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Histone 3 lysine27-to-methionine (H3-K27M) mutations most frequently
occur in diffuse midline gliomas (DMGs) of the childhood pons but are also
increasingly recognized in adults. Their potential heterogeneity at different
ages and midline locations is vastly understudied. Here, through dissecting
the single-cell transcriptomic, epigenomic and spatial architectures of a
comprehensive cohort of patient H3-K27M DMGs, we delineate how age and
anatomical location shape glioma cell-intrinsic and -extrinsic featuresin
light of the shared driver mutation. We show that stem-like oligodendroglial
precursor-like cells, present across all clinico-anatomical groups,

display varying levels of maturation dependent on location. We reveal a
previously underappreciated relationship between mesenchymal cancer
cell states and age, linked to age-dependent differences in theimmune
microenvironment. Further, we resolve the spatial organization of H3-K27M
DMG cell populations and identify a mitotic oligodendroglial-lineage niche.
Collectively, our study provides a powerful framework for rational modeling
and therapeuticinterventions.

Diffuse midline gliomas (DMG) driven by a lysine27-to-methionine  adults®®.Inchildren, the spatiotemporal pattern of H3-K27M DMG inci-
(K27M) mutation in histone 3 (H3) are among the most lethal brain  dence, peaking at 6-9 years of age in the brainstem pontine region, has
tumors' . Primarily identified in younger children (<10 years), thesame  shaped the hypothesis that the cell-intrinsic and -extrinsic context in
oncohistone mutationisalsorecurrently observedinmidlinegliomasin  whichthe K27M mutation occurs and elicits oncogenic transformation
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is developmental stage specific’. Indeed, previous studies have hinted
at precursor cells in the pons'® and an early neurodevelopmental
window" as spatiotemporal correlates in K27M mutation-mediated
gliomagenesis. Cell-intrinsically, the K27M mutation leads to broad
epigenetic dysregulation and thus transformation of adevelopmentally
restricted cell to atumorigenic stem-like state™'®, The resulting active
chromatin landscape reflects an early oligodendroglial lineage'*.
Single-cell RNA-sequencing (scRNA-seq) of pediatric, predominantly
pontine H3-K27M tumors, further demonstrated that most glioma cells
are stalled in a cancer stem cell-like oligodendrocyte precursor cell
(OPC)-like state that is capable of self-renewal and tumor initiation***,
Incontrast, more differentiated noncycling glia-like cells were shown to
have lost their tumorigenic capacity®. Together, this indicates OPC-like
cellstobeat the core of K27M mutation-mediated tumorigenesis, and
hence, may present astrategic therapeutic targetin pediatric pontine
H3-K27M DMGs.

However, it remainsincompletely understood whether H3-K27M
DMGs of different midline locations—such as thalamus, pons or spinal
cord—aswell as different age groups and different morphological fea-
turesat presentation, have similar cellular compositions. In particular,
the more recently recognized group of adolescent (10-19 years) and
adult (=20 years) H3-K27M DMGs remains understudied. Inaddition to
cell-intrinsicmodes of dysregulation, mounting evidence indicates that
microenvironmental factors critically contribute to glioma growth? 2,
and it has been suggested that the developing brain provides a per-
missive environment that can be exploited for pediatric brain tumor
growth?”*°, However, the interplay between age- and region-specific
tissue environments and the varying clinico-anatomical characteristics
of H3-K27M DMGs, and its contribution to tumor pathology remain
unexplored.

To address these questions, we have utilized single-cell
multi-omics and spatial transcriptomic approaches to profile an
extended cohort of H3-K27M DMGs encompassing a broad range of
age groups and anatomical locations. We thereby identify how age-
and location-dependent contexts underlie cell-intrinsic and -extrinsic
features that together determine variationin gliomaspatial and cellular
architecture in light of the common K27M mutation.

Results

Cohort of H3-K27M DMGs across age groups and locations

We conducted multi-omic profiling of 50 H3-K27M mutant patient
tumors, selected only by criteria of the oncohistone mutation, spanning
pontine (n=27), thalamic (n =20), lower brainstem (n=1) and spinal
(n=2)locations (Fig. 1a,b and Supplementary Table 1). The median
age was 12 (2.5-68) years, encompassing 36 pediatric (18 early child-
hood (0-9 years), 18 adolescent (10-19 years)) and 14 adult (20-68
years) tumors. Samples were obtained pre-treatment (n =30) and
post-treatment (n = 20) from 29 female and 21 male patients. We per-
formed deep full-length Smart-seq2 fresh single-cell (n = 18) or frozen
single-nucleus (n = 25) RNA-sequencing (scRNA-seq/snRNA-seq) of
43 tumors (Fig. 1a-c). We additionally analyzed the open chromatin
profiles of eight tumors utilizing the single-cell/single-nucleus assay
for transposase-accessible chromatin using sequencing (scATAC-seq/
snATAC-seq), as well as the single-cell spatial transcriptomic architec-
ture of 14 tumors by in situ sequencing (Fig. 1a,b).

To identify other mutations, we performed whole or targeted
exome sequencing in 43 of 50 tumors (Fig. 1b). Recurrent muta-
tions in TP53, PDGFRA and PIK3CA were broadly observed across all
clinico-anatomical groups stratified by age and location, while altera-
tions in HISTIH3B and BRAF were only rarely detected in childhood
tumors, whichisinline with previous reports of H3-K27M DMGs">%312,

Overall, our cohort covers a representative clinico-molecular
range of H3-K27M DMGs. Interestingly, we did not detect significant
differences in co-mutational profiles between different groups, and
next set out to investigate non-genetic features and heterogeneity of
H3-K27M DMGs across different spatiotemporal contexts.

H3-K27M DMG cell composition across age and location

We aimed at delineating and comparing transcriptional heterogeneity
withinour cohortstratified by age and location (Fig.1c,d and Extended
DataFig.1a-d). Complementary approaches assessing inter- and intra-
tumoral heterogeneity concordantly identified tumor cells differen-
tially expressing actively cycling, OPC-like, ‘astrocyte-like’ (AC-like),
‘oligodendrocyte-like’ (OC-like) and ‘mesenchymal-like’ (MES-like)
signatures (Fig. 2a-d, Extended Data Fig. 2a-g and Supplementary
Table 2). OPC-like cells were further resolved into three subpopula-
tions (OPC-like-1, OPC-like-2 and OPC-like-3) (Fig. 2c,d and Extended
Data Fig. 2b,c). Interestingly, the MES-like signature, which has
been described in glioblastoma (GBM)*****, has not been identified
in H3-K27M DMGs before, hinting at unique properties uncovered
from previously understudied clinico-anatomical groups within our
extended cohort.

OPC-like cells were ubiquitously presentinall tumorsindependent
ofageorlocation (Fig.2a,d and Extended Data Fig. 2e,f). Interestingly,
evenin this expanded cohort, we did not detect any neuronal lineage
tumor cells, placing thisin contrast to all other high-grade gliomatypes
andisocitrate dehydrogenase (IDH)-mutant glioma®* ¥, To investigate
whether this may be a phenomenon specific to the midline location,
we single-cell profiled two location- and age-matched IDH-mutant
midline gliomas (Supplementary Table 1), revealing that neuronal
lineage programs are present within rare midline IDH-mutant tumors
(Extended DataFig.2h). Hence, this comparison of primary gliomas of
the same location and age groups, but different genotypes, supports
adirect cell-intrinsic effect of the K27M mutation to skew tumor cells
toward a glial/OPC-like instead of a neuron-like identity.

We next reconstructed networks of active transcription factors
(TFs) and their downstream gene targets (gene regulatory networks
(GRNs)) (Fig. 2e and Supplementary Table 3) by single-cell regulatory
network inference and analysis (SCENIC)*®, We indeed found key GRNs
known from normal glial specification (for example, SOX10 in OPC-like
cells, TFEB in OC-like cells, SOX9 in AC-like cells) to be likewise active in
respective H3-K27M DMG tumor cell counterparts, highlighting paral-
lels between normal developmental and glioma cell fate determination.
Moreover, we identify GRNs (for example, GLI2 and NFATC4) that have
notyetbeenimplicated in normal development and may hence present
glioma-specific regulatory aberrations.

We next compared cellular compositions across tumor locations
and age groups (Fig. 2f,g and Extended Data Fig. 2i,j). Interestingly,
the MES-like metaprogram was substantially enriched in adult tumors
(Fig. 2f), which persisted when we controlled for location as a potential

Fig.1|H3-K27M DMG cohort profiled by single-cell multi-omics. a, Schematic
of the workflow. b, Clinico-molecular cohort characteristics. The upper legend
bars depict the single-cell profiling method by scRNA-seq (n =18)/snRNA-seq
(n=25),snATAC-seq (n = 8) and/or single-cell in situ sequencing (n = 14). The
lower row specifies the method of genetic characterization. Most frequently
detected and previously reported co-mutations are shown in the middle for 43 of
50 tumors profiled by whole or targeted exome sequencing. Clinico-anatomical
characteristics are shown by the bottom legend bars. ¢, UMAP of all cells

profiled by scRNA-seq/snRNA-seq. The color legend highlights malignant,

types of nonmalignant cells detected based on clustering, copy number profiles
and expression of canonical marker genes. For this visualization, scRNA-seq/
snRNA-seq data were integrated by the Harmony algorithm, while downstream
analyses were performed separately on scRNA-seq and snRNA-seq data to
control for technical biases. d, Copy number alteration (CNA) profiles inferred
from scRNA-seq/snRNA-seq data. Cells are ordered by their original tumors as
rows and are clustered by their pattern of CNAs across chromosomal locations
(columns). Representative fresh spike-in nonmalignant cells lacking CNAs are
shownontop.
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confounding factor (Extended Data Fig. 2i). This was validated by
RNA insitu hybridization (Fig. 2h). Except for one NF1-mutated pedi-
atric tumor (Fig. 1b), which was associated with a stronger MES-like
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non-genetic determinants may underlie the observed age-specificity.
As such, this age-related difference points toward the emerging role
of the tumor microenvironment in shaping the MES-like signature, as
hasbeenillustrated in recent studies?**°.

Together, we demonstrate that H3-K27M DMGs are biased toward
an OPC-like cellidentity independent of age or midline location, which
suggests cell-intrinsic effects of the K27M oncohistone mutation itself
rather than environmental determinants to underlie this cellular state.
Contrastingly, anassociation with ageis observed for the MES-like sig-
nature (Fig. 2i), potentially linking this cellular state to cell-extrinsic/
environmental drivers.

Location specificity of OPC-like subpopulations

We next examined the three OPC-like subpopulations uniquely detected
in our extended scRNA-seq dataset, termed OPC-like-1, OPC-like-2
and OPC-like-3 (Figs. 2¢,d and 3a). While all OPC-like subpopula-
tions were defined by high expression of canonical OPC markers (for
example, PDGFRA, SOX10 and OLIG1/2), these markers together with
other known marker genes of committed OPCs (for example, CSPG4,
GPR17 and EPN2) were most highly expressed by OPC-like-1 cells
(Fig. 3a—c)**% In contrast, OPC-like-2 and -3 cells depicted
higher expression of marker genes linked to more immature oligo-
dendrocyte precursors of the developing brain, also termed
pre-OPCs—astate of oligodendroglial lineage differentiation between
less differentiated neural stem cell and more differentiated OPC
(for example, ASCL1, HES6, BTG2, DLL1 and EGFR) (Fig. 3¢)**. Addi-
tionally, OPC-like-2 cells highly expressed genes encoding riboso-
mal proteins (for example, RPL17 and RPS18), and OPC-like-3 cells
exhibited higher expression of immediate early response genes
(for example, JUNB and EGRI) (Fig. 3a), which have been previously
described as markers of different normal (pre-)OPC subpopulations***.
When we projected these OPC-like subpopulations onto scRNA-seq
atlases of the human telencephalon and mouse cortex****¢, the
OPC-like-1 subpopulation indeed mapped to committed/maturing
OPCs, whereas OPC-like-2 and OPC-like-3 cells were more similar to
pre-OPCs (Fig. 3d-f and Extended Data Fig. 3a—c). Comparison with
cell populations from other glioma types and trajectory analyses
(Extended Data Fig. 2c; 3d,e) also pointed toward a more immature
state of OPC-like-2 and OPC-like-3 cells, and stronger lineage commit-
ment of OPC-like-1 cells.

