.0.2 (Sartorius 
Stedim Data Analytics) on natural logarithm transformed and Pareto 
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scaled data (Figure SI-1 and Figure SI-2). Missing values were replaced 
by lowest non-zero value divided by two for each BoE. Number of 
components was determined using 7-fold cross-validation. Overfitting 
was checked with permutation test (N = 100, results are plotted in 
Figure SI-3 and Figure SI-4). Discriminatory features were determined 
using S-plot and Variable Importance for the Projection (VIP) score. 
Discriminatory features were checked using univariate non-parametric 
Mann-Whitney U test. 

3. Results and discussion 

3.1. Quality control 

According to the described procedure, whose development and 
optimization are in detail discussed elsewhere (Tkalec et al., 2022) we 
aimed to characterize the exposures using UHPLC-HRMS in NT and SS 
mode. LC-MS data was acquired in both positive and negative mode. 
However, in the negative mode we did not observe labelled standard 
ethyl paraben-13C6, intended for monitoring quality of data acquisition 
in negative mode. This was attributed to inappropriately set data 
acquisition threshold. As the result, we rejected all the data acquired in 
the negative mode and hence continued only with the data acquired in 
the positive mode. 

To ensure data quality, QC measures were held on several levels. 
Areas, mass accuracies and retention time drifts of nine native standards 
were checked after data acquisition (see Figure SI-5 and SI- 
QC_parameters.xlsx). No trends were observable in the areas of the 
native standards, except fluctuating trend which is the consequence of 
alternating order of injection of different QC samples. Due to the absence 
of a signal for phoxim, this compound was excluded from monitoring. 
Mass accuracies did not exceed 5 ppm, in fact for the majority of stan-
dards, the average mass error did not exceed 3 ppm, showing high mass 
accuracy of the acquired data. Retention times remained relatively 
constant throughout the run, with maximum retention time drift of 5% 
for the standard omethoate. Non-random trends in acquisition were 
monitored by observing areas of internal standard in each sample as 
presented in Figure SI-6, which shows no non-random trends. 

To avoid erroneous conclusions about the exposure, we excluded any 
feature present in the solvent or procedural blanks from further 
consideration. Despite that certain analytical artifacts, for example 
phthalates, are potentially also the BoE, we avoided identifying parent 
compounds with possibly inconclusive sources. 

No sample to sample carryover was observed from analysing solvent 
blanks which were injected following each QC within a batch. 

3.2. Detection and identification of BoE in urine 

Resulting data was processed using MzMine2.53 (Pluskal et al., 

2010). Processing parameters were set to allow for detection of low 
abundance features, therefore very low thresholds for mass detection 
and subsequent steps were required. The criterion for the retention time 
(RT) drift was set according to the RT of standards spiked into QC 
samples (Tkalec et al., 2022). The maximum RT drift was for native 
standard omethoate, ± 0.31, min so accordingly maximum RT limit was 
set at ± 0.4 min. A too narrow RT limit could cause doubling of features, 
while a too high one can result in merging of non-identical features. Both 
events can negatively impact the identification ability, so this parameter 
should be set carefully. Still, we need to consider that the chromato-
graphic separation, which is determined by the column stationary phase, 
mobile phases, elution gradient, etc., is rather a compromise than a 
universally ideal solution for any compound. This may in turn result in 
wider peaks and larger retention time drifts for some features and 
accordingly a compound might appear in final data matrix as two or 
more features and the resulting detection frequencies of BoE offer only a 
mere approximation. 

Along with the stability of RT, the stability of instrument’s mass 
accuracy was precisely followed (Tkalec et al., 2022), through moni-
toring of the drifts of standards’ mass accuracies in the QC samples. The 
maximum mass error was determined for the protonated molecule of the 
standard ketoprofen at +3.53 ppm, demonstrating that errors were 
generally low. Nevertheless, to be on the safe side, we set the permitted 
mass error for the MS1 level at 5 ppm. 

As we filtered out only the features with corresponding MS2 data, the 
final data matrix contained 34 015 features. This number is reasonably 
high, and arises from low thresholds of data acquisition and processing 
parameters thus maximizing the probability of low-level BoE detection. 
From this data matrix we tentatively identified 74 BoE in total, out of 
which 36 were found using NT analysis (Table 1) and 38 using SS 
(Table 2). As a result of identification workflow through mass spectral 
library matching or in-silico identification connected to the structural 
assignation of their MS2 spectra, BoE identified with NTA were at the 
Schymanski confidence level of 2 (Schymanski et al., 2014). Out of 
these, 16 were identified using Sirius-CSI:FingerID, 10 through mass 
spectral database MoNA, and another 10 by FBMN. The latter revealed 
the identification of two compound clusters, the penicillins and the 
polyethylene glycol cluster. Here, the primary BoE were phenoxymethyl 
penicillin (MH+ 351.1004) and decaethylene glycol (MH+ 459.2800), 
which were identified using Sirius-CSI:FingerID, and served as the basis 
for identification of other congeners within molecular networks. 
Assigned MS2 spectra with identification data and corresponding iden-
tification scores are presented in SI-NT_spectral_data.xslx. 

