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Protein tunnels are essential in transporting small molecules into the active sites of enzymes. Tunnels’
geometrical and physico-chemical properties influence the transport process. The tunnels are attractive
hot spots for protein engineering and drug development. However, studying the ligand binding and
unbinding using experimental techniques is challenging, while in silico methods come with their limita-
tions, especially in the case of resource-demanding virtual screening pipelines. Caver Web 1.2 is a new
version of the web server combining the capabilities for the detection of protein tunnels with the calcu-
lation of the ligand trajectories. The new version of the Caver Web server was expanded with the ability
to fetch novel ligands from the Integrated Database of Small Molecules and with the fully automated vir-
tual screening pipeline allowing for the fast evaluation of the predefined set of over 4,300 currently
approved drugs. The virtual screening pipeline is accompanied by a comprehensive user interface, mak-
ing it a viable service for the broader spectrum of companies and the academic user community. The web
server is freely available for academic use at https://loschmidt.chemi.muni.cz/caverweb.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The search for new chemical compounds and their application
in therapeutic areas is in the midst of the interest of the pharma-
ceutical industry. In recent years, a phenotype-based discovery
has come at the peak of interest of various research groups [1–2].
However, the continuous efforts in solving protein structures and
the wide availability of the modelling tools such as AlphaFold2
[3] made the target-based method a staple procedure in drug dis-
covery. The majority of drugs were obtained using this method [4].

The human genome project has unearthed approximately
20,000 protein-encoding genes [5–6] producing over 10,000 ubiq-
uitously expressed proteins [7–8]. However, less than ten percent
of those proteins are currently targeted by the approved drugs
[9] leaving a vast number of potential therapeutic targets that
could be potentially exploited. Developing new drugs and their
delivery to the market is expensive and laborious. It has been esti-
mated that from the initial inception to the market distribution,
the cost of a new drug can go over 2 billion US dollars [10–11].
Therefore, repurposing approved drugs seems a viable strategy to
reduce the costs and time demands for novel drug identification.

High-throughput robotics screenings are still time-demanding
and require expensive infrastructure. On the other hand, with the
recent advances in the fields of information technology and com-
putational biology, in silico techniques provide an exciting alterna-
tive to experimental screening [12–15]. Those methods can quickly
evaluate vast libraries from which only a tiny fraction of the top
binders are typically considered for further experimental confir-
mation [16]. Therefore, virtual screening methods have become a
prominent technology in the probing and prioritization of
drug-like compounds in the pharmaceutical industry [17]. The
vast majority of virtual screening platforms score the binding of
inhibitors to the binding or active-site pockets. However, the
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access of ligands to these functionally important sites is rarely
considered.

Our in-house web tool Caver Web [18] incorporated both Caver
[19], software for identification and geometrical analysis of tun-
nels, and CaverDock [12], software for docking-based analysis of
the ligand transport. Therefore, even inexperienced users with lim-
ited bioinformatics knowledge can efficiently study the ligand
transport process. However, in the current implementation, only
a single ligand could be analyzed in each run of Caver Web. This
was a limiting step for the users looking to identify the best-
fitting inhibitors for their protein of interest.

Here, we present a new version of Caver Web that overcomes
those shortcomings, making it a viable service for the scientific
community and the broader spectrum of companies. A new version
of the Caver Web server provides a fully automated virtual screen-
ing pipeline using the predefined set of the medical drugs
approved by major world health organizations (FDA+) that con-
tains over 4,300 ligands obtained from the ZINC database [20]. Fur-
thermore, Caver Web was extended with the possibility of fetching
the ligands directly from the Integrated Database of Small Mole-
cules (IDSM) [21]. Finally, the graphical user interface of the Caver
Web service was expanded with new elements for the visualiza-
tion of the transition energies and the bottleneck detection based
on the transition of the ligands through tunnels. The server is freely
available for the scientific community at https://loschmidt.chemi.-
muni.cz/caverweb.
2. Materials and methods