Analysis of OPC-like subpopulation-specific GRNs using our
scRNA-seq dataset identified TFs suchas SHOX2 and OTX2 to be most
specificallyactivein OPC-like-1cells (Fig.3gand Supplementary Table 3).
GRNs specific to OPC-like-2 cells included Notch signaling regulator
HES6 as well as multiple patterning TFs of the HOX family, and GRN char-
acteristics of OPC-like-3 cells were linked to the AP-1 TF family (Fig. 3g).
Of note, HOX patterning TFs have been demonstrated to be expressed
in mice embryonal pre-OPCs while being downregulated in postnatal
OPCs**. Moreover, immediate early response regulators have been
implicated as specific to human pre-OPCs compared to committed

OPCs*, further hinting at a more immature and pre-OPC:-like state of
DMG OPC-like-2 and OPC-like-3 cells.

We next compared proportions of these OPC-like subpopula-
tions across our spatiotemporally stratified cohort and observed a
remarkable enrichment of pre-OPC-like (OPC-like-2 and OPC-like-3)
cellsin pontine compared to thalamic tumors. Conversely, OPC-like-1
cells were enriched in thalamic tumors (Fig. 3h). These differences
remained when stratifying for age groups as potential confounders
(Extended DataFig. 2j).

Therefore, weidentify tumorlocation as a contextual determinant
of OPC-like states, withimmature pre-OPC-like progenitors enriched
in pontine, and more committed OPC-like cells enriched in thalamic
tumors.

The open chromatin landscape of H3-K27M DMG cell
populations
To resolve how H3-K27M DMG cellular heterogeneity is governed at
the chromatin level, we probed single-nucleus accessible chromatin
profiles by snATAC-seq of eight tumors complementing their single-cell
transcriptomes. De novo annotation of malignant cell clusters proved
largely concordant with scRNA-seq-derived cell populations and
included anadditional group of AC-like (AC-like-alternative) cells with
increased gene activity scores for synaptic marker genes (for example,
GABBR2, GRIA1 and CAMK2B) (Fig. 4a,b, Extended Data Fig. 4a-f and
Supplementary Table 4; Supplementary Note). Cross-modality integra-
tion with scRNA-seq data further demonstrated overall congruence
between chromatin- and transcriptome-defined cell states (Extended
DataFig.4g). Notably, this alsorevealed distinct clusters of OPC-like-1,
OPC-like-2 and OPC-like-3 cellsinsnATAC-seq space (Extended Data Fig.
4h). Concordant with our scRNA-seq findings, OPC-like-2and OPC-like-3
cellsalso exhibited similarities with pre-OPCs at open chromatin level,
whereas OPC-like-1 cells depicted higher chromatin accessibility for
genes also described in healthy committed OPCs* (Extended Data
Fig. 4h-j). Thus, our finding of different OPC-like subpopulations is
represented at both transcriptome and accessible chromatin levels.
As snATAC-seq resolves gene-distal and intragenic accessible
chromatin regions containing potential cis-regulatory DNA elements
(CREs) that underlie gene expression, we next inferred putative
CREs integrating snATAC-seq and scRNA-seq modalities. By corre-
lating snATAC-seq-derived accessible chromatin regions/peaks to
scRNA-seq measured expression levels of their nearest associated
gene (Fig. 4¢)**%, we identified 13,632 potential peak-gene links of
CREs and their target genes (Supplementary Table 4 and Extended
DataFig. 4k). Among these, 287 genes exhibited more than eight (top
5%) linked CREs, denoting high regulatory locus complexity that has
been described as ‘predictive’ chromatin and thereby a determinant of
key lineage marker genes (Fig. 4d,e)**s. Weidentified a higher number
of genes linked with predictive chromatin (termed ‘GPCs’) specific to
OPC/OC-like as compared to AC-like/MES-like cells, indicating highly
cooperative regulation of the oligodendroglial lineage pervasively

Fig.2|Intratumoral transcriptional heterogeneity of H3-K27M DMGs. a,
UMAP of all fresh tumor cells, highlighting identified clusters. b, Marker genes
(yaxis) of identified fresh tumor cell clusters, grouped and annotated on the x
axis. Dot sizes represent the percentage of cells expressing the gene in the given
cluster, and the color scale shows scaled average relative expression. ¢, Heatmap
representing the relative expression (color bar) of the top 30 marker genes
(rows) for the tumor metaprograms identified by NMF across all fresh tumor cells
(columns). d, Proportions (y axis) of fresh tumor-derived NMF metaprograms
(colorlegend) in tumor cells for each fresh sample (x axis). e, Cell type-specific
TF regulatory networks (regulon, x axis) derived by SCENIC, plotted against
their normalized specificity score (y axis). f, Boxplots representing relative
frequencies of metaprogramsin all fresh and frozen tumorsin adult (n =10)
versus pediatric (n = 23) age groups. The median is marked by the thick line
within the boxplot, the first and third quartiles by the upper and lower limits, and

the 1.5 timesinterquartile range by the whiskers. Three asterisks denote credible
statistical changes as assessed by a Bayesian scCODA model with FDR < 0.05 and
without multiple test corrections. g, Boxplots representing relative frequencies
of metaprogramsin all fresh and frozen tumors grouped by pontine (n =19)
versus thalamic (n = 14) locations. The median is marked by the thick line within
the boxplot, the first and third quartiles by the upper and lower limits, and the
1.5timesinterquartile range by the whiskers. Three asterisks denote credible
statistical changes as assessed by a Bayesian scCODA model with FDR < 0.05

and without multiple test corrections. h, RNA in situ hybridization for MES-like
(CD44) and macrophage (CD14) markers in two adult and two pediatric H3-K27M
DMGs. Two to three slides were stained for each sample with 10-15 fields of view
taken per slide. i, Two-dimensional representations of the OC-like versus AC-like
(xaxis) and OPC-like (y axis) scores for adult and pediatric H3-K27M DMGs,
respectively.
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underlying H3-K27M DMGs (Fig. 4e; Methods). Because large groups of
CREsarerelated to the concept of ‘super-enhancers’**¢, we overlayed
our candidate GPCs with H3-K27ac ChIP-seq derived super-enhancer
profiles of H3-K27M primary tumors'. This demonstrated asignificant
overlap of GPCs with H3-K27M DMG super-enhancer regulated genes
(Fig. 4f), and further points toward a key role of these multimodally
derived marker genesin orchestrating H3-K27M tumor cell identities.

We next sought to reconstruct and refine interdependent cir-
cuits of gene regulation by integrating expressions and activities of
TFsinferred from scRNA-seq and enrichment of TF binding motifs in
CREs derived from snATAC-seq (Methods). We identified 65 putative
cell state-specific TFs that our analysis indicated to be (1) expressed
at sufficient levels, (2) binding to characteristic motifs substantially
enriched in CREs and (3) altering expressions of downstream target
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Fig.3|Region-specific states of OPC-like cells. a, Heatmap representing
the relative expression (color scale) of the top 30 marker genes (rows) for the
different OPC metaprograms across all fresh tumor cells (columns). b, Violin

cell) (y axis) from a scRNA-seq dataset of the human developing cortex*'. Color
scale presents expression scores of normal cell signatures in tumor cells, while
dotsizes depict expression scores of tumor cell signatures in normal cells. f,

Projection of OPC-like-1, OPC-like-2 and OPC-like-3 populations (x axis) onto
different normal OPCs of varying maturation stages (y axis) from a scRNA-seq
dataset of the neonatal mouse cortex*. Color scale presents expression scores of
normal cell signatures in tumor cells, while dot sizes depict expression scores of
tumor cell signatures in normal cells. g, TF regulatory networks (regulon, x axis)
derived by SCENIC for each tumor OPC-like subpopulation, plotted against their
normalized specificity score (y axis). h, Dotplots representing the distribution
(mean +2 x s.e.m.) of the proportions of different OPC-like tumor states across
all fresh tumors grouped by pontine (n =11) and thalamic (n = 6) locations. Three
asterisks denote credible statistical changes as assessed by a Bayesian scCODA
model, with FDR < 0.05 and without multiple test corrections.

plots depicting log normalized absolute expressions of canonical OPC marker
genesin OPC-like-1, OPC-like-2 and OPC-like-3 subpopulations. Expressionsin
AC-like cells (orange) are shown for comparison. ¢, Heatmap representing the
relative expression (color scale) of canonical pre-OPC and OPC marker genes
(rows) intumor OPC-like-3, OPC-like-2 and OPC-like-1 populations (columns).

d, Projection of OPC-like-1, OPC-like-2 and OPC-like-3 populations (x axis)

onto normal pre-OPC and OPC (y axis) from a scRNA-seq dataset of the human
hippocampus*. Color scale presents expression scores of normal cell signatures
intumor cells, while dot sizes depict expression scores of tumor cell signaturesin
normal cells. e, Projection of OPC-like-1, OPC-like-2 and OPC-like-3 populations
(xaxis) onto normal pre-OPC, OPC and OAPC (HOPX'SPARCLI" glial progenitor
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genesina cell-type-specific manner (Fig. 4g). Moreover, we examined
which TFs potentially regulate GPCs, focusing on TFs predicted to
regulate expressions of GPCs and having binding sites detected within
GPC-linked CREs. For example, the OPC-like marker gene SEZ6L is dif-
ferentially expressed and accessible in OPC-like cells, and is linked to
16 CREs containing TF binding sites of SOX8, which is again predicted
to be differentially active in OPC-like cells (Fig. 4h). We describe the
same interdependencies between gene expression, chromatin acces-
sibility and enrichment of cell state-specific TFsin CREs for GPCs of all
tumor cell states, such as for AC-like marker gene /TPKB (Fig. 4i), which
islinked to 11 CREs that harbor TF binding sites for SOX9, NFATC4 and
RFX3, whoseregulons are predicted to govern the expression of ITPKB.
Together, our data further corroborate the closely interwoven and
cell state-specific loops of chromatin regulation and gene expression
identified at multiple levels.

In summary, we show that single-cell chromatin accessibility
independently recapitulates the main cellular lineages identified in
corresponding single-cell transcriptomes of H3-K27M DMG tumors.
Our multimodal analysis reveals putative cell state-specific CREs as
building blocks of larger GPC-associated regulatory complexes. These
GPCsareenriched in OPC-like/OC-like cells, reinforcing the central role
oftheoligodendroglial lineage in H3-K27M DMGs. These results canbe
leveraged to more deeply investigate select key intrinsic regulators of
H3-K27M DMG cell identities.

The age-specific myeloid cell landscape in H3-K27M DMGs
Various cellular and structural components constitute the glioma
microenvironment and extrinsically influence glioma cellidentities***°.
Itremains tobe elucidated whether these components are character-
istic of their respective location or age-related brain environments.
Here our age- and location-stratified H3-K27M glioma cohort uniquely
lendsitselfto dissecting such context-specific differenceslargely inde-
pendent of tumor subtype and genetic drivers. Because glioma- or
tumor-associated myeloid cells (GAMs/TAMs) presented the largest
proportionof nonmalignant cells within our scRNA-seq dataset (Fig. 1c),
we focused on characterizing and comparing this microenvironmental
component across our clinico-anatomical patient groups.