The NT identification protocol considered only the highest scoring 
matches. Where the best match could not be confirmed based on the 
above stated criteria (see 2.7.1 Non-target screening), the candidate was 
rejected, with the next highest-scoring candidate not being considered 
anymore. This is a drawback of the presented workflow since it increases 

Fig. 1. Identification workflow for NTS.  
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the loss of potential matches and the number of false negatives, however 
it enabled a more efficient and less time-consuming screening. We 
believe that many more BoE could be detected by considering, for 
example, top three or top five best-scoring candidate matches, which 
remains to be the future potential for identification of BoE from given 
data matrix. 

By using SS approach 11 BoE were identified through in-silico 
generated library employing CFM-ID (Allen et al., 2014) and one com-
pound by comparison with the library spectrum from MoNA. The 
remaining 26 compounds were identified by manual interpretation of 
MS2 of potential suspect list candidates’ MS2 spectra. IUPAC names 
with SMILES, InCHI, InCHI-Keys, matching scores, where applicable and 
characteristic ions are presented in SI-SS_data.xlsx. Based on the iden-
tification pathway the BoEs obtained via SS approach were identified at 

Schymanski confidence level of 3 (Schymanski et al., 2014). A 
comprehensive SS list with 801 entries covering potential BoE such as 
pesticides, industrial chemicals, personal care product ingredients, and 
their 1st phase metabolites generated a large number of hits. These hits 
were subsequently individually checked, which was timewise another 
bottleneck in data processing. Other SS studies employed even more 
extensive SS lists, for example with 1158 (Caballero-Casero et al., 2021) 
and 1450 (Chen et al., 2021) entries. To reduce the identification time 
and workload required for SS, a compromise between the number of 
entries and subsequently large number of hits and time-efficacy could be 
made via by prioritizing BoE according to probability of exposure. For 
example, one could include a larger number of pesticide-related entries 
in a study of rural population, while reducing the number of 
traffic-related ones, and the opposite in case of an urban population 

Table 1 
BoE identified using NT analysis. Presented are their elemental formulas, mass errors, RT, detection frequencies and classification.  

Identity Metabolite of Biomarker 
group 

Elemental 
formula 

Theoretical 
mass [M+H]+

Experimental 
mass [M+H]+

Mass 
error 
(ppm) 

RT 
(min) 

Detection 
frequency 
(%) 

ID 
level 

3-Hydroxycotinine Nicotine (Raja, 
2016) 

Biomarker of 
smoking 

C10H12N2O2 193.0977 193.0972 2.589 2.36 24 2 

Nonaethylene glycol / PCP C18H38O10 415.2538 415.2529 2.167 4.7 13 2 
Undecaethylene glycol / PCP C22H46O12 503.3062 503.3091 − 5.762 4.71 86 2 
Decaethylene glycol / PCP C20H42O11 459.28 459.2821 − 4.572 5.21 20 2 
Dodecaethylene glycol / PCP C24HO1 547.3324 547.3307 3.106 5.56 68 2 
Tetradecaethylene glycol / PCP C28H58O15

c 652.4152 652.4136 2.452 5.69 53 2 
Pentaethylene glycol decyl 

ether 
/ PCP C20H42O6 379.3054 379.3062 − 2.109 20.15 24 2 

Tetraethylene glycol decyl 
ether 

/ PCP C18H38O5 335.2792 335.2794 − 0.597 20.44 10 2 

DEET / PCP, repellent C12H17N 192.1383 192.1383 0.000 11.11 1 2 
Icaridin / PCP, repellent C12H23NO3 230.1751 230.1756 − 2.172 13.06 2 2 
4-Hydroxybenzophenone / PCP, UV-filter C13H10O2 199.076 199.0758 1.005 10.61 33 2 
Octabenzone / PCP, UV-filter C21H26O3 327.1955 327.1952 0.917 27.91 1 2 
N-(2,6-dimethylphenyl)-2- 

hydroxyacetamide 
Metalaxyl M (EPA, 
1988) 

