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Protein solubility is an attractive engineering target primarily due to its relation to yields in protein pro-
duction and manufacturing. Moreover, better knowledge of the mutational effects on protein solubility
could connect several serious human diseases with protein aggregation. However, we have limited
understanding of the protein structural determinants of solubility, and the available data have mostly
been scattered in the literature. Here, we present SoluProtMutDB – the first database containing data
on protein solubility changes upon mutations. Our database accommodates 33000 measurements of
17000 protein variants in 103 different proteins. The database can serve as an essential source of infor-
mation for the researchers designing improved protein variants or those developing machine learning
tools to predict the effects of mutations on solubility. The database comprises all the previously published
solubility datasets and thousands of new data points from recent publications, including deep mutational
scanning experiments. Moreover, it features many available experimental conditions known to affect
protein solubility. The datasets have been manually curated with substantial corrections, improving suit-
ability for machine learning applications. The database is available at loschmidt.chemi.muni.cz/
soluprotmutdb.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Protein mutational databases accumulate results from experi-
ments examining how mutations introduced to a protein affect a
selected property. Several such databases have arisen recently,
including FireProtDB [1] for the protein stability data for single-
point mutants, the MPTherm [2] database for membrane protein
thermodynamics, or D3DistalMutation [3] for enzyme activity.
However, there has not been any mutational solubility database
yet despite solubility being a basic characteristic of any globular
protein. Moreover, high solubility is essential for high-dosing pro-
tein therapeutics or for efficient protein production [4,5]. The low-
ered solubility of a body protein due to a mutation may also cause
a disease [6]. And neither too low nor too high solubility is required
for successful structure determination of a protein in the crys-
talline form.

Prediction of solubility change upon mutation is thus an impor-
tant problem. Several predictors for this task were developed, usu-
ally using mutational solubility data sets for training collected
independently from the literature [7–10]. While these attempts
showed great promise, the training datasets were rather limited
in the number of entries and their annotations. These limitations
provide a possible explanation as to why recent studies comparing
the predictors revealed significant room for improvement, as the
latest predictors did not exceed the correct prediction ratio of
70% [10,11].

The data available in the solubility datasets come mostly from
small-scale experiments. These often search for a solubilizingmuta-
tion to a particular protein in order to enhance its insufficient solu-
bility. A small-scale experiment measures only a small number of
mutantsandonlyonedirectionof solubility change is oftenobserved
among all of them. Another drawback is that these experimentsmay
be incomparable due to the different conditions under which they
were conducted.Most typically, a variant of an electrophoresis assay
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andprotein staining isused toassessprotein solubility throughmass
separation, e.g., the SDS–PAGE assay. Other, less frequent methods
include Western blotting, where the soluble fraction of protein of
interest is separated and marked via antigen binding.

In contrast, high-throughput experiments provide many results
from a single run. Apart from the clear advantage of obtaining a
large amount of data at once, they allow a more precise compar-
ison thanks to the elimination of setup differences. High-
throughput methods typically measure solubility indirectly
through another property, e.g., fluorescence, which can be
achieved in an automated manner more easily. For instance, in
recent studies by Whitehead’s group [12,13], fluorescence-
activated cell sorting (FACS) was used to select solubilizing muta-
tions out of almost all possible single-point variants. While such a
strategy is usually applied to one protein at a time, it has the
potential to provide the sufficient data abundance for modern
data-hungry machine learning (ML) methods [14].

Here we present a database incorporating solubility data from
several sources (Fig. 1): (i) curated data from OptSolMut [7], Cam-
Sol [8], A3D [9] and PON-Sol [10] datasets, (ii) recently conducted
deep mutational scanning (DMS) of solubility at Whitehead’s
research group [12,13], (iii) our own literature search for solubility
experiments, and (iv) data from high-throughput experiments cur-
rently conducted in our laboratories.

The database goes beyond the basic reporting of introduced
mutations and their effects on protein solubility. We performed an
extensivemanual curation of each entry based on the original publi-
cations.We also keep track of the experimental setupwherever pos-
sible as it has a major influence on the experimental outcome [17].
This setuphas twomain components: expression-related conditions
(how the protein was produced) and assay-related conditions (how
thesolubilitywasmeasured). For instance, theexpressionconditions
includehost cells, the temperature, and induction timesused.Assays
differ mainly in the physical property used to measure solubility
change. Finally, the data are annotated with dataset memberships,
links to UniProt [15] and its annotations, and HotSpot Wizard [16]
features per sequence or structure as depicted in Fig. 1.