We classified TAMs into brain-resident microglia or
monocyte-derived macrophages using reported sets of canonical
marker genes® (Fig. Sa-c). Overall TAM proportions were not different
between adult and pediatric samples (Extended Data Fig. 5a). However,
comparison of microglia versus macrophage proportions across age
groups revealed a higher rate of microglia in pediatric DMGs, while
adult DMGs contained higher rates of macrophages (Fig. 5d). Tumor
location did not seem to influence these proportions (Extended Data
Fig.5b).

Mounting evidence suggests a causal role of TAMs in establishing
amesenchymal cell state in GBM through TAM-secreted ligands bind-
ing toreceptorsonglioma cells, such as between ligand-receptor pair
OSM-OSMR, or via chemokine signaling”****', Given the significant
enrichment of MES-like cells inadults compared to pediatric H3-K27M

DMGs in our cohort, we hypothesized that this may be driven by differ-
encesinsuch tumor-immuneinteractions. We indeed detected higher
expression of OSM in adult TAMs, and the corresponding receptor
OSMR in adult tumor cells (Fig. 5e,f), indicating immune-mediated
engagement of a previously validated pathway” in inducing the
MES-like phenotypeinadult tumors. Moreover, we observed increased
expression of MES-like marker genes in adults compared to pediatric
TAMs, which were shown to be increased in mesenchymally enriched
gliomas” (Fig. 5g). To assess whether these transcriptional differences
of MES-like state marker genes and inducing ligands may beinherent to
normal brain myeloid cells during temporal development and aging, we
analyzed gene expressions across age in anormal mouse brain myeloid
cellatlas.Indeed, we observed anincrease of ligands such as OSM and
of mesenchymal marker genes with age (Fig. 5h)*?, supporting that the
increase of the H3-K27M DMG tumor MES-like state with age is linked
to changes of the brain myeloid compartment that also occur during
normal development and aging processes.

Last, weinterrogated receptor-ligand interactions between TAMs
and OPC-like subpopulations, revealing shared OPC-wide (for example,
SEMA3E-PLXND1) and subpopulation-specific interactions (Extended
Data Fig. 5c-f). This may point toward a harnessing of microenviron-
mentalfactorsinreinforcingthe OPC-like lineage and further determin-
ing their varying maturation, which provides the basis for follow-up
investigations to better understand the contributions of cell-extrinsic
regulators to the different OPC-like states.

In summary, we reveal that adult H3-K27M DMGs harbor higher
proportions of monocyte-derived macrophages, while pediatric
tumors are enriched for brain-resident microglia. We also show that
H3-K27M DMG-associated TAMs upregulate ligands and marker genes
that caninduce tumor cell MES-like states with increasing age, thereby
linking the age-specific tumor immune microenvironment to the
observed increase of MES-like tumor cells in adult H3-K27M DMGs.
This illustrates how age-related microenvironmental factors can dif-
ferentially shape tumor cellular states.

Charting the single-cell spatial architecture of H3-K27M DMG
To map our scRNA-seq/snATAC-seq derived cell populations to their
spatial positions within intact H3-K27M DMG tissues, we performed
hybridization-based in-situ sequencing (HybISS)** in 16 patient
H3-K27M DMG tissue sections (14 different tumors, 2 tumors with
multi-region sampling), using a panel of 116 cell-type-specific com-
binatorial marker genes curated from our scRNA-seq dataset (Fig. 1b,
6a-c, Extended Data Fig. 6a-e and Supplementary Table 5).
Weanalyzed spatial cell state compositions by probabilistic cell typ-
ingbyinsitusequencing (pciSeq). Here weinterestingly observed AC-like
cells to constitute the major malignant cell compartment (Fig. 6¢),
which is in contrast to the predominance of OPC-like cancer cells
observed by scRNA-seq. This held true across tumor sections of
different sizes, cell densities and qualities. Our spatial analysis also
identified larger numbers and diversity of nonmalignant cell types,
that were either not detected or showed only low representation in

Fig. 4 | Characteristic chromatin profiles of H3-K27M DMG cell populations.
a, UMAP of all snATAC-seq derived tumor nuclei after batch effect correction,
highlighting de novo assigned clusters. b, Dotplot representation of top marker
genes with differential gene activities (color scale) and proportion of nuclei
accessible (dot size) within snATAC-seq derived cell states. ¢, Heatmap showing
normalized chromatin accessibility and gene expressions 0f 13,632 substantially
linked CRE-gene pairs (left rows, chromatin accessibility; right rows, linked
gene expressions). Rows were clustered using hierarchical clustering. For
visualization, 5,000 rows were randomly selected. d, Barplot representing
distribution of numbers of linked CREs per gene. Red dashed line denotes the
top 5% threshold of numbers of linked CREs that define GPC. e, Ranking of genes
(xaxis) by numbers of linked CREs (y axis) highlighting genes with top 20 linked
CREsin color. Genes differentially expressed in a tumor cell state or identified as
acell state-specific TF regulon by SCENIC are colored according to the legend.

f, Venn diagram representing overlap of GPCs with H3-K27M DMG super-
enhancer associated genes, identified by Nagaraja et al.””. Pvalue of a two-sided
hypergeometric testis shown. g, Dotplot of integrative TF analysis representing
the top cell state (columns)-specific TFs (rows). Average relative expression level
assessed by scRNA-seq is depicted by dot size, and relative activity inferred by
SCENIC analysis is presented by color scale. h,i, Integrative representation of
gene lociof the h, OPC-like cell-specific SEZ6L gene, and i, AC-like cell-specific
ITPKB gene. At the top, pseudobulk chromatin accessibility track plots are shown
colored by cell type. In the middle row, bars depict the locus of putative CREs. In
the bottom row, loops denote the correlation between chromatin accessibility of
each peak and expression of its linked gene, representing putative CREs that are
enriched for the OPC-like cell-specific SOX8 (h), AC-like cell-specific SOX9 (i),

TF motifs, respectively.
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scRNA-seq (Extended Data Fig. 6e). Because larger numbers of cells  of true cell state compositions than conventional scRNA-seq. Strati-
areassessed on average, and processing-associated biases arereduced  fication within our spatially profiled cohort again revealed that adult
inintact tissues, spatial transcriptomics is likely more representative  H3-K27M DMG sections harbor substantially higher proportions of
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Fig. 5| The myeloid cell landscape of H3-K27M DMGs. a, UMAP of TAMs
analyzed by scRNA-seq, color scaled by expression scores for microglia and
macrophage gene sets. b, UMAP of TAMs colored by classification as macrophage
or microglia cell type. ¢, Violin plot depicting log normalized expression levels
of representative microgliaand macrophage marker genes across TAMs scored
aseither microglia or macrophage. d, Dotplots representing the distribution
(mean + 2 x s.e.m.) of assigned macrophage versus microglia proportions
across adult and pediatric tumors (N =16 biologically independent samples).
Three asterisks denote credible statistical changes determined by a Bayesian
scCODA model with FDR < 0.05 and without multiple test corrections. e, Violin
plots of log normalized expression levels of OSM gene in adult and pediatric
TAMs. Three asterisks denote P= 0.003 (two-sided Kolmogorov-Smirnov

test). Three asterisks in light green represent comparisons between adult and
pediatric tumors for macrophages. f, Violin plots of log normalized expression
levels of OSMR gene in adult and pediatric tumor cells. Three asterisks denote

P=0 (two-sided Kolmogorov-Smirnov test). g, Violin plots of log normalized

expression levels of MES-like marker genes in adult and pediatric TAMs. Pvalues
from different comparisons are shown (two-sided Kolmogorov-Smirnov tests;
black: within age-group comparisons between macrophages and microglia; light
green: adult versus pediatric macrophages; dark green: adult versus pediatric
microglia). h, Heatmap representation of scaled relative expressions (color scale)
of MES-like state-associated ligands and marker genes (rows) in a single-cell atlas

of normal mice microglia and brain myeloid cells across different age groups

(E14.5,P7,P60)* (columns).

MES:-like tumor cells relative to pediatric tumors (Fig. 6d), orthogonally
underscoring the association of age with the MES-like state.

We next performed neighborhood enrichment analyses to investi-
gate spatial relationships between individual cell populations. Here we
observed marked variability in neighborhood structures, highlighting

overallintertumoral spatial heterogeneity (Supplementary Fig. 3). Global
analysis of malignant cellneighborhoods indicated higher colocalization
of OPC-like/cyclingand OC-like cells (Fig. 6e). We validated these findings
on the protein level by multiplexed immunofluorescence (IF) imaging
(codetectionbyindexing (CODEX)system)infourH3-K27Mgliomas (Fig. 6f
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and Extended Data Fig. 6f-h). Concordantly, this approach indicated cells (Extended DataFig. 6i), pointingtoward increased vascularization
a preferred mitotic niche of proliferating OPC-like and OC-like cells, that hasbeen associated with the mesenchymal state**. Withinasubset
encircled by more differentiated, nonproliferating AC-like cells (Fig. 6f).  of samples (7 of 12with>1,000 cells profiled), we also observe increased

Neighborhood analysis between cancer and noncancer cells  colocalization of microglia/macrophages with MES-like, OC-like and
revealed closer proximities between vascular cellsand MES-liketumor  AC-like cancer cells (Supplementary Fig. 3).
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Fig. 6 | The single-cell spatial transcriptomic architecture of H3-K27M DMGs.
a, Schematic of HybISS experimental approach. Briefly, mRNA is amplified

insitu by RT, and the product cDNA is hybridized with a custom complementary
padlock probe. Next, RCA reaction is run to generate ablob of DNA that can
thenbe barcoded with individualized gene bridge probes and fluorescently
barcoded. Afterimaging, the sampleis stripped of bridge probes, and the cycleis
repeated five times with different fluorophores for decoding and identification
of gene signals based on their decoding sequence. b, Representative image of
malignant and nonmalignant cell type/state assignments in one primary human
H3-K27M DMG section (UMPED65_A2;1experiment over the entire tumor
section with N=22,813 cells assigned), outlining the distribution of malignant
and nonmalignant cell populations within the sample. ¢, Proportions (x axis)

of scRNA-seq derived tumor cell states (color legend) identified by pciSeq

across 16 human H3-K27M DMG samples (y axis). d, Violin plot representing

the distribution of MES-like cell proportions in adult compared to pediatric

H3-K27M DMGs (N = 7,004 MES-like cells across 16 biologically independent
samples) profiled by spatial transcriptomics. Whiskers show minimum/
maximum proportions. An asterisk denotes P = 0.024 (two-sided t-test). e,
Heatmap representations of neighborhood enrichment analysis between
malignant cell populations, identified at 50 pm, across all samples. The color
scale denotes the probability of finding a cellwhen asecond cell type is presently
divided by the probability of finding the second cell type. f, Representative
multiplexed IF CODEX images from three of four primary human H3-K27M
DMGs, showing spatially distinct subpopulations of malignant (marker:
H3-K27M) OPC-like (marker: PDGFRA), OC-like (marker: BCAS1), AC-like (marker:
GFAP) and proliferating cells (marker: Ki67). For each tumor, one experiment
was performed with ~70,000 to 1.2 million individual cells profiled per sample
over the entire tumor section. g, Sample-wide scatter plot representing each

cell population’s tendency to cluster with other cell populations (degree of
centrality, y axis) or to cluster with themselves (clustering coefficient, x axis).