Pesticide, 
Fungicide 

C10H13NO2 180.1019 180.1024 − 2.776 2.94 31 2 

N-(2,4-dimethylphenyl) 
formamide 

Amitraz (Lazarus 
et al., 2021) 

Pesticide, 
Fungicide 

C9H11NO 150.0913 150.0918 − 3.331 5.68 55 2 

Naphthoxyacetic acid / PGR C12H10O3 203.0703 203.0707 − 1.97 5.81 14 2 
Trinexapac / PGR C11H12O5 225.0757 225.0763 − 2.666 6.32 16 2 
Phenoxymethyl penicillin/ 

Penicillin V 
/ Pharmaceutical C16H18N2O5S 351.1009 351.1004 1.424 6.18 1 2 

Phenoxymethyl penicilloyl Penicillin V 
(CHEBI:53 703)a 

Pharmaceutical C16H20N2O6S 369.1115 369.1116 − 0.271 4.62 10 2 

N-methylphenoxymethyl 
penicilloyl 

Penicillin Vb Pharmaceutical C17H22N2O6S 383.1271 383.1282 − 2.871 5.14 2 2 

Amoxycilloyl Amoxycillin 
(CHEBI:53 705)a 

Pharmaceutical C17H23N3O5S 382.1431 382.1434 − 0.785 5.83 11 2 

Levetiracetam / Pharmaceutical C8H14N2O 171.1128 171.1133 − 2.922 2.79 7 2 
N-acetylphenoxymethyl 

penicilloyl 
Penicillin Vb Pharmaceutical C18H22N2O7S 411.122 411.1234 − 3.405 4.49 11 2 

Carbamazepine epoxide Carbamazepine ( 
Potter and Donnelly, 
1998) 

Pharmaceutical C15H12N2O2 253.0972 253.0974 − 0.790 5.13 10 2 

Aminophenol Paracetamol ( 
Athersuch et al., 
2018) 

Pharmaceutical C6H7NO 110.06 110.0604 − 3.634 5.95 29 2 

Lauramide DEA / Surfactant C16H33NO3 288.2533 288.2536 − 1.041 18.82 11 2 
Octylphenol / Surfactant 

byproduct 
C14H22O 207.1743 207.1744 − 0.483 19.7 2 2 

Propenylaniline / Unknown use C9H11N 134.0964 134.0968 − 2.983 5.5 83 2 
6-Phenylpicoline / Unknown use C12H11N 170.0964 170.0968 − 2.352 5.7 6 2 
Cycloheptylamine / Unknown use C7H15N 114.1277 114.1281 − 3.505 8.28 5 2 
Chloroisoquinoline / Unknown use C9H6NCl 164.0262 164.0266 − 2.439 8.56 2 2 
Dicyclohexyl urea / Unknown use C13H24N2O 225.1961 225.1965 − 1.776 12.26 1 2 
Isoquinoline / Unknown use C9H7N 130.0651 130.0654 − 2.307 4.74 90 2 
Methylacridine / Unknown use C14H11N 194.0964 194.0968 − 2.061 9.81 1 2 
Naphthylamine / VOC C10H90N 144.0808 144.0812 − 2.776 5.93 15 2 
Cresol / VOC C7H8O 109.0648 109.0652 − 3.668 4.31 41 2 
Benzaldehyde / VOC C7H6O 107.0498 107.0496 1.868 4.43 65 2  

a CHEBI database entry (https://www.ebi.ac.uk/chebi/init.do, accessed June 2021), numerical value specifies CHEBI entry. 
b Proposed identity based on mass spectrum, not available in mass spectral libraries. 
c Only NH4

+ adduct was found. 
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Table 2 
Compounds identified using SS approach. Presented are their elemental formulas, mass errors, RT, detection frequencies and mode of identification.  

Identity Metabolite of Group Elemental 
formula 

Theoretical 
mass [M+H]+

Experimental 
mass [M+H]+

Mass 
error 
(ppm) 

Compound_RT Detection 
frequency 
(%) 

ID 
level 

Cotinine Nicotine (Raja, 
2016) 