While the database will serve as a valuable source of insights for
protein engineers, structural biologists, or biochemists, we have
made our database convenient for the broad ML and data science
communities as well, e.g., to facilitate using the deposited data in
the development and testing of predictive models. All the afore-
mentioned experimental conditions and annotations are utilizable
as features. We also performed a systematization of reported
changes and created a flexible Export Wizard. The systematization
deals with the verbally-assessed changes – these are discrete and
inexact values with no scale specified by the authors. Export
Wizard allows exporting the filtered data and converting the val-
ues to the desired classes to be used in a target model.

With the advent of high-throughput screening methods, we
may see a flood of mutational solubility data published, and
SoluProtMutDB should serve as a central depository for this type
of data. A centralized and regularly updated depository for muta-
tional solubility data will facilitate the in silico engineering of pro-
tein solubility, which is critical in biopharmacy, biotechnology, or
structural biology. The depository will also be useful for data scien-
tists, ML engineers, protein engineers and medical doctors.

2. Materials and methods

2.1. Data from small-scale experiments

The cornerstones of SoluProtMutDB are four mutational solubil-
ity datasets, published between 2010 and 2017, which we merged
together: OptSolMut [7], CamSol [8], A3D [9], and PON-Sol [10].
Every datapoint in each of these datasets represents a mutated
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variant of a particular protein, where the protein is specified either
by its sequence or Protein Data Bank ID (PDB ID) and labeled
according to the effect on the protein solubility. While none of
the datasets is fully contained in another, they do overlap signifi-
cantly. Therefore, we ensured that each datapoint is contained in
the final database only once and assigned to all the datasets it
appears in. We also added new data from the updated PON-Sol
dataset [11]. Furthermore, as all these datasets only comprise the
solubility data from publications before 2017, we conducted a data
search in more recent literature and added new results.

We carried out manual validation and curation of the datasets
against the source publications as the data are not in a machine-
readable format in most of the source publications. We found
and resolved a substantial number of discrepancies of the follow-
ing types by correction or removal of the affected datapoints:
reports of changes in properties with no clear relation to solubility;
measurements which are not present in the source publication;
wrong values; wrong positions or residues of substitutions.

During the manual processing of the publications, we addition-
ally extracted the data that do not appear in the published data-
sets. These include reported experimental conditions, such as
measurement assay, host organism and strain, temperature, pH,
and concentration method used; originally reported numerical
changes in solubility; and even more than hundred instances of
measured protein variants that were left unnoticed by the authors
of the datasets. We also distinguish the types of solubility the con-
tinuous values referred to: the soluble fraction, soluble concentra-
tion, or total concentration.

During the validation, we assigned a UniProt accession number
(UniProt AC) of an original variant to every datapoint and renum-
bered the mutated positions with respect to the UniProt sequence.
This was necessary as the proteins in the datasets are only assigned
with PDB IDs or protein/gene names, which are, however, less reli-
able, stable, or not unique in comparison to UniProt ACs in the long
term. In the case of PDBs, one structure can refer to several pro-
teins, and a single protein typically has multiple relevant PDBs
with new and refined structures of proteins appearing over time.

2.2. Deep mutational scanning data

The eminent source is the data collected at Whitehead’s
research group – the first use of DMS for solubility screening.
The group measured the soluble expression of the levoglucosan
kinase, TEM-1 b-lactamase, and pyrrolidine ketide synthase vari-
ants in E.coli or yeast assays [12,13]. Their DMS approach consisted
of three steps. The first step was comprehensive saturation muta-
genesis across the entire protein, which yielded a cell library of all
possible single-point mutants. The second step was the selection of
cells with soluble protein. And the third step was deep sequencing
– measuring the frequencies of the variants before and after the
selection procedure of the second step by sampling and sequencing
them. The authors explored two selection procedures: Tat-export
and FACS. In the former, soluble protein provided antibiotic resis-
tance and was required for cell survival. In the latter, the fluores-
cence change upon binding with a fluorescence-enabled antibody
or a green-fluorescence-protein (GFP) tag was exploited as the
proxy to protein solubility, and then the cells with higher solubility
were sorted out using FACS. The enrichment ratio for each variant
was calculated based on the number of reads before and after the
selection, normalized, and reported as the score for the effect of the
mutations on protein solubility.