Further, we assessed the tendencies of each cell population to
either form their own homogeneous cluster, by calculating their clus-
tering coefficient (that is, degree to which members of a cell popula-
tion favor clustering together), or to cluster heterogeneously with
other populations, as represented by their degree centrality (that is,
ratio of nonmembers connected to members of a cell population).
Here we observed that AC-like cells, nonmalignant astrocytes and
TAMs depicted the highest tendency to cluster with other cell types/
states, hinting at their more diffuse distribution rather than localiza-
tionwithinarestricted spatial compartment. In comparison, vascular
cells, neurons, and cycling OPC-like cells exhibited a higher tendency
to cluster with members of the same cell population, which s further
indicative of a propensity to formspecific structures/niches (Fig. 6g).

In summary, we resolved the spatial architecture of scRNA-seq-
defined H3-K27M DMG cell populations directly within the native
tumor tissue. Our results shed light on global and heterogeneous
cellular relationships and neighborhoods, notably suggesting the
presence of mitotic stem-like niches in which H3-K27M tumor cells of
oligodendroglial lineage (OPC-like and OC-like cancer cells) colocalize.
These findings lend themselves to further investigation of potential
therapeutic avenues directed at regional and temporal perturbation
of H3-K27M DMG tumor cell populations and their associated niches.

Discussion

We previously demonstrated the preponderance of OPC-like tumor
cellsinseven pediatric H3-K27M DMGs through scRNA-seq. However, it
remained unknownwhether the same cellular composition—proposed
toarise asafunction of early pontine development—holds true across
multiple spatiotemporal environmentsin which these tumors occur. To
address these questions, we generated a multi-omic single-cell atlas of
H3-K27M DMGs, comprising various midline locations and ages rang-
ing from 2 to 68 years. Our data shed light on understudied thalamic
locations and adolescent/adult age groups and provide a blueprint for
the spatiotemporal context-specificity of tumor cell-intrinsic proper-
ties, spatial tissue architectures, and microenvironmental interactions
that co-orchestrate cellularidentity against the backdrop of the shared
K27M driver mutation.

Our study reveals a ubiquitous presence of OPC-like and more
differentiated glia-like cells across all clinico-anatomical groups.
Concomitantly, neuronal-like tumor cells are absent, which is inde-
pendent of age and location and stands in contrast to other glioma
types. Thus, this likely presents direct consequences of the K27M
mutation universally skewing tumor cells toward an OPC-like and away
from aneuronal-like state, decoupled from spatiotemporal influences.

We identify two major variable features as a function of regional
or temporal context, respectively (Fig. 7):

First, we resolve pontine H3-K27M DMGs to harbor more imma-
ture pre-OPC-like tumor cells than their thalamic counterparts. This

raises the question of whether this diversity reflects region-specific
cell-intrinsic features oritis driven by local environmental interactions.
While normal murine OPCs have been shown to lack heterogeneity
across different brain regions***, it is possible that region-specific
microenvironments provide distinct cues to differentially foster OPC
differentiation. This has been observed in the gray matter where OPC
differentiation takes place more slowly compared to white matter***’. In
glioblastoma, the white matter has likewise been suggested as a prodif-
ferentiative niche for oligodendroglial lineage stem-like cells*®. It will
be of interest to explore in future studies what extrinsic factorsin the
ponsrelative to the thalamus may contribute to preserving healthy and
aberrant OPC(-like cell)s in aless committed pre-OPC(-like) state and
how these specific microenvironmental contexts could be perturbed
by targeting such factors.

The finding of a more immature precursor-like cell is accord-
ant with previous modeling studies postulating embryonic neural
stem/progenitor cellsinstead of OPCs as the H3-K27M DMG cell of ori-
gin'*?"%2, While the K27M mutation could occur in such an earlier state,
it subsequently induces a cellular arrest in a self-renewing OPC-like
state*’, and the hypothesized original cell of mutation may become
diluted and eliminated from fully transformed tumors’. Taken together,
theliterature supports theideathat the cell state of transformationis
an oligodendroglial lineage precursor, whose precise state may vary
from pre-OPC to more mature OPC with different histone variants',
anatomical locations and ages.

Second, we observe the mesenchymal signature to increase with
higher age, which we link to age-related differences in TAMs that have
beenillustrated toinduce this myeloid-affiliated tumor signature %+,
Asthe mesenchymalstate has been associated with amore aggressive
phenotypeinabroad range of solid tumors®***, and mesenchymal- and
myeloid-directed therapies are under active investigation, it will be of
interest toinvestigate such an age and outcome associationin H3-K27M
gliomas and other tumors.

Lastly, we reconstructed the single-cell spatial architecture of
patient H3-K27M tumors, identifying a niche of proliferating OPC-like/
OC-like tumor cells, surrounded by AC-like cells, which constitute the
major tumor cell population insitu. This finding contrasts the predomi-
nance of OPC-like cells observed by conventional and especially fresh
scRNA-seq and may arise due to technical and biological reasons. As
AC-like glioma cells have been shown to be interconnected through
tumor microtubes'**®, we speculate that they may be less viable and
more sensitive to tumor dissociation, thereby biasing toward capturing
more aggressive OPC-like cellsinscRNA-seq. By contrast, AC-like cells
may be better preservedin frozen snRNA-seq and spatial approaches.
Such a potential predominance of AC-like cells instead of OPC-like
cells does not stand in contrast to the proposed role of OPC-like cells
asthe stem-like drivers of H3-K27M DMGs and would align withamore
traditional model in which cancer stem cells present the minority of
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Fig.7|Schematic summary of the spatiotemporal context-specific
composition of H3-K27M DMGs. Comparisons are between pediatric versus
adult patient groups (x axis) and pontine versus thalamic midline locations
(yaxis) and arepresentative model image of tumor cell composition is

depicted, respectively. All tumor groups are abundant in OPC-like cells and

also harbor more differentiated AC-like, OC-like, MES-like and nonmalignant
microenvironmental cells, but lack tumor cells of the NPC/neuronal lineage, as
delineated by single-cell multi-omics (color legend). MES-like cells increase with
age, asindicated by the green arrow, whichis associated with age-related changes

Pediatric

inthe tumorimmune microenvironment; in particular, higher proportions

of microgliain pediatric tumors as opposed to increased proportions of
macrophages in adult tumors. Location specificity exists for varying maturation
stages of OPC-like cells—pontine tumors harbor less mature pre-OPC-like

cells, while thalamic tumors are enriched for more mature lineage-committed
OPC-like cells, either as aresult of region-specific cell-intrinsic features or due
tolocation-related diversification driven through interactions within the local
environmental niche.

tumor cells®®. With the emergence of spatial technologies, it will be
relevant to assess whether similar differences are observed throughout
other tumor types and biological systems, pinpointing the importance
of multimodal profiling to further refine models derived primarily
through the lens of a single modality.

Altogether, we provide an extensive resource of H3-K27M DMG
cellular heterogeneity across space and time that lends itself to
delineating the multi-faceted interplay between spatiotemporal
context-specific cellular properties and microenvironmental niches
for the design of rational modeling studies and therapeutic frame-
works tailored to the different clinico-anatomical groups of this lethal
glioma.

Online content
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Methods

Human subjects and ethical considerations

Allsamples usedinthis study were deidentified and obtained with prop-
erly informed consent of patients and/or their legal representatives,
who did not receive compensation. The study was approved by the
Institutional Review Board at Boston Children’s Hospital/Dana-Farber
Cancer Institute (DFCI 10-417) and at affiliated research hospitals
or via waiver of consent as appropriate. Clinical information (age,
sex and location) and mutation status are presented in Fig. 1b and
Supplementary Table 1.

Tumor tissue collection and dissociation

Fresh tumor tissue acquired at the time of surgery was immediately
mechanically and enzymatically dissociated for 30 min at 37 °C using
the Brain Tumor Dissociation Kit (Miltenyi Biotec). Single-cell suspen-
sions were filtered through a 70 pm strainer, centrifuged at 500g for
5min,and resuspended in PBS/1% BSA for fluorescence-activated cell
sorting (FACS).

To extract single nuclei from frozen tissues for snRNA-seq,
snap-frozen or OCT-embedded tumor tissue was disaggregated on
ice in 1 ml 0.49% CHAPS detergent-based nuclear extraction buffer®,
aided by mild chopping. Single-nuclei suspensions were filtered using
a 40 pm strainer and centrifuged at 500g for 5 min. All steps were
performed at4 °C.

To prepare single-nuclei suspensions for snATAC-seq, snap-frozen
DMG tissue waslysed oniceinlysis buffer (10 mM Tris—HCI,10 mM NaCl,
3 mMMgCl,,1%BSA, 0.01% Tween-20, 0.01% NP-40, 0.001% digitonin)
under mild chopping for 5 min, followed by ten times mixing using a
wide-bore pipette tipand 10 minincubation onice. Wash buffer (10 mM
Tris-HCI, 10 mM NaCl, 3 mM MgCl,, 1% BSA, 0.1% Tween-20) was added
and mixed five times before filtering through 70 and 40 pm Flowmi cell
strainers. Single-nuclei suspensions were then centrifuged at 500g
for5minat4 °C, resuspended in1x diluted nuclei buffer and counted.

scRNA-seq/snRNA-seq data generation

Whole transcriptome amplification, library preparation and sequenc-
ing of single cells/nuclei were performed using the Smart-seq2 modi-
fied protocol®***>%¢° RNA was purified with Agencourt RNAClean
XP beads (Beckman Coulter). Oligo-dT primed reverse transcription
(RT) was performed using Maxima H Minus reverse transcriptase (Life
Technologies) and atemplate-switching oligonucleotide (TSO; Qiagen).
PCRamplification (20 cycles for scRNA-seqand 22 cycles for snRNA-seq)
was performed using KAPA HiFi HotStart ReadyMix (KAPA Biosystems),
followed by Agencourt AMPure XP bead (Beckman Coulter) purifica-
tion. Libraries were generated using the Nextera XT Library Prep kit
(Ilumina). Libraries from 768 cells with unique barcodes were combined
andsequenced using aNextSeq500/550 High OutputKit v2.5 (Illumina).

SCATAC-seq data generation

SCATAC-seq libraries were generated using the 10X Chromium
Controller and Chromium Next GEM Single Cell ATAC & Library Gel
Bead Kit v1.1 kit according to the manufacturer’s instructions (Docu-
ment CG000209). Briefly, 7,000-10,000 nuclei were tagmented at
37°Cfor 60 minandloaded on a Chromium Next GEM Chip H and Chro-
mium Controller for generation of single-cell Gel Bead-In-Emulsions,
followed by linear amplification of barcoded tagmented DNA. GEMs
were then broken up, DNA fragments were purified using Dynabeads
MyOne SILANE (10X 2000048) and SPRIselect Reagent (Beckman Coul-
ter, B23318), and further PCR-amplified for 10-11 cycles undergoing
sample indexing. Libraries were sequenced using a NextSeq 500/550
High Output Kit v2.5 (Illumina) at targeted 25,000 reads per cell.

Gene selection for targeted HybISS
Gene panel selection was based on the scRNA-seq data from ten
H3-K27M DMG patient tumors spanning multiple clinico-anatomical

groups and on published datasets of normal brain-resident cell types™
(Supplementary Table 5). Genes were prioritized based on differen-
tial expression between cell types, followed by manual filtering of
genes with likely high background expression levels being strongly
expressed in all cell types. A total of 618 probes were designed for
116 genes encompassing malignant (OPC-like, AC-like, OC-like and
MES-like) and nonmalignant cells (oligodendrocytes, astrocytes,
neurons, macrophages, microglia, T cells, endothelia, pericytes and
ependymal cells) (Supplementary Note 1).