Biomarker of 
smoking 

C10H12N2O 177.1028 177.1028 − 0.068 2.83 22 3 

Caffeine / Biomarker of 
soda, tea 

C8H10N4O2 195.0882 195.0882 0.005 2.36 98 3 

Celestolide / PCP, 
fragrance 

C17H24O 245.1905 245.1902 1.387 8.55 6 3 

1-Methyl-alpha-ionone / PCP, 
fragrance 

C14H22O 207.1749 207.1744 2.365 19.7 2 3 

Ethylparaben / PCP, 
preservative 

C9H10O3 167.0708 167.0706 1.311 6.05 17 3 

Butylparaben / PCP, 
preservative 

C11H14O3 195.1021 195.102 0.61 6.08 6 3 

Dioxybenzone / PCP, UV- 
filter 

C14H12O4 245.0814 245.0811 1.159 7.53 4 3 

Terbuthylazine / Pesticide, 
Algicide 

C9H16ClN5 230.1172 230.1173 − 0.226 8.2 3 3 

Pyrimethanil / Pesticide, 
Fungicide 

C12H13N3 200.1188 200.1186 0.859 6.37 4 3 

Tebuconazole / Pesticide, 
Fungicide 

C16H22ClN3O 308.153 308.1535 − 1.736 6.37 14 3 

4-[(4,6- 
dimethylpyrimidin-2-yl) 
amino]phenol 

Pyrimethanil ( 
Faniband et al., 
2019) 

Pesticide, 
Fungicide 

C12H13N3O 216.1137 216.114 − 1.448 8.27 11 3 

4-Hydroxychlorpropham Chlorpropham ( 
Carrera et al., 
1998) 

Pesticide, 
Herbicide 

C10H12ClNO3 230.0584 230.0571 5.633 2.34 18 3 

Metholachlor / Pesticide, 
Herbicide 

C15H22ClNO2 284.1417 284.1401 5.744 4.93 10 3 

Desisopropyl atrazine Atrazine (Joo 
et al., 2010) 

Pesticide, 
Herbicide 

C5H8ClN5 174.0546 174.0554 − 4.32 4.29 55 3 

Desethyl atrazine Atrazine (Joo 
et al., 2010) 

Pesticide, 
Herbicide 

C6H10ClN5 188.0703 188.0709 − 3.201 8.98 2 3 

2-Isopropyl-6-methyl- 
pyrimidin-4-ol 

Diazinon (Shemer 
and Linden, 2006) 

Pesticide, 
Insecticide 

C8H12N2O 153.1028 153.1025 2.123 6.22 8 3 

Prohexadione / PGR C10H12O5 213.0763 213.0765 − 0.948 2.46 33 3 
Bisphenol G / Plasticizer, 

bisphenol 
C11H12O5 313.2168 313.2169 − 0.463 5.91 9 3 

Bisphenol F / Plasticizer, 
bisphenol 

C21H28O2 201.0916 201.0911 2.263 7.77 6 3 

Bisphenol A / Plasticizer, 
bisphenol 

C13H12O2 229.1229 229.1231 − 1.069 8.23 2 3 

Monobenzyl phthalate BBP (Huang et al., 
2021) 

Plasticizer, 
phthalate 

C15H16O2 257.0814 257.0812 0.716 8.34 48 3 

Monobutyl phthalate DBP (Huang et al., 
2021) 

Plasticizer, 
phthalate 

C15H12O4 223.0965 223.0949 7.172 5.06 4 3 

Monohydroxybutyl 
phthalate 

DBP, BBP (Huang 
et al., 2021) 

Plasticizer, 
phthalate 

C12H14O4 239.0919 239.092 − 0.314 6.63 11 3 

Monocyclohexyl phthalate DCHP (Huang 
et al., 2021) 

Plasticizer, 
phthalate 

C12H14O5 249.1127 249.1126 0.337 6.72 15 3 

Mono-2-ethyl-5- 
hydroxyhexyl phthalate 

DEHP (Huang 
et al., 2021) 

Plasticizer, 
phthalate 

C14H16O4 295.1545 295.1551 − 1.867 7.97 35 3 

Mono-2-ethyl-5-oxohexyl 
phthalate 

DEHP (Huang 
et al., 2021) 

Plasticizer, 
phthalate 

C16H22O5 293.1389 293.1393 − 1.368 8.44 24 3 

Monoethylhexyl phthalate DEHP (Huang 
et al., 2021) 

Plasticizer, 
phthalate 

C16H20O5 279.1591 279.1581 3.582 9.67 14 3 

Monoethyl phthalate DEP (Huang et al., 
2021) 

Plasticizer, 
phthalate 

C16H22O4 195.0657 195.0658 − 0.338 7.76 5 3 

Monooxoisodecyl 
phthalate 

DIDP (Huang 
et al., 2021) 

Plasticizer, 
phthalate 

C10H10O4 321.1702 321.1701 0.308 6.34 6 3 

Monocarboxyisodecyl 
phthalate 

DIDP (Huang 
et al., 2021) 