The basic workflow of the implemented virtual screening pipe-
line is captured in Fig. 1. The virtual screening can be started only
after the successful run of the Caver Web calculation, which
requires only the protein structure in the PDB or CIF format. The
identification of pockets using the Fpocket 2 [22], the search for
the essential residues in the mCSA [23] and SwissProt [24], and
the calculation of the tunnels employing Caver 3.02 [19] is pro-
cessed during the standard run of the Caver Web service.
2.1. Virtual screening of the FDA-approved drugs

Several preparation steps must be initiated to proceed with the
fully automated virtual screening pipeline. Once the user selects
the tunnel in the Caver Web interface and the tunnel data are
obtained from the server, the data preparation is initiated. In this
step, the prepare_receptor4.py script from the MGLTools package
[25] is utilized to add Gasteiger charges and AutoDock Vina [15]
compatible atom types to every atom in the protein structure. A
tunnel discretizer [26] is then employed to cut the tunnel into dis-
crete slices with specified distances. Finally, the predefined set of
Fig. 1. Simplified workflow of the virtual screening pipeline. The calculation is done
in two critical steps: (i) evaluating all FDA+ drugs using the Autodock Vina and (ii)
the assessment of the best hits using the CaverDock calculation.
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the approved drugs (4,381 ligands from the ZINC database) is pre-
pared using the MGLTools prepare_ligand4.py script. The dis-
cretized tunnel, receptor, and the collection of ligands are then
forwarded to be processed by the Autodock Vina and in-house tool
CaverDock [12].

Due to the large input library size, it is impossible to evaluate all
of the world-wide-approved drugs with the comprehensive and
time-demanding CaverDock calculation. Therefore, in the first step,
the binding energy of each ligand in the protein’s active site is
rapidly evaluated by the fast AutoDock Vina algorithm. Ligands
in the library are then sorted based on their predicted binding
energy, and the top 50 binders are evaluated using the CaverDock
algorithm. Users can modify the discretization parameter defining
the distance between the centres of two slices of the tunnel and
select the residues that should be considered for calculation. Both
the bottleneck energy of the lower-bound trajectory and the low-
est energy of the bound ligand are provided to the user. However,
the binding energy is always set as a default quality metric when
sorting the ligands calculated by CaverDock.

2.2. Integrated database of small molecules

The current implementation of the Caver Web service allowed
users to start their ligand transport analysis using either PDBQT/
MOL, SMILES, or ZINC code identifiers. However, there was no pos-
sibility of searching for the ligands of interest in the existing data-
bases. For this reason, we have expanded our server with the IDSM
service [21] that combines data from several sources, mainly Pub-
Chem [27], ChEMBL [28], and ChEBI [29] small-molecule datasets.
It is now possible to fetch ligands directly from the IDSM database
using either the ligand’s approximate name or its SMILES code.
Furthermore, we have implemented a more robust sorting algo-
rithm to obtain the most relevant results on top of the list. As a
result, the integration of the IDSM database enables users to start
their ligand transport analysis without the need to search for the
PDBQT/MOL representation or SMILES codes first.

2.3. Graphical user interface

The interactive user interface for the virtual screening pipeline
was implemented as a natural extension of the original Caver
Web server. The transport analysis option was expanded with
the possibility of fetching ligands directly from the IDSM database
(Fig. 2D). The virtual screening of the FDA+ drugs on the target pro-
tein can be started by simply clicking the ‘‘Start screening of the
FDA+ drugs” button (Fig. 2A). Here, selecting the tunnel of interest
is possible, together with the setting of the discretization radius
and the selection of the residues that should be kept for the calcu-
lation (Fig. 2B). Once the virtual screening is finished, it is possible
to download raw data as an Excel sheet or generate a full report in
PDF. The PDF report contains a plot of lower-bound trajectories for
each evaluated ligand and the dot-plot showing the energy minima
of all ligands based on their position in the protein tunnel.