HybISS

After fixation with 3% PFA for 30 min, sections were permeabilized with
0.1 M HCI and washed with PBS. After rehydration for 1 min in 100%
ethanol, 1 minin 75% ethanol and 1 min in PBS, cDNA was synthesized
overnight with reverse transcriptase (BLIRT), RNase inhibitor, and
primed with random decamers. Sections were postfixed before pad-
lock probe (PLP) hybridization and ligation at a final concentration of
10 nM/PLP, with Tth Ligase and RNaseH (BLIRT). This was performed at
37 °Cfor30 minand then 45 °Cfor1h.Sections were washed with PBS,
followed by rolling circle amplification (RCA) with phi29 polymerase
(Monserate) and Exonuclease I (Thermo Fisher Scientific) overnight at
30 °C.Bridge probes (10 nM) (Supplementary Table 6) were hybridized
at RT for 1 hin hybridization buffer (2x saline- sodiumcitrate buffer
(SSC),20% formamide), followed by hybridization of readout detection
probes (100 nM) and DAPI (Biotium) in hybridization buffer for 1 h at
RT. The sections were washed with PBS and mounted with SlowFade
Gold Antifade Mountant (Thermo Fisher Scientific). After each imag-
ing round, coverslips were removed and sections were washed five
times with 2x SSC. Bridge probe/detection oligonucleotides were then
stripped with 65% formamide and 2x SSC for 30 min at 30 °C, followed
by five washes with 2x SSC. The above procedure was repeated for
cycles1through5,leadingto hybridization of cycle-specificindividual
bridge probes (forimaging, see Supplementary Note 1).

CODEX

FFPE tissue sections were collected onto poly(L-lysine)-coated cov-
erslips and prepared according to the Akoya Biosciences CODEX pro-
tocol”. Sections were then deparaffinized and rehydrated. Antigen
retrieval was performed using a pressure cooker and 1x citrate buffer,
pH 6.0.Sections were then quenched for autofluorescence’?, and subse-
quently stained and imaged using the Akoya Biosciences CODEX stain-
ingkit (7000008). Tissue was stained using the following preconjugated
antibodies purchased from Akoya: DAPI (7000003), Ki67-BX047 (B56)—
Atto 550-RX047(4250019) 1:200, CD44-BX005 (IM7)—Atto 550-RX005
(4250002) 1:50. The following antibodies were custom conjugated
using the Akoya Biosciences conjugation kit (7000009) and indicated
barcodes: anti-PDGFRa antibody (Abcam, ab234965) Barcode BX002—
Atto 550-RX002 (5450023) 1:50, anti-BCAS1 antibody (Santa Cruz Bio-
technology, sc-136342) Barcode BX027—Cy5-RX027 (5350004) 1:50,
anti-GFAP antibody (Invitrogen, 13-0300) Barcode BX030—Cy5-RX030
(5350005) 1:50, antihistone H3 (mutated K27M) antibody (Abcam,
ab240310) Barcode BX004—Alexa FluorTM 488-RX004 (5450014)
1:100, anti-IBAlantibody (Thermo Fisher Scientific, GT10312) Barcode
BX020—Atto 550-RX020 (5250002) 1:50, anti-CD63 antibody (353039,
Biolegend) Barcode BX029—Atto 550-RX029 (5250005) 1:50. Imaging
was performed using a Keyence BZ-X80OE fluorescent microscope
equipped with aBZ Nikon Objective Lens (x20). Images were processed
using the CODEX processor software (Akoya) and visualized using the
ImageJ plugin CODEX Multiplex Analysis Viewer.

Statistics and reproducibility

No statistical method was used to predetermine the sample size. No
datawere excluded from the analyses. The experiments were notran-
domized. Datacollection and analysis were not performed blind to the
conditions of the experiments.
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Statistical analysis was performed in R v.4.0.3. A Bayesian sta-
tistical framework scCODA (v0.1.4) was used to identify changes in
the proportion of different cell populations between age groups and
anatomical departments. Comparisons of numerical variables between
different conditions were carried out using Wilcoxon rank-sum test and
Kolmogorov-Smirnov test, as appropriate. Overlap between groups
of genes was assessed using a Hypergeometric test.

Single-cell sequencing for eachtumor was performedin one exper-
imental replicate. This is typical for human studies because tissues
are usually limited and cannot be analyzed more than once. At least
three samples per age and anatomical group were collected to verify
reproducibility. The ISS and IF experiments for each tumor sample
were performed in one experimental replicate, where the entire section
wasimaged. For RNAish experiments, two to three slides were stained
per sample and approximately 10-15 fields of view were captured per
slide. Furtherinformation onresearch designis availablein the Nature
Research Reporting Summary.

scRNA-seq data processing

We aligned raw sequencing reads to hgl9 genome by hisat2 (v2.1.0)
and quantified and normalized gene counts using RSEM (v1.3.0) as
transcript-per-million/TPM”, For snRNA-seq data, we modified the
gene annotation files to count introns’™. We calculated expression
levels as Ei,j = log,(TPMi,i/10 + 1) for gene i in sample. To filter out
low-quality cellsin fresh samples, we removed cells with <2,000 genes
oranaverage housekeeping gene expression of <2.5. For frozen tumors,
afiltering threshold of <1,000 genes and an alignment rate of <0.4
were employed. In sum, 9,911 high-quality cells were retained. We
alsoremoved genes with TPM > 16 in <10 cells. For the remaining cells
and genes, we computed the aggregate expression of each gene as
Ea(i) = log,(average(TPMi,1...n) +1) and defined relative expression as
centered expression levels, Eri,j = Ei,j — average(Ei,1...n). On average,
wedetected 6,866 uniquely expressed genes per cellin fresh, and 4,432
uniquely expressed genesin frozen tumors.

Data harmonization, Louvain clustering and identification of
differentially expressed genes

Graph-based clustering with data integration was adapted for inde-
pendent identification of cellular clusters and gene signatures. We
selected highly variable genes (HVGs) using Seurat (v3.2.2)” and
used the relative expression values of these HVGs for PCA. To disen-
tangle sample-specific biological variations (that is, tumor-specific
genetic and epigenetic alterations) from cell subpopulation-specific
variations and to integrate multiple samples, we applied a linear
adjustment method (Harmony v1.0) to the first 100 PCs with default
parameters to generate a corrected embedding’. We chose the first 20
Harmony-corrected dimensions for uniform manifold approximation
and projection embedding (UMAP) embeddings, and clustered cells
by Seurat’s Louvain algorithm-based FindClusters function. Cells from
different samples expressing similar gene programs were well mixed
(Extended Data Fig. 2a). We next identified differentially expressed
genes by Seurat’s FindAllMarkers function. We tested genes that were
detected inaminimum of 30% of the cells within each cluster and that
showed at least a 0.5-fold mean log difference. We utilized Wilcoxon
rank-sum test with Bonferroni correction for multiple testing and only
kept genes with adjusted Pvalue < 0.05.

Nonnegative matrix factorization (NMF) metaprogram
analysis

NMF was used to assemble transcriptional programs from relative
expressions (with negative values converted to zero)***°, We derived
NMF programs for malignant cells from each sample using the top
10,000 over-dispersed genes, as determined by PAGODA2 (v0.1.4)".
The number of factors was set to six for each sample. Because redun-
dant NMF programs were merged into a single metaprogram, the

final metaprogram was not sensitive to the initially chosen number of
factors. We selected the top 30 genes with the highest NMF weights
from each NMF factor and scored all malignant cells with these NMF
programs. We then clustered NMF programs by hierarchical cluster-
ing (distance metric:1- Pearson correlation; linkage: Ward’s linkage)
on the scores for each NMF program (Extended Data Fig. 2b). This
revealed eight highly correlated sets of programsin fresh tumors and
nine in frozen tumors. We merged these correlated programs into
metaprograms by selecting the top 30 genes with the highest average
NMF weight within each correlated program set (Supplementary Table
2 and Supplementary Note).

Comparison and integration of fresh and frozen tumor
metaprograms

We compared transcriptional metaprograms independently derived
from fresh and frozen tumors by pairwise correlation analysis, show-
ing high correlations between the cycling, fresh OPC-like-1/frozen
OPC-like-a, OC-like, AC-like and MES-like signatures (Extended Data
Fig. 2d). Even though ribosomal protein-encoding genes marking
the fresh OPC-like-2 metaprogram were filtered out in the frozen
dataset to exclude potential technical artifacts from random cap-
ture of nuclei-associated ribosomes®, the frozen OPC-like-b program
showed high correlation with the fresh OPC-like-2 signature (Extended
Data Fig. 2d) and showed higher expression of pre-OPC markers,
such as DLL1, HES6 and EGFR (Supplementary Fig. 2). Therefore, we
independently identified pre-OPC-like cells in our fresh and frozen
scRNA-seq/snRNA-seq data. We consequently scored frozen nuclei
for all fresh metaprograms, only exchanging fresh OPC-like-2 with
frozen OPC-like-b to avoid artifacts due to the filtering of ribosomal
protein genes. If the resulting maximum expression score was <0.2,
single nuclei were classified as ‘score_too_low’; if 0.2, nuclei were
assigned according to the highest-scored metaprogram (Extended
DataFig. 2e,f).

Analysis of cell type compositions

We applied the Bayesian model-based single-cell compositional data
analysis (scCODA v0.1.4) framework to identify associations of cell
compositions with different clinical covariates’. scCODA employs
hierarchical Dirichlet-multinomial distribution that accounts for the
uncertainty and negative correlative bias in compositional analysis of
cell type proportions. The model uses a logit-normal spike-and-slab
prior with alog-link function and Hamiltonian Monte Carlo sampling to
estimate the effects of covariates on cell type proportions. The sample
level counts of cell annotations and clinical covariates were used as
inputs for scCODA. The default parameter was used with AC-like cells
selected as the reference cell type. Locations and ages were included
as covariates in the model. The statistical significance of changes in
cell compositions was assessed using credible effects with a 5% false
discovery rate.

snATAC-seq data processing

Cell Ranger ATAC (v1.0.1) was used to process 10X Chromium
snATAC-seq data. We used cellranger-atac counts to generate single-cell
accessibility counts and cellranger-aggr to aggregate multiple samples
without setting any normalization. The resulting peak-cell matrix and
metadata were then analyzed in Signac (v1.1.0)”.

Weremoved nuclei with <200 detected peaks and peaks detected
in <10 nuclei. We further kept nuclei with the following: (1) total num-
ber of fragments in peaks (peak_region_fragments) between 1,500
and 15,000, (2) percent of reads in peaks (pct_reads_in_peaks) >15,
(3) ratio of reads in genomic blacklist regions (blacklist_ratio) <0.02,
(4) approximate ratio of mononucleosomal to nucleosome-free frag-
ments (nucleosome_signal) <2 and (5) ratio of fragments centered at
the transcription startsite (TSS) to fragments in TSS-flanking regions
(TSS_enrichment) >4. After quality control and filtering, a dataset
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comprising 211,096 peaks and 9,797 nuclei was used for downstream
analysis.

We normalized data using term frequency-inverse document
frequency (RunTFIDF) and conducted dimensionality reduction
using singular value decomposition and top 25% of features. We cal-
culated k-nearest neighbors using FindNeighbours (reduction =Isi’,
dims =2:30) and omitted the first latent semantic indexing (LSI) com-
ponentasitexhibited astrong correlation with sequencing depth. We
then identified cell clusters by shared nearest neighbor modularity
optimization-based clustering algorithm and ran the FindClusters func-
tion (algorithm =3/SLM and resolution = 0.8), and generated a UMAP
embedding using the RunUMAP function with2-30 LSI components.