Plasticizer, 
phthalate 

C18H24O5 337.1651 337.1638 3.896 6.5 13 3 

Monohydroxyisodecyl 
phthalate 

DIDP (Huang 
et al., 2021) 

Plasticizer, 
phthalate 

C18H25O6 323.1858 323.1858 0.151 8.12 6 3 

Monoisononyl phthalate DINP (Huang 
et al., 2021) 

Plasticizer, 
phthalate 

C18H26O5 293.1753 293.1756 − 1.078 7.17 6 3 

Monohydroxyisononyl 
phthalate 

DINP (Huang 
et al., 2021) 

Plasticizer, 
phthalate 

C17H24O4 309.1702 309.1699 0.967 7.98 7 3 

Monooxoisononyl 
phthalate 

DINP (Huang 
et al., 2021) 

Plasticizer, 
phthalate 

C17H24O5 307.1545 307.1541 1.461 8.06 8 3 

Monocarboxyisooctyl 
phthalate 

DIOP, DINP ( 
Huang et al., 
2021) 

Plasticizer, 
phthalate 

C17H22O6 323.1494 323.1501 − 2.089 7.21 11 3 

(continued on next page) 
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monitoring. This would reduce the number of hits, however it might 
lead to a significant bias possibly arising from multiple sources of certain 
compounds, transit and relocation of people and dietary differences. 

The use of a tribrid instrument, which combines quadrupole, ion trap 
and Orbitrap mass analysers, enabled us to perform SS and NT screening 
simultaneously. Hence, for each scan, the detected m/z matching that of 
any exact mass of protonated BoE in the suspect list (within the pre-
defined mass error of 5 ppm) was automatically fragmented in linear ion 
trap, while the Orbitrap analyser was simultaneously operated in DDA 
mode, fragmenting 10 most abundant ions. Therefore, MS2 spectra of 
compounds matching m/z values of those in the inclusion list are 
recorded at low resolution, whilst MS2 of other features are recorded at 
HR. 

This process ensured the acquisition of MS2 for very low abundance 
BoEs from the suspect list, that would otherwise not be fragmented in a 
typical DDA mode. However, the main drawback of such acquisition is 
that the MS2 spectra of suspect hits are acquired at low-resolution. 
Likewise, since any hit from the SS is automatically excluded from the 
Orbitrap fragmentation and since the identification protocols use 
different thresholds and approaches there can be no overlap between the 
SS and NTS results. 

Low-abundance compounds are hard to detect in complex matrices 
such as urine and even harder to identify due to sometimes insufficient 
quality of acquired MS2 spectra. Enzymatic hydrolysis enabled the 
cleavage of conjugate bonds, thus forming parent BoE or their 1st stage 
metabolites, which greatly benefitted their identification. First of all, 
deconjugation increases the concentration of BoE or its 1st stage 
metabolite, since different glucuronide or sulphate metabolites are 
transformed back into a single species, and with that the chance of 
acquiring high quality MS2 is increased. Furthermore, MS data on 
conjugated species are very scarcely included in databases and MS li-
braries resulting in the failure of identification. Third, conjugated spe-
cies are inherently more prone to ESI negative ionization. On the 
contrary, parent BoE or their 1st stage metabolites, when ionised under 
electrospray positive conditions, yield more abundant and richer MS2 
spectra, providing more structural information to enable successful 
identification. Furthermore, conjugated species and with that their MS2 
spectra have increased molecular complexity, which in turn detrimen-
tally affects identification through in-silico approaches or manual 
assignment of MS2 spectra. On the other hand, deconjugation step as a 
part of sample preparation leads to missing information on conjugated 
metabolites, which are crucially important in the toxicological research. 
Hence, ideally deconjugated and non-deconjugated samples should be 
analysed in parallel, yet this would significantly prolong the analysis 
time. Another concern is also that enzymatic deconjugation by glucu-
ronidase/arylsulfatase may via non-specific activity produce new 
chemical species (Blount et al., 2000). 

Sample preparation protocol involved solid-phase extraction and 
although broad polarity-range sorbent was used it is highly likely that 
very polar compounds have not been extracted. While this led to less 
chromatographic overlapping at low retention times, a chromatographic 
region which is inherently rich due to polar nature of urine, the draw-
back was the loss of information on very polar BoEs thus focusing me-
dium to low polarity compounds. 