By clicking on the book icon, the table with the 50 most promis-
ing ligands can also be directly visualized in the web interface
(Fig. 2C). The table contains the binding energy of the selected
ligands in the protein’s active site and in the bottleneck of the ana-
lyzed tunnel. Furthermore, by clicking on the book icon, it is possi-
ble to open a new tab for any of these ligands to visualize the plot
of the calculated binding energies for the whole trajectory. This
window allows the user to define points for calculating the activa-
tion energy of protein–ligand association and the energy difference
between ligand bound on the surface and in the active site
(Fig. 2E). The energy profiles of several ligands can be directly com-
pared in a single plot (Fig. 2F). Finally, the ligand transport from
the surface to the protein’s active site is generated as a PyMOL
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Fig. 2. Graphical user interface of the virtual screening pipeline. A) Ligand transport analysis panel allows users to analyze either a specific ligand or start the virtual screening
pipeline using the predefined set of FDA+ drugs. B) Tunnel selection/settings for the virtual screening pipeline. C) The Results table shows the best-fitting ligands. D) Selection
of the specific ligand for the CaverDock calculation using the IDSM database. E) Visualization of the calculated binding energies for the whole trajectory. F) Comparison of the
energy profiles of the selected ligands.
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session [30] for each of the best-performing ligands. It is available
via Download results in a single zip button.

3. Results

We have evaluated our virtual screening pipeline using the
Cytochrome P450 17A1 (CYP17A1). It is one of the most crucial
enzymes in the steroidogenic pathway that produces glucocorti-
coids, androgens, progestins, and estrogens. In humans, CYP17A1
is associated with endocrine effects and steroid hormone metabo-
lism. The mutations in the CYP17A1 gene are therefore connected
with the pseudohermaphroditism [31–33], and adrenal hyper-
plasia [34–35]. Furthermore, the decreased enzyme activity is
related to infertility due to hypogonadotropic hypogonadism
[36]. CYP17A1 is also an essential target in the treatment of pros-
tate cancer as its inhibition leads to the lower production of andro-
gen required for tumour cell growth [37–40]. The enzyme is
expressed by most steroidogenic tissues, including testes, ovaries,
and the adrenal cortex. However, it has also been detected in the
heart, kidney, and adipose tissue [41].

CYP17A1 crystal structure (PDB ID: 3RUK [42]) was used as an
input for the Caver Web calculations. As the enzyme contains an
active site that associates with a heme prosthetic group [43], the
heme cofactor was selected as a starting point for detecting the
active site necessary for tunnel calculation. The integrated Fpock-
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et2 software [22] also confirmed the same region. Heme cofactor
was set to be preserved in the structure, and the remaining settings
were kept in their default values.

Caver Web detected 17 tunnels in total, with only four tunnels
being opened more than 1 Å along the whole tunnel. From the list
of suggested tunnels, the most biologically relevant tunnel [44] No.
2 was selected for the virtual screening using the predefined set of
FDA+ drugs, and the results were compared with the known inhi-
bitors of CYP17A1. We have also evaluated the remaining three
well-opened tunnels. However, those tunnels are only modifica-
tions of the main tunnel with a smaller opening on the protein’s
surface or show a significantly higher energetic barrier during
the ligand transport.

Abiraterone is the only FDA-approved drug used to treat
castration-resistant prostate cancer by inhibiting the CYP17A1,
where it binds in its active site and permanently disables the
enzyme [42,45]. Abiraterone replaced now rarely applied Keto-
conazole which inhibits CYP17A1 competitively, making its effec-
tiveness dependent on the concentration of the administered
drug [46]. Two novel drugs, Galeterone and Seviteronel, were
investigated as potential inhibitors of CYP17A1. However, those
drugs are not included in the set of 4,381 FDA+ drugs as the devel-
opment of Galeterone was discontinued in 2017.