We calculated gene activities for each gene in each nucleus by
summing the peak counts in the gene body + promoter region (2 kb
upstream of TSS). We then normalized gene activities to the median
oftotal gene activities and performed log transformation. Genes with
differential activities (DAGs) were identified by running FindAlIMarkers
onnormalized gene activities. We tested genes that were detectedina
minimum of 20% of the cells within each cluster by Wilcoxon rank-sum
test with Bonferroni multiple test correction and only kept genes with
log fold change >0.1 and adjusted P < 0.05. Top DAGs were used for
initial annotation of each cell cluster. Putative nonmalignant clusters
with highly accessible canonical marker genes were identified, includ-
ing microglia (forexample, CD14, CSFIR and SPPI), T cells (for example,
CD2, CD3D and RHOH) and tumor-associated oligodendrocytes (for
example, BCAS1,SOX10 and SIRT2).

scRNA-seq/snATAC-seq data integration

We applied canonical correlation analysis as implemented in
Seurat to integrate log normalized gene activity scores of ATAC-seq
data and gene expression scores of RNA-seq data. We used Seurat’s
‘FindTransferAnchors’ functionforintegration, specified the union of
the 2,764 and 2,000 most variable genes in scRNA-seq and snATAC-seq
respectively as input features, ‘cca’ as the reduction method, and
default values for the rest of the parameters. For each cell profiled by
SsnATAC-seq, we identified the nearest neighbor cell in those profiled
by scRNA-seq with a nearest-neighbor search in the joint canonical
correlation (CCA) L2 space. Nearest neighbors were determined by
the ‘FNN’ R package with the ‘kd_tree’ algorithm.

Linking gene regulatory elements and gene expression across
all cell types

Because RNA expressions and chromatin accessibilities were meas-
ured in different cells, we applied a correlation-based approach to
pseudobulk samples aggregating snATAC-seq and scRNA-seq counts
from computationally matched cells to identify peak-to-gene links
as putative CREs. We defined pseudobulk samples by randomly
sampling 200 cells from the snATAC-seq dataset and combined each
of these 200 seed cells with their respective 99 nearest neighbor
cells in the Harmony-corrected ATAC-LSI space. Hence, each of the
resulting pseudobulk sample comprised 100 cells. We computed
pseudobulk peak counts by summing peak counts across respective
counts of all 100 cells within each pseudobulk sample. Within each
pseudobulk, we matched 100 ATAC cells with 100 RNA cells as their
nearest neighbors in CCA L2 space and obtained pseudobulk RNA
gene counts by summing gene counts across the respective counts of
all100 cells within each pseudobulk sample. Pseudobulk gene counts
were normalized as TPM.

We then defined putative peak-gene pairs by associating peaks
with a genomic distance within 250 kb of the TSS of genes profiled
by scRNA-seq. Each peak is only linked to its nearest gene. For each
candidate peak-gene pair, we determined the Pearson correlation
coefficient of peak counts (normalized as CPM) and gene expression
(TPM), and adjusted P values for these coefficients from a ¢-statistic
using Benjamini-Hochberg (BH) procedure. We identified a set of

13,632 high-confidence peak-to-gene links by only retaining pairs with
|[PCC|>0.2 and BH-adjusted P < 0.05.

Integrative TF analysis

We integrated scRNA-seq and scATAC-seq data to identify putative
regulatory networks of TF-target pairs. For each TF documented in
the JASPAR (2020) TF motif database, we computed its mean expres-
sion (TPM) and examined the frequency of its motif(s) within the CREs
locatedin the TSS + 10 kb region of its predicted target genes by SCE-
NIC®. We then kept TFs with mean TPM > 4 and over-represented
binding motifs in CREs. Next, we kept TFs that were among the top
30 TF regulons with the highest specificity score of any cell type. This
resulted in a total of 65 TFs (Supplementary Table 4). Of these TFs, 19
were specific to OPC-like cells (for example, EGR1, JUN, HES6),10 were
specific to OC-like cells (for example, SOX4, SOX10), 21 were specific to
AC-like cells (for example, GLI2, STAT3 and SOX9) and 15 were specific
to MES-like cells (for example, FOSL2, CEBPD and ELK3).

For each GPC, we leveraged two complementary approaches to
identify core TFs that may regulate expressions of this gene. First, we
selected TFs that were predicted to regulate expressions of the target
GPC by SCENIC analysis. Second, we examined if TFs identified above
possess binding motifs that are over-represented in the CREs linked
to the target GPC using a hypergeometric test. We kept TFs that are
predicted togovern the expression of atarget GPC and harbor binding
motifs substantially enriched in CREs linked to the target GPC (Sup-
plementary Table 4).

Analysis of HybISS data

Image processing and decoding. Each field of view (FOV) image was
maximum intensity projected to obtain a flattened two-dimensional
image. These images were then analyzed using in-house custom soft-
ware that handles image processing and gene calling based on the
python package Starfish v0.2.1(ref.®"). Each two-dimensional FOV was
exported, and preprocessed including alignment between cycles, and
stitched together using the MIST algorithm. Stitching was followed by
retiling to create smaller nonoverlapping 6,000 x 6,000 pixelimages
that were then used for decoding. The decoding pipeline canbe found
athttps://github.com/Moldia/iss_starfish/. Using Starfish, images were
initially filtered by applying a white top hat filter. The filtered images
were subsequently normalized, and spots were then detected using the
FindSpots module from Starfish and decoded using MetricDistance
decoding.

Malignant versus nonmalignant cell typing

To distinguish between malignant (H3-K27M positive) and nonmalig-
nant (H3-K27M negative) cells, ISS expression maps were aligned to
IF images, both taken from the same tissue section, and the mean IF
intensity of each cell was calculated. All IF H3-K27M positive cells were
categorized as malignant based on a minimum IF threshold in each
sample, while DAPI positive and H3-K27M negative cells were catego-
rized as nonmalignant based on amaximum IF threshold. Cells with IF
intensities between the two thresholds were considered ambiguous
and excluded from the analysis. We obtained spatial transcriptomic
profiles of atotal 0f 125,801 high-quality cells (56,664 malignant cells,
69,137 nonmalignant cells).

pciSeq

Toidentify the cellularidentity of nonmalignant and cancer cells, two
different methods were applied. Probabilistic cell maps of malignant
cells were created using pciSeq v0.0.45. The pciSeq pipeline assigns the
spatial coordinates of genes from the ISS maps to DAPI-stained nuclei
based on the proximity and assigns individual cells to cell type defini-
tions defined by our H3-K27M DMG scRNA-seq dataset. The pciSeq
pipeline is publicly available (https://github.com/acycliq/pciSeq)®.
In contrast, due to the presence of uniquely expressed markersin the
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panel, nonmalignant cell types were identified by the expression of key
marker genes in eachsample. Here we assigned nonmalignant cell types
by lack of H3-K27M signal in IF staining and concomitant expression of
key markers, such as MBP for oligodendrocytes, ESAM for endothelial,
MYLO for pericytes, GFAP for astrocytes, CD74 for TAMs, DLG4 for
neurons. T cells were excluded from downstream analyses due to very
low numbers identified.

Spatial enrichment and neighbors analysis

To explore proximities between the different cell types, neighbor-
hood enrichment analysis was performed using Squidpy v1.1.2 (ref.
%), Briefly, the spatial coordinates of the mapped cells were used to
identify spatial enrichment of cell types at a specific radius, and an
enrichment score for each defined cell type was calculated based on the
number of connections for each cell cluster. The number of observed
connection events was compared against 100 permutations, and aZ
score was computed for each cell type that can be positive (indicating
positive colocalization) or negative (indicating negative colocaliza-
tion). Centrality scores and clustering coefficients were calculated
for all samples and each individual sample as previously indicated®.
Degree centrality represents the fraction of nongroup members, estab-
lishing each cell type as agroup, connected to the cells assigned to the
cell type analyzed. The clustering coefficient represents the degree
to which nodes in the graph tend to cluster together. It is formulated
as the number of closed triplets, defining a triplet as three connected
nodes, over the total number of triplets. Calculation of scores was
implemented in SquidPy v1.1.2 (ref. %),

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

ScRNA-seq and scATAC-seq data of primary patient DMGs have been
submitted to GEO (GSE184357). ISS data are available at Zenodo
under ID 6805729. Previously published scRNA-seq data reanalyzed
in this study are available under accession codes GSE102130 (ref. %),
GSE122871 (ref. ), GSE144462 (ref. *'), GSE131258 (ref. *°) and
GSE123030 (ref.>?). WES data generated in this study are deposited in
EGA (EGAS00001006431). For targeted exome-sequencing data, the
majority of which was generated as part of routine clinical care, vari-
ant data have beenincluded as Supplementary Table 7 for all samples
except for A21-238 and AAA010043 as these were generated by exter-
nal care providers with restricted data access. Previously published
WGS data of tumorsICGC-GBM27,ICGC-GBM96 and ICGC-GBM60 are
deposited at EGA00001001139, and WGS data for BT836 and BT869
have been published under dbGaP accession number phs002380.v1.p1l
(ref. 5%). H3-K27M DMG ChlIP-seq data were utilized from GSE126319
(ref.”).

Code availability
Custom scripts and code used in data processing and figure creation
areavailable at https://doi.org/10.5281/zenod0.7073167 (ref. %),

References

67. Drokhlyansky, E. et al. The Human and mouse enteric nervous
system at single-cell resolution. Cell 182, 1606-1622 (2020).

68. Gojo, J. et al. Single-cell RNA-Seq reveals cellular hierarchies and
impaired developmental trajectories in pediatric ependymoma.
Cancer Cell 38, 44-59 (2020).

69. Hovestadt, V. et al. Resolving medulloblastoma cellular
architecture by single-cell genomics. Nature 572, 74-79
(2019).

70. LaManno, G. et al. Molecular diversity of midbrain development
in mouse, human, and stem cells. Cell 167, 566-580 (2016).

71. Goltsey, Y. et al. Deep profiling of mouse splenic architecture with
CODEX multiplexed imaging. Cell 174, 968-981(2018).

72. Du, Z. et al. Qualifying antibodies for image-based immune
profiling and multiplexed tissue imaging. Nat. Protoc. 14, 2900-
2930 (2019).

73. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinf. 12,
323 (20M).

74. Ding, J. et al. Systematic comparison of single-cell and
single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38,
737-746 (2020).

75. Stuart, T. et al. Comprehensive integration of single-cell data. Cell
177,1888-1902 (2019).

76. Korsunsky, I. et al. Fast, sensitive and accurate integration of
single-cell data with Harmony. Nat. Methods 16, 1289-1296 (2019).

77. Fan, ). et al. Characterizing transcriptional heterogeneity through
pathway and gene set overdispersion analysis. Nat. Methods 13,
241-244 (2016).

78. Buttner, M., Ostner, J., Muller, C. L., Theis, F. J. & Schubert, B.
scCODA is a Bayesian model for compositional single-cell data
analysis. Nat. Commun. 12, 6876 (2021).

79. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R.
Single-cell chromatin state analysis with Signac. Nat. Methods 18,
1333-1341(2021).

80. Aibar, S. et al. SCENIC: single-cell regulatory network inference
and clustering. Nat. Methods 14, 1083-1086 (2017).

81. Axelrod, S. et al. Starfish: scalable pipelines for image-based
transcriptomics. J. Open Source Softw. 6, 2440 (2021).

82. Qian, X. et al. Probabilistic cell typing enables fine mapping of
closely related cell types in situ. Nat. Methods 17, 101-106 (2020).

83. Palla, G. et al. Squidpy: a scalable framework for spatial omics
analysis. Nat. Methods 19, 171-178 (2022).

84. Dubois, F. P. B. et al. Structural variants shape driver combinations
and outcomes in pediatric high-grade glioma. Nat. Cancer 3,
994-1011(2022).

85. Liu, I. etal. The landscape of tumor cell states and spatial
organization in H3-K27M mutant diffuse midline glioma across
age and location. Custom scripts v1.0.0. https://doi.org/10.5281/
zenodo.7073167 (2022).