In the applied identification approach, each feature was submitted 
for identification and only hits at the high degree of matching were 

retained. The high probability hits were screened for potential BoE. Due 
to that, this approach may have missed a large number of trace-level 
BoE, which were detected a low quality MS2. Thus the data matrix 
still holds a large amount of un-retrieved information and potentially 
much higher number of BoE. Furthermore, the identification procedure 
produced large amount of other tentatively identified compounds, as for 
example regarding dietary chemicals and their metabolites which were 
out of scope of this paper. 

NTS/SS in this study were used as an initial screening operable 
within HBM to derive first overview of the populations’ exposure. The 
compounds were therefore identified at confidence levels 2 and 3, and 
should be in future confirmed by reference standards. 

3.3. Implications for the exposure of children 

Compounds found by NT and SS are identified tentatively, acting as a 
basis for subsequent targeted studies to confirm the exposure and 
accurately quantify the exposure and explore exposure pattern in detail. 
However, within the scope of certainty of NT and SS, certain conclusions 
on the exposure can be implied. 

Tentatively identified BoE indicate that children are exposed to a 
wide set of organic contaminants that belong to several compound 
classes (Fig. 2). 

BoE to 11 pesticides were identified. We found the evidence of 
exposure to fungicides pyrimethanil, metalaxyl and tebuconazole, algi-
cide terbuthylazine, herbicides metholachlor and chlorpropham. The 
latter was previously detected by similar SS approach in urine of preg-
nant women (Bonvallot et al., 2021). Further, we found BoE to several 
plant growth regulators (PGR), prohexadione, naphthyloxyacetic acid 
and trinexapac-ethyl. All of the above are EU approved products, how-
ever we identified BoE to three restricted pesticides. Atrazine, amitraz 
and diazinon were restricted from use in EU, atrazine and amitraz in 
2004 (documents 2004/248/EC and 2004/141/EC), and diazinon in 
2007 (document 2007/393), however the data here indicates continued 
exposure. 

Personal care products (PCPs) are used on a daily basis and involve a 
number of different compound groups, many of which are continuously 

Table 2 (continued ) 

Identity Metabolite of Group Elemental 
formula 

Theoretical 
mass [M+H]+

Experimental 
mass [M+H]+

Mass 
error 
(ppm) 

Compound_RT Detection 
frequency 
(%) 

ID 
level 

Monooctyl phthalate DOP (Huang et al., 
2021) 

Plasticizer, 
phthalate 

C16H22O4 279.1591 279.1578 4.657 16.19 1 3 

Monopentyl phthalate DPP (Huang et al., 
2021) 

Plasticizer, 
phthalate 

C13H16O4 237.1127 237.1127 − 0.067 6.39 29 3  

Fig. 2. Pie chart illustrating the main groups of identified BoEs with number of 
BoE in each group. 
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monitored in established HBM schemes. BoE to 16 PCPs were identified 
in the urine of children, including parabens, UV-filters, fragrances, re-
pellents, surfactants and polyethylene glycols and polyethylene glycol 
ethers. Among parabens we identified two, ethyl and butyl paraben. This 
is in agreement with the results of previously published targeted analysis 
on the same population, where we quantified the levels of several par-
abens, among others also these two compounds (Tkalec et al., 2021). 
Parabens had also been previously identified by similar NT/SS ap-
proaches in urine (Caballero-Casero et al., 2021) and serum (Chen et al., 
2021), as well as by a large number of targeted studies (Wei et al., 2021). 
Among the remaining compounds, the most commonly detected one was 
undecaethylene glycol (86%), a congener of polyethylene glycol (PEG) 
and polyethylene glycol ethers (PEGE). This class of compounds is used 
for various applications, particularly in cosmetics as emulsifiers, thick-
eners, humectants, cleansing agents and non-ionic surfactants, as ex-
cipients in pharmaceutical formulations and others (Fruijtier-Pölloth, 
2005). Even though they are widely present in everyday life, there is 
scarcely any study considering human exposure to PEGs and PEGEs. The 
same is true for another tentatively identified compound, lauramide 
DEA, a surfactant widely used in cosmetics and other PCPs like sham-
poos and soaps (Mathews et al., 1996). 

Similar to PCPs, a substantial group of compounds, which have been 
widely monitored using HBM are plasticizers and plastic-related com-
pounds. Bisphenols are used in production of polycarbonate plastic and 
epoxy resins. In the samples of Slovenian children, we found BoE to BPA, 
and its alternatives BPF and BPG. Again, this is in agreement with the 
results of targeted analysis of same samples, where BPA and BPF were 
quantified in the majority of samples (Tkalec et al., 2021). Conversely, 
BPG was not analysed as a part of targeted analysis, and also the 
exposure to this compound has not yet been widely studied in literature. 
Thus, the current study demonstrates the capacity of SS/NT approach to 
reveal the exposure of children to BPG, and further suggests its inclusion 
in the existing HBM schemes to determine its distribution and levels in a 
wider population. 