Firstly, we individually evaluated all four previously described
inhibitors by searching them in the IDSM database [21]. The results



Fig. 3. Lower-bound energies of the ligand transport among the tunnel geometry. The list contains FDA-recognized inhibitors of CYP17A1 Abiraterone (A) and Ketoconazole
(B), currently investigated novel inhibitors Galeterone (C) and Seviteronel (D), and the best-scoring ligands from the fully automatized scan of the FDA+ drugs Proscar (E) and
Quinestrol (F).
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of the ligand transport analysis can be observed in Fig. 3A-D. We
can observe that after passing the bottleneck residue Asn202
responsible for the inhibitor’s selectivity in the CYP17A1 enzyme
[44,47], the Abiraterone binds in the active site of the enzyme with
a low binding energy of �11 kcal/mol. A similar result was
achieved with Galeterone showing a slightly higher energetic bar-
rier around the gateway residue and lower binding energy of
�13 kcal/mol in the active site of the enzyme. The older Ketocona-
zole shows a lower energetic barrier and a slightly higher binding
energy of about �9 kcal/mol. Furthermore, the lowest binding
energy of Ketoconazole is reached about 4 and 7 Å closer to the
protein surface compared to Abiraterone and Galeterone, respec-
tively. This would suggest that Ketoconazole does not bind directly
in the active site and coordinate the heme iron such as Abiraterone
through its pyridine nitrogen [42]. Finally, the novel Seviteronel
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does not show as promising binding energies as its Galeterone
counterpart. However, its energetic barrier is about half of that of
Abiraterone. This would make it easier for the ligand to reach the
enzyme‘s active site but also to leave it.

Secondly, we conducted a fully automated scan of the entire
FDA+ database to analyze the positions of the known inhibitors
in the list of all 4,381 FDA+ drugs. Since the development of Gale-
terone was discontinued, and Seviteronel is not yet included in the
world-wide-approved set of the ZINC database, the analysis was
limited to Abiraterone and Ketoconazole. Four variants of Abi-
raterone are located in the FDA+ list of ligands in the ZINC data-
base. All four were among the top hits of our fully automated
scan, with the Abiraterone acetate sold under the brand name
Zytiga scoring 15th place from the whole set of 4,381 ligands. Keto-
conazole was not placed among the fifty best-scoring ligands with



Fig. 4. (A) Position of the lowest binding energies in the proteins tunnel (green crosses) for the set of fifty best-scoring ligands from the fully automatized scan of the FDA+
drugs. (B) The visualization of the enzyme tunnels with the bound best-scoring ligands. The heme cofactor is coloured in cyan; the bottleneck residue Asn202 is highlighted in
red. Red spheres denote the positions of bound ligands in the enzyme tunnel. Their locations were calculated as centres of mass of the bound ligands. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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a binding energy of 2 kcal/mol lower than Abiraterone. Interest-
ingly, the first two positions on the list were occupied by Proscar
(Fig. 3E) and Quinestrol (Fig. 3F). Proscar is a 5a-Reductase inhibi-
tor that has (similarly to Abiraterone) an antiandrogenic effect and
is currently used for the treatment of enlarged prostate. It has been
shown to decrease the risk of low-grade prostate cancer. However,
the risk of high-grade prostate cancer may increase due to the
treatment of some early symptoms [48–49]. Quinestrol is a syn-
thetic estrane steroid already employed as a prostate cancer med-
ication [50]. The top hits list contained several more drugs with a
similar purpose (Avodart, Estradiol Benzoate), while the vast
majority of the suggested drugs were related to the steroidogenic
pathway. Thus, our computational analysis has revealed a large
set of drugs that could possibly be repurposed to complement
the Abiraterone used as prostate cancer medication. The robust-
ness of our approach could be further substantiated by the fact that
Galeterone would be placed on the top of the list if it was already
contained in the list of FDA+ drugs.