Acknowledgements

This work was supported by generous funding from the Hope/Care
project NIH CCSG cancer center (grant PBOCA124435 to M.G.F., M.M.,
A.D., A.R., W.K.AY. and M.L. Suva), the Sajni Fund (M.G.F.), the Claudia
Adams Barr Program in Innovative Cancer Research (DFCI) (M.G.F.),
the Cuming Family Fund for Pediatric Brain Tumor Research (M.G.F.),
Andruzzi Foundation (M.G.F.), the Anita, Sophia and Athena Fund

to Advance DIPG Research and Care (M.G.F.), Prabal Chakrabarti &
Vanessa Ruget (M.G.F.), Hyundai Hope on Wheels (M.G.F.), Liv Like A
Unicorn (M.G.F.), Alex’s Lemonade Stand Foundation Crazy 8 Initiative
(M.G.F., M.M.) and Solving Kids' Cancer/The Bibi Fund (M.G.F.). M.G.F.
holds an NIH director’s New Innovator (award DP2NS127705), a Career
Award for Medical Scientist from the Burroughs Wellcome Fund, the
Distinguished Scientist Award from the Sontag Foundation and the
A-Award from the Alex’s Lemonade Stand Foundation. M.G.F. was also
supported by National Cancer Institute SPORE (grant 2P50CA165962).
M.N. received funding from the Knut and Alice Wallenberg Foundation
(KAW 2018.0172), the Erling Persson Foundation, the Chan Zuckerberg
Initiative (SVCF 2017-173964), Cancerfonden (CAN 2018/604), EU
H2020 Marie Sktodowska-Curie Actions project AiPBAND (grant
agreement 764281) and the Swedish Research Council (2019-

01238). M.M. was supported by the Swifty Foundation, McKenna
Claire Foundation, NIH Director’s Pioneer Award (DP1NS111132 to
M.M.), National Cancer Institute (P50CA165962, RO1CA258384 and
U19CA264504), Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation

Nature Genetics


http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184357
https://ega-archive.org/studies/EGAS00001006431
https://doi.org/10.5281/zenodo.7073167
https://doi.org/10.5281/zenodo.7073167
https://doi.org/10.5281/zenodo.7073167

Article

https://doi.org/10.1038/s41588-022-01236-3

(to M.M.) and Cancer Research UK (to M.M.). |.L. was supported by the
German Research Foundation (DFG, LI-3486/1-1). B.E. was supported
by the Erwin Schrédinger Fellowship of the Austrian Science Fund
(J-431, B.E.). P.P. was supported by the Ministry of Health of the Czech
Republic (grant NU20-03-00240). O.S. received funding from the
project National Institute for Cancer Research (Programme EXCELES,
Project ID LX22NPO5102)—Funded by the European Union—Next
Generation EU. K.L.L. received funding support from NCI (RO1
CA219943 and P50CA165962). M.D.D. received funding from the
Australian National Health and Medical Research Council (NHMRC),
RUN DIPG, Tour de Cure, and Kiriwina Investments. The work was
further supported by the ‘Verein unser Kind’ (J.G.). The funders had

no role in study design, data collection and analysis, decision to
publish or preparation of the manuscript. We thank the CHLA Pediatric
Research Biorepository supported by the USC Norris Comprehensive
Cancer Center (P30 CA014089) for providing tissue resources. We
thank Angela Halfmann for assistance with FACS, and the Molecular
Pathology Core Laboratory at Dana-Farber Cancer Institute for help
with tissue sectioning.

Author contributions

I.L.,L.J., E.R.S., M.M., M.N. and M.G.F. conceived the study, designed
the experiments, interpreted results and wrote the manuscript with
the input of all co-authors. I.L., O.A.H., M.L. Shaw, B.E. and S.M.
performed glioma tissue processing and FACS, with contributions
fromMT, E.P, K.J.E.,, TA.G.and M.E.H. |.L., O.A.H., M.L. Shaw and
H.M.M. generated scRNA-seq data. L.J. and I.L. conducted glioma
scRNA-seq analysis. D.J. performed RNAish experiments, with
contributions from B.E. |.L. generated snATAC-seq data, which

was analyzed by L.J. l.L.,, M.A.Q., H.P., O.S., P.P, |.J.F.,, M.D.D. and J.S.
generated WES data, which was analyzed by J.L., I.J.F., M.D.D. and P.P.
E.R.S. generated ISS data, which was analyzed by S.M.S., supervised
by J.S. and M.N. A.B. performed and analyzed CODEX experiments.

Primary tissue resources and pathology consultation were provided by
JV.,AD., AR, M.L. Suva, DTW.J.,,S.A.,,CK., CH., TC., I.S., JAC., K.L.L.,
S.A., WK.AY., L.LAR., J.G. and M.M. M.N. supervised ISS data generation
and analysis. M.G.F. supervised all aspects of the study.

Competinginterests

M.G.F. is a consultant for Twentyeight-Seven Therapeutics and
Blueprint Medicines. M.N. is Scientific Advisor for 10X Genomics.

M.M. is a SAB member for Cygnal Therapeutics. M.L. Suva is an equity
holder, scientific cofounder and advisory board member of Immunitas
Therapeutics. K.L.L. is the founder and equity holder of Travera

and receives consulting fees from BMS, Integragen, Rarecyte and
research support from Lilly, BMS and Amgen. J.S. is now (but not when
contributing to this manuscript) an employee of 10X Genomics. The
remaining authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/
s41588-022-01236-3.

Supplementary information The online version contains
supplementary material available at https://doi.org/10.1038/s41588-
022-01236-3.

Correspondence and requests for materials should be addressed to
Ilon Liu or Mariella G. Filbin.

Peer review information Nature Genetics thanks Xiao-nan Li and the
other, anonymous, reviewer(s) for their contribution to the peer review
of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Genetics


http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-022-01236-3
https://doi.org/10.1038/s41588-022-01236-3
https://doi.org/10.1038/s41588-022-01236-3
https://doi.org/10.1038/s41588-022-01236-3
http://www.nature.com/reprints

Article https://doi.org/10.1038/s41588-022-01236-3

a
CD14 CSF1R FCGR1A I 6

4

ST ot f‘g"-.* : Xa.
e ik BT

L

UMAP1 UMAP1 UMAP1

b SKAP1 CD8A CD247

UMAP2
UMAP2
UMAP2

o S I o
a o a
< < <
= = =
=] =] =]
UMAP1

UMAP1 UMAP1

¢ MOG MBP MAG

5

UMAP1

UMAP2
UMAP2
o T
e
UMAP2

UMAP1 UMAP1

CLDN5 IFITM1 ESAM

o : 2 !
e. & A 2
. - . o
4%
[ [ - o 3 o [
o o o
< < % <
b3 |_ = |_ = |—
= | = =
UMAP1 UMAP1 UMAP1

Extended Data Fig. 1| Non-malignant cell populations. UMAP projections highlighting non-malignant cell clusters by expression of canonical markers of (a) Tumor-
associated myeloid cells. (b) T cells. (c) Oligodendrocytes. (d) Endothelial cells.
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Extended Data Fig. 2 | Intratumoral transcriptional heterogeneity of
H3-K27M DMGs. (a) UMAP of fresh tumor cells, highlighting original samples
(color legend) after batch effect correction. (b) Pairwise Pearson correlations
(color scale) between NMF factors derived from each fresh tumor sample
(x-axis). Highly correlated NMF factors were combined as metaprograms. (c)
Pairwise Pearson correlations (color scale) between metaprograms derived
from fresh H3-K27M DMGs, GBM*’, IDH-mutant glioma®. (d) Pairwise Pearson
correlations (color scale) between metaprograms independently derived from
fresh and frozen tumors. (e) Proportions (y-axis) of projected fresh tumor
derived metaprograms (color legend), that were highly correlated to respective
frozen metaprograms, and of fresh OPC-like-3, across frozen tumor nuclei
(x-axis). Instead of fresh OPC-like-2, correlated frozen OPC-like-b was scored to
minimize technical ariefacts (see methods). Nuclei with scores <0.2 are denoted
as ‘score too low’. (f) UMAP of frozen tumor nuclei after batch effect correction,
with color legend depicting annotation based on single-cell scores of all fresh

metaprograms and frozen OPC-like-b (see methods). (g) Proportion of all cells/
nucleiassigned as cycling vs. non-cycling (color legend) across metaprograms.
(h) UMAP of location matched IDH-mutant midline tumors, highlighting
independently derived metaprograms. (i) Boxplots depicting metaprogram
proportionsinall tumors compared by adult vs. pediatric age groups, controlled
for pontine (left) or thalamic (right) locations (Thalamic: adult (N = 6), pediatric
(N = 8); Pontine: adult (N = 4), pediatric (N =15)). (j) Boxplots depicting
metaprogram proportionsin all tumors compared by pontine and thalamic
locations, controlled for pediatric (left) or adult (right) age groups (Adult:
thalamic (N = 6), pontine (N = 4); Pediatric: thalamic (N = 8), pontine (N =15)).In
(i) and (j) The median is marked by the thick line within the boxplot, the first and
third quartiles by the upper and lower limits, and the 1.5x interquartile range by
the whiskers. *** denotes credible statistical changes as assessed by a Bayesian
scCODA model, with FDR < 0.05, without multiple test correction.
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subpopulations ordered along pseudotime (columns).
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Extended Data Fig. 4 | Characteristic chromatin profiles of H3-K27M DMG
cell populations. (a) UMAP of all nuclei profiled by snATAC-seq from 8 samples
(color legend). (b) UMAP of all nuclei profiled by snATAC-seq, highlighting
assignments as malignant or different nonmalignant cell types. (c) UMAP of

all snATAC-seq derived tumor nuclei, highlighting sample of origin after batch
effect correction. (d) Sample level clustering analyses and de novo cell type
annotations (color legends). (e) Dotplot representation of gene activities
(color scale) and proportion of nuclei accessible (dot size) in snATAC-seq
profiles of AC-like-alt., AC-like and OPC-like cells (y-axis) for canonical marker
genes of AC-like, OPC-like, NPC-like (as identified in Neftel et al.,2019**), and
glutamatergic (as described to be enriched in OPC-like cells by Venkatesh et al.,
2019%) tumor cells. (f) SCRNA-seq derived log transformed expression levels

of synapse-associated genes differentially accessible in AC-like-alt. cells. (g)
Cell state annotations of all snATAC-seq tumor nuclei based on scRNA-seq data
following canonical correlation (CCA) and label transfer analyses. (h) UMAP of
chromatin accessibility profiles of all OPC-like subpopulations (color legend).
(i) & (j) Dotplot representation of gene activities (color scale) and proportion of
nucleiaccessible (dot size) in snATAC-seq profiles of different tumor OPC-like
subpopulations (x-axis) for top differentially accessible marker genes (i) and
TFs (j) derived from studies of normal pre-OPCs and OPCs*. (k) Venn diagrams
depicting the intersection of differentially accessible chromatin sites with CREs
that are linked to GPCs for each cell type. p-values calculated from a two-sided
hypergeometric test are shown.