To make these continuous scores comparable with the discrete
values reported in the other literature, we binned them into 5
levels according to the threshold of 0:15, suggested by the authors
(that is þ10% on a linear scale) to label enhancing mutations, and a
threshold of þ50% for significantly enhancing mutations. Symmet-



Fig. 1. The data sources of SoluProtMutDB and their processing. The primary sources are the merged data from the earlier published datasets of protein-solubility predictors
and the high-throughput data fromWhitehead’s group [12,13]. The datasets have been manually checked with the original publications and corrected accordingly. Apart from
these, we conducted an extensive literature search and deposited more recently published data and the data collected in our laboratories. The information about a dataset
membership and UniProt [15] and HotSpot Wizard 3.0 [16] annotations were added to the entries.

Table 1
The comparison table between reported solubility changes in various reporting
systems. The considered reporting systems (columns) consist of 2 to 5 possible values
of measured effects on solubility (rows), spanning from –– (significantly deteriorat-
ing) over neutral (N) to ++ (significantly enhancing). For example, a substantial
deteriorating change in solubility could be reported as simply deteriorating in the 2-
or 3-value systems or non-enhancing in the unipolar system.
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rically, we used �10% and �33:3% to label slightly and signifi-
cantly deteriorating mutations, respectively. The remaining data-
points were binned into the neutral class. During this process, we
also omitted the scores of nonsense mutations and those having
statistically insignificant enrichment values due to the low number
of reads.

2.3. In-house data

In addition to the published literature, the database contains
the data from medium-throughput experiments on haloalkane
dehalogenase, recently conducted by our research group [18].1

Our assay, validated by comparison with SDS–PAGE on multiple pro-
teins, measures solubility through fluorescence activity introduced
by the split-GFP approach. The mutant library was created with
error-prone PCR, and randomly selected mutants were measured
and sequenced. Measuring was conducted in replicates, and the
mutants with statistically insignificant results were discarded. This
resulted in 22 datapoints available in the database.

2.4. Systematization of values

By analyzing the literature, we identified five patterns appear-
ing in solubility experiments for a mutation effect assessment.
We systematized these patterns into reporting systems as per
Table 1 to make the reported changes comparable even when they
come from different publications and are described in different
terms. These differences are partially due to the use of various
assays as their precision varies, and sometimes the effect was not
quantifiable. In other cases, incomplete information was published.
For example, in experiments aiming to solubilize a particular pro-
tein, only verbal assessment is often reported for mutants not
improving solubility.

We distinguish the orientation (positive, negative, or neutral) of
an effect and, whenever applicable, also its significance (slight or
significant). Altogether, up to five discrete values are defined: sig-
nificantly/slightly deteriorating, neutral, and slightly/significantly
enhancing. This system suggests different resolutions in different
1 https://loschmidt.chemi.muni.cz/soluprotmutdb/protein/103.
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experiments, e.g., a value from the 5-value system should be more
precise than from the 3-value system. Hence, if one mutation is
enhancing in the 3-value system and another is slightly enhancing
in the 5-value system, we can assume the former to be at least as
enhancing as the latter, and possibly substantially more.
2.5. Annotations

In addition to the data extracted from the literature, we anno-
tated proteins on sequence and structure levels. As all the
sequences were mapped to UniProt through their accession num-
bers, we extracted protein names, species of origin, InterPro fami-
lies, and Enzyme Commission numbers from there. We also
manually linked proteins with their structures in PDB. We priori-
tized the X-ray crystallographic structures with the highest resolu-
tion, without ligands or mutations. The assigned structures were
then used as an input to HotSpot Wizard (HSW) [19] to obtain
additional sequence and structural features.

HSW sequence features come from multiple sequence align-
ment of homologous sequences. HSW obtains these sequences by
a BLAST search [20] against the UniRef90 database [21] and clus-
ters them using the UCLUST algorithm [22] with a 90% sequence
identity. Sorted by the coverage of the BLAST query, the top 200
cluster-representing sequences are selected and subsequently
aligned using Clustal Omega [23]. The resulting alignment is then
employed (i) to estimate the conservation score for each position

https://loschmidt.chemi.muni.cz/soluprotmutdb/protein/103


Table 2
Current statistics of the database. The most
recent numbers are available at loschmidt.-
chemi.muni.cz/soluprotmutdb as the data-
base is regularly updated with new data.

Datapoints 32992
Mutant variants 17392

of which multi-point 157
Publications 110
Proteins 103
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using the Jensen-Shannon divergence [24], (ii) to identify corre-
lated positions using the consensus prediction of several tools inte-
grated with HSW, and (iii) to identify potential back-to-consensus
mutations, i.e., the positions in the multiple sequence alignment
where an amino acid in the query sequence differs from the major-
ity of amino acids at conserved positions.