By far most detected compound class were BoEs to phthalates, out of 
which, monoisononyl phthalate was most commonly detected (93%). As 
for parabens, phthalates have likewise been largely monitored and 
quantified in many targeted studies (Eales et al., 2022). They were also 
identified by similar SS studies in urine, where, hydroxylated mono-
isononylphthalate was detected at even higher frequency (100%) 
(Caballero-Casero et al., 2021), and in serum, where the most commonly 
detected BoE was monodecyl phthalate (Chen et al., 2021). Both of them 
are members of high-molecular weight phthalates. Some of the phtha-
lates, as for example isooctyl and nonyl phthalate are isomers. Isomers 
are particularly difficult to identify. In certain cases, structural and po-
sitional isomers will produce slightly different MS2 spectra due to pro-
ducing different fragments, as the molecule cleaves differently. When 
structurally assigning fragments, one MS2 might be more chemically 
logical for a particular isomer. In case of other isomers, such as geo-
metric isomers and especially stereoisomers, they cannot be differenti-
ated by MS. Only a targeted method using standards and very 
well-designed separation method could unambiguously differentiate 
between such isomers and confidently identify the compounds. 

Furthermore, we identified several volatile organic contaminants 
(VOCs), such as cresol, benzaldehyde and naphthylamine and BoEs to 
tobacco smoke, cotinine and 3-hydroxycotinine. All of these compounds 
can be linked to exposure to cigarette smoke, whereas cresol is released 
by automobile exhaust, and is found in air of areas of high traffic and 
vicinity of gas stations (Risne and Cash, 1990). Naphthylamine is used in 
various industrial applications, however it has been detected as a 
product of incomplete combustion in the cigarette smoke (Niu et al., 
2018; Yu et al., 2014). 

Using NTS we identified BoEs to several pharmaceuticals. Pharma-
ceuticals are being used intentionally to treat or prevent chronic or acute 
diseases, or to weaken their symptoms. While an unintentional exposure 
to pharmaceuticals is possible through contaminated food or water, 

their doses are significantly lower and probably not detected by SS/NTS. 
Hence, pharmaceuticals play a rather special role in the exposure 
analysis, however we still considered them for several reasons. First of 
all, they served for the confirmation of the applied workflow. During 
sampling, participants answered an extensive questionnaire involving 
medication during time of sampling. This data was used post-hoc to 
connect self-reported data to the identified biomarkers and with that 
confirm the analytical workflow of the study. Second, due to high level 
of biological activity, pharmaceuticals influence a large array of meta-
bolic pathways, which might be of great significance when considering 
health implications of exposures. We identified phenoxymethyl peni-
cillin (Penicillin V) and its metabolites, phenoxymethyl penniciloyl, N- 
methyl and N-acetyl phenoxymethyl penniciloyl. They were identified 
in the participants’ samples, who reported to take phenoxymethyl 
penicillin to treat acute tonsillitis. Similarly, amoxycilloyl being a 
metabolite of amoxycillin, was identified in urine of the participants, 
who reported using this drug for the treatment of acute ear infection. 
Further, carbamazepine epoxide is a pharmacologically active metabo-
lite of an anticonvulsant carbamazepine. Both, carbamazepine epoxide 
and levetiracetam, another antiepileptic drug, were identified in sam-
ples of the participants reporting being treated for epilepsy. Finally, we 
found aminophenol, a metabolite of paracetamol in the corresponding 
urine samples of those participants, who reported the use of this 
pharmaceutical. 

Along with compounds with well-defined source, we tentatively 
identified propenyl aniline, phenyl picoline, cycloheptyl amine, methyl 
acridine, isoquinoline, chloroisoquinoline and dicyclohexyl urea, for 
which we were unable to retrieve conclusive information about their use 
or sources of exposure. Dicyclohexyl urea was, however, also previously 
detected and identified in human serum using similar non-targeted 
approach (Hall et al., 2012). To the authors’ knowledge these com-
pounds are for the first time reported in human urine. This urges for 
monitoring of these chemicals in a larger population, to describe the 
extent of exposure, sources, toxicological parameters, and to assess 
health risks connected to the exposure. 

3.4. Statistical differences between populations 

Specific differences between the presence of BoE at two locations and 
at two sampling times were investigated using OPLS-DA, where the 
models demonstrated that the exposure of children differed according to 
the location and time (Table SI-2). Even though detection frequencies 
were low for certain BoEs, model parameters show sufficient explana-
tion and predictability, while avoiding overfitting, confirmed by per-
mutation test. 

