2022
Compressed FastText Models for Czech Tagger
NEVĚŘILOVÁ, ZuzanaZákladní údaje
Originální název
Compressed FastText Models for Czech Tagger
Autoři
NEVĚŘILOVÁ, Zuzana (203 Česká republika, garant, domácí)
Vydání
Brno, Proceedings of the Sixteenth Workshop on Recent Advances in Slavonic Natural Languages Processing, RASLAN 2022, od s. 79-87, 9 s. 2022
Nakladatel
Tribun EU
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14330/22:00127484
Organizační jednotka
Fakulta informatiky
ISBN
978-80-263-1752-4
ISSN
Klíčová slova anglicky
model compression; FastText; embedding evaluation; Czech tagger
Změněno: 20. 12. 2022 12:43, Mgr. Jitka Nováčková
Anotace
V originále
We are building a new tagger for the Czech language that uses two models: the FastText model for word embeddings and a neural network that assigns tags to tokens. In the deployment, we are struggling with model sizes. Since the model size is a common obstacle in various tasks, several compression methods exist. Authors of the methods often claim that the impact on model performance is minimal. However, the evaluation is done on the two tasks the word embeddings are evaluated on: word analogy and word similarity. No information is provided for the evaluation of subsequent tasks. In this paper, we have trained a FastText word embedding model on more recent data. We retrained the tagger with the same parameters using compressed and uncompressed variants of the original FastText model and the new one. After comparing the results, we can see quantization methods are suitable, possibly together with pruning, without significant impact on the tagger performance. The precision dropped by 0.1 percentage point only in quantized models. All tested compression methods reduce the model size 10–100 times.
Návaznosti
LM2018101, projekt VaV |
|