Apart from sequence features, the following structural features
are included: (i) the protein secondary structure calculated by
DSSP [25], (ii) the accessible surface area calculated with the
Shrake and Rupley algorithm [26], (iii) average B-factors for pro-
tein residues [27], (iv) protein pockets identified by the fpocket
tool [28], and (v) protein tunnels and their bottlenecks calculated
by CAVER [29]. Only the tunnels connected with catalytic pockets
are stored in the database. The structural features are mapped back
onto UniProt sequences using the SIFTS database [30].

2.6. Database structure

Measurement results of differential solubility experiments are
at the core of our database. Each result is linked to a protein variant
defined by a particular protein and a set of substitutions in its
sequence. The effect of any protein variant on solubility contains
a difference in the measured property compared to the original
protein variant, both measured under the same experimental
setup. This setup includes the host cell, assay, or temperature used
and is linked to the corresponding results. The corresponding pro-
tein is identified by UniProt AC, and the mutated positions are
based on the UniProt indexing. Each result has its alphanumerical
accession code, which is meant to be stable, searchable, and there-
fore citable. In addition, each result may be linked to one or more
published datasets.
Fig. 2. The distribution of protein variants in the database by their mutational
effects on solubility. The distribution is divided into 5 levels: neutral (N), slightly/
significantly desolubilizing (�/��) and solubilizing (+/++). Notably, two thirds of
the mutants show a deteriorating effect.
3. Results

The basic statistics summarizing the content of the database are
given in Table 2. The total number of datapoints consists of (i)
merged 764 (610 unique) datapoints from the previously pub-
lished datasets, (ii) Whitehead’s DMS data – accounting for
32081 of the datapoints, (iii) 279 new measurements from the lit-
erature and (iv) 22 measurements carried out in-house.

The data reveal that a randommutation likely has a desolubiliz-
ing effect, as shown in the mutational effect distribution in Fig. 2.
Only 18% of mutants increase solubility and just one third of them
significantly. This is confirmed when the distribution is plotted per
protein (Fig. 3). The three most frequent proteins from small-scale
experiments, on the other hand, display a strong distribution bias
compared to the DMS data and the ‘Other’ category alike. The exact
ratio is protein-dependent.

While the database size is several orders of magnitude larger
than the sizes of the prior datasets, the results from the high-
throughput experiments from Whitehead’s group dominate the
deposited data. The exhaustiveness of Whitehead’s data provides
the database with great variability in mutated positions and in
combinations of substituted and target amino-acid pairs (Fig. 4)
but is limited to only three proteins. The protein variability of
the database is provided by the rest of the data - Fig. 3 contrasts
the entry counts for these three proteins with the remaining ones.

We kept the FAIR principles (Findable, Accessible, Interopera-
ble, Reusable) [31] in mind during the database development. In
addition to making the data accessible and searchable online (see
the section 3.1) and exportable in a machine-readable format
(see the section 3.2), we also assigned a unique accession code
(SPMDB AC) to each entry of a measurement result. The accession
code is an identifier that is stable in time and can be used for
searching or linking. Our database crosslinks SPMDB AC with Uni-
Prot, PDB, and InterPro databases.
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3.1. Interface

SoluProtMutDB has a user-friendly web interface enabling its
users to browse, search, and export the data. The ‘Show all’ option
in the navigation bar leads to the result table listing all the entries
available in the database (Fig. 5). To filter these entries, the search
at the top of the page can be used in two ways: (i) a full-text search
by protein names, UniProt accession codes, PDB identifiers, Inter-
Pro entries, EC numbers, publications, dataset names, organisms,
host cells, or SPMDB AC; or (ii) an advanced search capable of com-
bining several queries on database fields (Fig. 6). The displayed
data in the search results can be exported using Export Wizard
by clicking the ‘Export’ button (see the section 3.2).

Protein and variant pages can be accessed from the result table
by clicking on a protein name or mutation, respectively. A variant
page shows all measurements for the particular protein variant. A
protein page shows basic information about the protein, such as
UniProt AC, species, EC number, assigned InterPro families, or the
table containing experimental data for this protein. In addition,
interactive ProtVista tracks [32] visualize the following sequence
features: the secondary structure, catalytic sites, natural variants,
amino-acid charges, catalytic pockets, tunnels, B-factors, conserva-
tion, and back-to-consensus mutations. The structure, if available,
is shown using the Mol* viewer [33] (Fig. 7). Mutated positions can
be highlighted in the structure by clicking on the eye icons in the
data table.