Discriminatory BoE with VIP-score higher than 0.5 were further 
validated for significance using non-parametric univariate Mann- 
Whitney test. The results are presented in Table SI-3 and Table SI-4 
and visualized in Fig. 3 and Fig. 4. 

3.4.1. Rural vs urban 
Results of statistical analysis, presented in Table SI-3 show the dif-

ference between relative abundances of contaminants among in-
dividuals from urban and rural regions. Differential BoE are presented in 
S-plot of OPLS-DA (Fig. 3) demonstrating a handful of BoE that were 
differently represented in rural and urban populations. BoE to pesticides 
atrazine and diazinon were elevated in rural region, which could indi-
cate higher intensity of local agricultural activity, typical for the region. 
PGR prohexadione was, however, higher in urban population, which 
might indicate dietary exposure of imported food items. The levels of 
cresol, normally found in the contaminated air of high traffic areas, were 
expectedly higher in samples of the individuals residing in urban region. 

Several other BoE followed location-specific pattern, however the 
differences were difficult to interpret due reasons such as a large array of 
applications, for example of surfactant lauramide DEA and cosmetic 
ingredient decaethylene glycol, or inconclusive sources such as phenyl 
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picoline, BPG and BPF. 

3.4.2. Winter vs summer 
Exposure is highly individual, some stressors can be present 

permanently, while other vary with season, changing of location and 
consumption of seasonal food. Based on the varying intensity of nearby 
agricultural activity, individuals from rural regions were sampled twice, 
once in winter/early spring 2019 and once during the summer of the 
same year. Discriminatory BoE for winter versus summer sampling are 
visualized in S-plot of OPLS-DA (Fig. 3), which shows that BoE to pes-
ticides diazinon, terbuthylazine and pyrimethanil with PGR naph-
thoxyacetic acid were higher in the summertime samples (Tables SI–4). 
This coincides with higher agricultural activity in the region during 
summer season which is consistent with literature as proximity to fields, 
field area and spraying season have been identified as determinants of 
exposure to pesticides before (Teysseire et al., 2021). In contrast with 
what was expected the levels of BoE to UV-filter 4-hydroxybenzophe-
none were higher in winter. Seasonal differences of other compounds 
are, similarly to the regional differences, more difficult to discuss. Uri-
nary BoE to organic contaminants are often short-lived, reflecting 
exposure that took place a few days before sampling at the most. Lon-
gitudinal samples would more accurately describe seasonal differences, 
however conclusions from spot samples might still reflect some differ-
ences in exposure of different groups. 

4. Conclusions 

Within the scope of this study the exposure of 300 urine samples 
from a cohort of Slovenian children aged 6–9 years (n = 200) were 

characterized using non-targeted analysis and suspect screening, which 
allowed tentative identification of a large number of xenobiotics and 
their BoE within one run. In contrast to metabolomics workflow, the 
thresholds for data processing of low-level biomarkers of exposure are 
required to be low, generating a large amount of noisy data, thus 
increasing the difficulty of confident compound identification. The latter 
remains the main bottleneck in applying NTA/SS in human 
biomonitoring. 

In this study, 36 biomarkers of exposure were tentatively identified 
using non-targeted approach and another 38 using suspect screening. 
Biomarkers of exposure indicate environmental burden of children to 
several classes of chemicals such as personal care products, plasticizers 
and plastic production chemicals, volatile organic compounds, nicotine 
and caffeine, and pesticides, out of which three, atrazine, amitraz and 
diazinon were restricted in the EU due to their high toxicity. In addition, 
compounds not yet monitored in HBM schemes, such as bisphenol G, 
polyethylene glycols and polyethylene glycol ethers were tentatively 
identified. Alongside the compounds of known use, we tentatively 
identified 7 chemicals with unknown use, which might become in the 
future the chemicals of emerging concern and should be included in 
targeted HBM schemes in order to monitor their occurrence in a wider 
population. Due to sampling in two time periods and in two locations, 
we were able to demonstrate the transiency of the exposures and its 
location dependence. The results of the study show the complexity of the 
children’s exposome, with them being exposed to many chemicals 
simultaneously. Overall, this work demonstrates the practical approach 
and emphasizes the potential of using non-targeted analysis and suspect 
screening in human biomonitoring. 

Fig. 3. S-plot (correlation vs covariance) visualizing discriminatory BoE between urban and rural samples. Significant features have higher non-zero covariance and 
correlation (top right and bottom left). 
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