Finally, Fig. 4 captures the positions of the lowest binding ener-
gies of the fifty best-scoring ligands in the enzyme tunnel. From
here, it can be observed that all of the suggested ligands are bound
directly in the active site of the enzyme, thus interacting with its
heme prosthetic group. The ligand transport of the best-scoring
drugs can be further analyzed in the Supplementary material
(PyMOL session, MPEGs of the ligands transport, Excel sheet, and
raw data in CSV). The data provided in the supplementary files
show almost negligible differences in the top-scoring ligands as
the binding energies of the first and the last of the suggested
ligands differ in less than 1 kcal/mol. In general, 0.5 kcal/mol devi-
ation can be attributed to the heuristic nature of algorithms, and
therefore, the order of ligands can slightly change in each consec-
utive run. Thus, the user should not consider only one top-scoring
molecule as the final inhibitor but rather select several hits for
experimental validation.

4. Conclusions

The development of new sequencing strategies and the large
genome projects have unearthed the existence of thousands of
ubiquitously expressed human proteins from which currently
approved drugs target only a tiny fraction. This leaves many
proteins to be further exploited by pharmaceutical research.
In silico techniques provide a fast and cheap alternative to
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high-throughput screening. However, they are hard to set up, espe-
cially when dealing with the binding sites buried inside the protein
structure.

Caver Web is a web tool that incorporates Caver and CaverDock
software to provide users with a one-stop-shop solution for the
identification and geometrical analysis of tunnels and the calcula-
tion of the energy profile of the ligand transport along the selected
tunnels. Both aforementioned tools were previously successfully
utilized in various studies, including spike glycoprotein of SARS-
CoV-2 [51], and leukotriene [44]. However, in the previous version
of Caver Web, CaverDock was limited only to a single ligand anal-
ysis. A fully automated virtual screening pipeline using the prede-
fined set of 4,381 FDA+ drugs obtained from the ZINC15 database
was newly implemented into the Caver Web interface. Users can
start the scan of the FDA+ drugs with just a few clicks, and the
results are generated automatically. The energy profile of the
ligand transport can be visualized for each ligand or compared to
other ligands in a single plot. The transport path is generated in
the form of a PyMOL session, and all the results can be downloaded
as an Excel sheet or PDF report. Furthermore, for the transport
analysis of the individual ligands, the IDSM database was inte-
grated to allow the users to fetch ligands outside the ZINC data-
base’s scope easily.

Our virtual screening pipeline was evaluated on the cytochrome
P450 17A1, and the results were compared with the known
CYP17A1 inhibitors. We have analyzed the transport path of Abi-
raterone, Ketoconazole, Galeterone, and Seviteronel. According to
our expectations, Abiraterone has shown superior binding energies
compared to the older Ketoconazole. Furthermore, previously
investigated Galeterone slightly surpasses Abiraterone binding
capabilities (approximately 2 kcal/mol), while Seviteronel offers a
significantly lower energetic barrier (approximately 13 kcal/mol)
around the enzyme’s bottleneck residue. In the second step, we
run a fully automated virtual screening pipeline using the entire
set of 4,381 FDA+ drugs. All variations of Abiraterone contained
in the ZINC database have scored among the best potential inhibi-
tors for the CYP17A1 enzyme with a negligible difference in bind-
ing energies of less than 1 kcal/mol compared to the best-scoring
ligand. In contrast, many best-scoring drugs show the same or sim-
ilar function to Abiraterone. This leaves us with a large set of drugs
that could be potentially repurposed as Abiraterone alternatives.

To conclude, the new version of Caver Web introduces a fast
and effective virtual screening pipeline combining molecular dock-
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ing with ligand transport analysis over a wide range of ligands,
thus making it a viable service for the broader spectrum of the sci-
entific community. The server is freely available for non-
commercial use at https://loschmidt.chemi.muni.cz/caverweb.
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