Fig. 3. The six most represented proteins in the database by their entry counts. The
data for the first three proteins come from deep mutational scanning experiments.
The ‘Other’ category contains the remaining 97 proteins. The horizontal axis has a
logarithmic scale, and the pie charts on the right display mutational effect
distribution per category with the same color coding as in Fig. 2: neutral,
desolubilizing and solubilizing mutations.

Fig. 4. A matrix showing the numbers of mutation occurrences in the database
‘from’ (rows) and ‘to’ (columns) specific amino acids. The R column and row
represent sums of mutations ‘from’ and ‘to’ given amino acids, respectively. A cell
color saturation shows the abundance of the corresponding combination.
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The Datasets page lists the known mutational solubility data-
sets. Further details, including the authors and the links to the pub-
lication and the raw dataset, can be obtained by clicking on a
dataset name. Furthermore, the dataset page contains statistics
on the overall distribution of solubility effects in each dataset
and the similarity to the other datasets.

3.2. Data export

The complete database can be downloaded as a MariaDB data-
base server dump in the SQL format. In addition to this option, we
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developed Export Wizard for user-friendly exporting a currently
browsed subset of the database, e.g., defined by the active search
filter, as a tabular dataset in the CSV format. This functionality is
specifically aimed at data scientists and machine learning develop-
ers to allow them to analyze or use the data with minimum pro-
cessing effort. Optionally, additional filtering/labeling and data
augmentation may be applied before data export.

The filtering also allows selecting only the results measured in
continuous values, suitable for a regression analysis and modeling.
The alternative is the labeling that adapts the data to a specific
model according to the number of bins distinguished by effects
on solubility: after selecting a model from Table 1, each exported
datapoint is assigned a label from that system. If a reported effect
is not present in the selected system, it is either converted to a par-
tially compatible label or dropped. The process may be adjusted by
selecting one of the abundance, reliability, or compromise modes.
The first option converts as many values as possible; the second
option leaves out all incompatible values; and the third option
compromises on the significance, i.e., all converted labels are
marked defensively as a slight change. Users can display the active
conversion table by clicking ‘See details’. The user interface for this
step is shown in Fig. A.6.

Finally, in the case of ML-dataset creation, users may want to
use the data-augmentation (data-symmetrization) function, which
adds the reverse mutations to the dataset, i.e., datapoints with sub-
stituted and target residues swapped and inverse solubility effects.
This will resolve the likely problem of the imbalance between the
counts of deteriorating and enhancing mutations (Fig. 2), which
has often been reported to decrease the performance of predictors
for other mutational data types [34–36].

4. Discussion

SoluProtMutDB is the first mutational database of solubility data
and is ready to serve as a central depository for data from mutage-
nesis experiments targeting protein solubility. To date, our data-
base contains almost 33 000 experimental results of solubility
effects upon mutations, thereby representing an essential digital
resource for this type of data. The database comprises the previ-
ously published datasets and new data from the more recent liter-
ature. We have improved the reliability of these datasets by
manual curation and overlap checks. We examined over a hundred
original publications from which the data were gathered, including
a few studies that produced hundreds to thousands of datapoints
each, thanks to the use of such high-throughput experimental
techniques as FACS. Lastly, we deposited the solubility data mea-
sured in our group. We will maintain the database, add new data,
and continue with the curation process.

We believe the database is of great value for data scientists and
will help to understand the mechanisms controlling solubility.
With this in mind, we also focused on the ML potential of the data-
base by making our database friendly for the ML community: (i)
we ensured the data are reliable; (ii) we systematized the solubil-
ity effects reported in the literature to be easily understood by the
experts outside biology; and (iii) we created ExportWizard to facil-
itate adaptation of the data for ready-made ML models. As a result,
we expect that the user-friendly web interface and the other steps
taken will broaden the audience and user community. The data can
now be analyzed or modeled, even without a deep understanding
of the underlying technical or biological details.

Thanks to the new data published in recent years, the database
is an order of magnitude larger than an average solubility dataset.
This abundance comes from recent high-throughput experiments,
generating a more realistic distribution of target amino acids and
observed effects compared to the previous datasets owing to the
possibility of covering all possible single-point mutants.



Fig. 5. An example of a result table. For clarity, only the most important columns are displayed by default: protein names, curation flags, mutations, solubility effects, and
host cells. The table is paginated to avoid performance issues. A solubility effect graphic depicts both an effect and a value system provided in Table 1. The binning system is
given by the number of circles, whereas the effect is given by one of the signs: orange minus (�) for deteriorating, black tilde (�) for neutral and blue plus (+) for enha.ncing
mutations.

Fig. 6. The advanced search with an example of a filtering protocol. In this example,
the database will find measurements from OptSolMut and PON-Sol datasets with
enhancing or deteriorating solubility effect.

Fig. 7. The visualization of mutations in a protein with a known 3D structure. User-
selected mutations can be highlighted in the structure. In this example, the mutated
positions resulting in a significant change in solubility are highlighted in yellow.
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Specifically, the DMS experiments manifest their strength as
they show no extreme per-protein deviation of the effect distribu-
tion (Fig. 3) from the overall distribution (Fig. 2), which is of partic-
ular importance for ML applications. The DMS data are highly
6344
representative as they lack a selection bias in introducedmutations
(Fig. A.3). Moreover, the substituted amino acids in the database
follow the distribution of amino acids seen in nature (Fig. A.2). In
contrast, the selection bias is apparent in the small-scale experi-
ments, even when all their data are merged (Fig. A.4). In terms of
effect distribution, the DMS data display more desolubilizing
mutations (Fig. A.5). And since the DMS data are measured indi-
rectly and a systematic error of a measurement may be present,
we suggest using non-DMS data for ML model evaluation.

In order not to miss any important factor possibly affecting sol-
ubility, we track many conditions of experiments. Yet, several fac-
tors known or suspected to influence protein expression or
solubility are not stored explicitly in the current version of the
database. Some of these factors are silent mutations, i.e., mutations
on the nucleotide-sequence level that do not propagate into the
amino-acid sequence but may strongly influence soluble expres-
sion, especially heterologous [37]. Another factor is the time of
expression, often not reported clearly, e.g., due to a possible com-
plexity of the assay. Timings of different steps of an experiment
may influence soluble expression, for example, through expression
rate or by providing a different time for molecular interactions
(precipitation, aggregation) [38].

Finally, the database promotes the FAIR principles not only by
making the solubility data more accessible but also by allowing
negative reporting. Currently, many negative findings in solubility
experiments remain unreported as they do not bring the desired
outcome to the scientists. We encourage the deposition of negative
solubility data in SoluProtMutDB to meet the obligations to publish
results and reach FAIRness, often imposed by grant agencies. At the
same time, these data are of considerable value for the field of ML,
even to the extent comparable to that of positive results. Last but
not least, non-reporting of negative findings may lead to repeating
the same experiments and result in wasting human and material
resources. Results of mutational solubility experiments can be sent
to soluprot@sci.muni.cz to be deposited in the database.
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Appendix A. Supportive information

Figs. A.1, A.2, A.3, A.4, A.5, A.6
Fig. A.1. Amatrix showing thenumbersofmutationoccurrences in thedatabase ‘from’
(rows)and ‘to’ (columns) specificaminoacids.TheR columnandrowrepresent thetotal
numbers ofmutations ‘from’ and ‘to’ given amino acids, respectively. Thematrix is row-
weighted–blue saturationcorresponds to the relative abundance of the given ‘to’ amino
acid in the corresponding row. This is to avoid accentuation of differences naturally
caused by the uneven distribution of amino acids in natural sequences.

Fig. A.3. A row-weighted substitution matrix for Whitehead’s data. It shows some
anomalies, such as visible under-representation of substitutions to methionine (M)
or tryptophan (W).
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Fig. A.4. A row-weighted substitution matrix for all but Whitehead’s data. It shows
the selection bias in the small-scale experiments. For example, alanine (A) or serine
(S) is chosen as a substituent more frequently than other amino acids. Some of the
biases are apparently due to avoidance of introducing a different functional group
by a mutation, e.g., tryptophan (W) is mostly replaced with phenylalanine (F).

Fig. A.5. A comparison between the distributions of effects in the non-DMS and
DMS-only datasets. The latter is skewed towards mutations having desolubilizing
effect.

Fig. A.6. An example of the 2nd step of Export Wizard. Here, the solubility effect of
all selected entries will be converted into the 2-value system using a best guess, and
datapoints will be exported into a CSV file upon clicking on ‘Export’. There is also an
option to skip the wizard and export the raw data.
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