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-022-01236-3

a b
TAMs Macrophage Microglia
0.4 :
1.00 (€] @ (]
0.3
c 0.75
£ 5
g 02 -
a g 0
o
0.1 0.25
0.00 @ @ ()
0.0, o 4
@ - 2 <
& N
> 5 SN rz‘?@ S &
v & ¢ P 4 N
QQ/
¢ d OPC-like-1 OPC-like-3 OPC-like-2
OPC-like — Myeloid )
TNR_ITGA9_ITGB1 o-@ p-value-adj
OPC-like-1 OPC-like-2 THY1_ITGAX_ITGB2 i ) . 0.00
. 0.01
TGFB2_TGFBR1_TGFBR2 o . .
. 0.02
SEMASE_PLXND1 o o -0-0 [ @ oo
e 004
PROS1_AXL{- @) o0 --@ o
A LAMB1_ITGA9_ITGB1 - @ log10 (probability)
-2
DLL1_NOTCH2 o-@ .
-4
CSF1_CSF1R o o0
-6
COL9AT_ITGA9_ITGB1 o ¢
APP_CD74 ]
OPC-like-3
RROOREIAR R RLOREIR R RRORELIR Ra>
O e g N S S KA SR e
PP XOOYEAIS S, AR SEPL XYL
\s L (s & s L
v ¥ ks
e f OPC-like-1 OPC-ike-3 OPC-like-2
Myeloid —» OPC-like spPi_iTAV_iTGB1{- @) ® O p-value-ad
SPP1_ITGA9_ITGB1 (] @ o 0 00 Y ® ’ 0.00
OPC-like-1 OPC-like-2 sewns_PLXNES ) @) Ps @ oo
@ o
SEMA4D_PLXNB11{- @ [ ] o O o 00 0O N @ oo
e 004
PSAP_GPR37L1{- @
LGALS9_CD44 & o ) @ 0910 (probability)
=3
HLA-E_KLRK1{- @ [ ]
-4
HLA-E_KLRC2 00 [ "
GRN_SORT1{- @ o -6
cAs6_MERTK |- @@ ) O o°
ROD PRI R RN SELF R SR QLR SR>
B R S R R I N R R U S R S
] SEPPRPVALE SEPPRCOAL SR PP RPN
OPC-like-3 & PSR QY

Extended DataFig. 5| The myeloid cell landscape of H3-K27M DMGs. (a)
Boxplot depicting TAM proportions in all tumor and normal cells profiled by
scRNA-seq and grouped by adult and pediatric sample groups acrossN =16
biologicallyindependent samples. The median is marked by the thick line within
the boxplot, the first and third quartiles by the upper and lower limits, and the
1.5x interquartile range by the whiskers. (b) Distributions (mean values + /-
2xSEM) of macrophage and microglia proportions within TAMs acrossN = 16

pontine and thalamic tumors. (c) & (e) Venn diagram depicting shared and
specific OPC-like-to-myeloid (c) and myeloid-to-OPC-like (e) ligand-receptor
interactions between different OPC-like subpopulations. (d) & (f) Ligand-
receptor interactions assessed for each OPC-like subpopulation for OPC-like-
to-myeloid (d) and myeloid-to-OPC-like (f) interactions. Color scale depicts
probabilities of interaction, while dot size denotes Benjamini-Hochberg (BH)-
corrected p-values from a two-sided permutation test.
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Extended Data Fig. 6 | The single-cell spatial transcriptomic architecture of
H3-K27M DMGs. (a) Representative HybISS gene maps for 16 H3-K27M tumors (1
experiment/tumor over the entire image section with 100-20,000 cells profiled/
tumor). Scale bar corresponds to 100 um in all panels. (b) Confusion matrix of
pciSeqderived tumor cell state scores for all samples. The color scale represents
the mean probability assigned to a cell when a specific cell state is predicted.
Higher values indicate amore probable prediction. (c) Scatter plot representing
numbers of malignant cells assigned to a cell state (color scale) for each sample
(dot), asinferred from pciSeq based on 116 marker genes (y-axis) or on the 4

best markers (x-axis). The Pearson correlation coefficient between both marker
setsisshowninred. (d) Sample-level proportions (x-axis) of malignant and
non-malignant cells (color legend) across 16 tumors (y-axis) profiled by HybISS
asassessed by anti-H3.3K27M IF. () Sample-level proportions (x-axis) of non-
malignant cell types (color legend) assigned by HyblISS for the 16 H3-K27M DMGs

(y-axis). (f) Scatter plot representing numbers of malignant cells assigned to a
specific cell state (color scale) for each sample profiled (dot), as inferred from
pciSeqbased on 116 marker genes (y-axis) or on selected IF markers (PDGFRA,
BCASI, GFAP, CD44/CD63) (x-axis). The Pearson correlation coefficient

between both marker sets is showninred. (g) & (h) Representative multiplexed
IF (CODEX) images, showing spatially distinct subpopulations of malignant
(marker: H3-K27M) OPC-like (marker: PDGFRA), OC-like (marker: BCAS1), AC-like
(marker: GFAP), and proliferating cells (marker: Ki67) in (g), and of MES-like
(marker: CD44/CD63) and myeloid cells (marker: IBA1) in (h). For each tumor,
one experiment was performed with ~70,000-1.2 million individual cells profiled
per sample over the entire tissue section. (i) Neighborhood enrichment analysis
between all malignant and non-malignant cell populations, identified at 50 pm.
The color scale denotes the probability of finding a cellwhen asecond cell type is
present divided by the probability of finding the second cell type.
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Cell Ranger ATAC v1.0.1
Signac v1.1.0
FNNv1.1.3
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pciSeq v0.0.45

Squidpy 1.1.2

Starfish 0.2.1

slingshot v1.99.14
cellchat v1.0.0
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Custom scripts and code used in data processing and figure creation are available under: https://doi.org/10.5281/zenodo.7073167.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

ScRNA-seq and scATAC-seq data of primary patient DMGs have been submitted to GEO ( GSE184357). ISS data are available at Zenodo under ID 6805729. Previously
published scRNA-seq data reanalyzed in this study are available under accession codes GSE10213021, GSE12287142, GSE14446240, GSE13125843, and
GSE12303051. WES data generated in this study is deposited in EGA (EGASO0001006431). For targeted exome-sequencing data, the majority of which was
generated as part of routine clinical care, variant data has been included as Supplementary Table 7 for all samples except for A21-238 and AAA010043 as these
were generated by external care providers with restricted data access. Previously published WGS data of tumors ICGC-GBM27, ICGC-GBM96, ICGC-GBMG60 is
deposited at EGA00001001139, and WGS data for BT836 and BT869 has been published under dbGaP accession number phs002380.v1.p183. H3-K27M DMG ChlP-
seq data were utilized from GSE12631919.
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Life sciences [ ] Behavioural & social sciences | | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined by the availability of donor and patient-derived material.

Data exclusions  All of the data acquired was utilized for analysis, and quality control filters for scRNA-seq and scATAC-seq data are specified in the Methods
section.

Replication We performed >10 independent biological replicates for each clinico-anatomical group (pediatric, adult, pontine, thalamic) via single cell
profiling. We successfully replicated our findings across different tumors of each clinico-anatomical group.

Randomization  Acquisition of primary patient tumor samples was not randomized as all H3-K27M mutant diffuse midline gliomas across different age groups
and anatomical locations were included in the study in an unbiased fashion.

Blinding Blinding was not applicable as no effects of treatments or perturbations were assessed.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Dual use research of concern

Antibodies

Antibodies used Recombinant Anti-Histone H3 mutated K27M (Abcam ab190631, Lot: GR3333170-1, clone: EPR18340), dilution: 1 to 5000.
Goat Anti-Rabbit 1gG H&L (Alexa Fluor 647) preadsorbed (Abcam ab150083, Lot: GR3370563-1), dilution: 1 to 4000.
Rabbit Anti-PDGFR alpha (Abcam ab234965, clone: EPR22059-270), dilution: 1 to 50.
Mouse Anti-NaBC1 (BCAS1) (Santa Cruz Biotechnology, sc-136342, clone: 5), dilution: 1 to 50.
Rat Anti-GFAP (Invitrogen, 13-0300, clone: 2.2B10), dilution: 1 to 50.
Mouse Anti-IBA1 (Thermo Fisher, clone: GT10312), dilution: 1 to 50.
Mouse Anti-CD63 (BioLegend, 353039, clone: H5C6), dilution: 1 to 50.
Mouse Anti-K67—Atto 550-RX047 (Akoya, #4250019, clone: B56), dilution: 1 to 200.
Rat Anti-CD44-BX005 - Atto 550-RX005 (Akoya, #4250002, clone: IM7), dilution: 1 to 50.

Validation Anti-Histone H3 mutated K27M: Validated for Western Blotting, indirect ELISA, immunohistochemistry, immunofluorescence,
immunoprecipitation and ChIP by the provider. Manufacturer references publications PMID: 31638150, PMID: 33239043, PMID:
31588023, and PMID: 29662203. IF protocol outlined in the methods section.

Goat Anti-Rabbit 1gG H&L (Alexa Fluor 647) preadsorbed: Validated for immunohistochemistry, immunofluorescence, flow cytometry,
and ELISA by the provider. Manufacturer references use in 49 publications (e.g. PMID: 33469673, PMID: 32616654 IF protocol
outlined in the methods section.

Rabbit Anti-PDGFR alpha: validated for ELISA, Western Blot, immunohistochemistry, immunofluorescence, flow cytometry,
immunoprecipitation by the provider. Referenced in PMID: 33805311.

Mouse Anti-NaBC1 (BCAS1): validated for Western Blot, immunofluorescence, and immunoprecipitation by the provider. Referenced
ine.g. ,PMID: 31332391.

Rat Anti-GFAP: validated by provider for Western Blot, immunohistochemistry, immunocytochemistry, immunofluorescence, flow
cytometry, immunoprecipitation, ELISA. Referenced in e.g., PMID: 27862351.

Mouse Anti-IBA1: validated by provider for Western Blot, immunohistochemistry, flow cytometry. Referenced in e.g., PMID:
34284798.

Mouse Anti-CD63: validated by provider for flow cytometry, immunohistochemistry. Referenced in e.g., PMID: 16410552.

Mouse Ki67-BX047 (B56)—Atto 550-RX047: validated for multiplexed IF (CODEX) in human and mouse tissues by the provider.

Rat Anti-CD44-BX005 - Atto 550-RX005 (Akoya, #4250002): validated for mutiplexed IF (CODEX) in human and mouse tissues by the
provider.

Human research participants

Policy information about studies involving human research participants

Population characteristics The covariate-relevant population and clinical characteristics of the human subjects whose data was used are available in
Supplementary Table 1.

Recruitment All primary patient glioma tissues were de-identified and obtained with properly informed consent of patients and/or their
legal representatives treated at Boston Children’s Hospital, Brigham and Women's Hospital, and collaborating institutions.
Patients operated on for a glioma and/or their legal representatives were approached for participation and included in the
study after confirmation of the H3-K27M mutation in an unbiased manner, thereby including all anatomical locations, age
groups, clinical course, and treatments. Since clinical outcome was not assessed as an endpoint, we estimate any self-
selection bias to be minimal.
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Ethics oversight This study was approved by the Institutional Review Board (IRB) at Boston Children’s Hospital/Dana-Farber Cancer Institute
(DFCI 10-417) and at affiliated research hospitals.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software

Cell population abundance

Gating strategy

Single-cell suspensions obtained from fresh tumors in PBS+1% BSA were stained with 0.5-1 uM calcein AM (Life Technologies,
C3100MP) and 0.33 uM TO-PRO3 iodide (Life Technologies, T3605) for 15 min at RT and kept on ice. Single-cell sorting was
performed on a SH800 (Sony) sorter using 488 nm (calcein AM, 530/30 emission filter) and 633 nm (TO-PRO-3, 665/30
emission filter) lasers. Viable cells were identified by positive staining for calcein AM and negative staining for TO-PRO-3.
Doublets were discriminated based on back scatter area (BSC-A) versus back scatter width (BSC-W). Singlet viable cells were
sorted into 96-well plates containing cold TCL buffer (Qiagen, 1031576), briefly spun down, snap frozen on dry ice, and
stored at -80°C.

Single-nuclei suspensions extracted from frozen tumors were stained with 0.5 uM Vybrant DyeCycleTM Ruby Stain
(Invitrogen, V10309) immediately before FACS. Intact nuclei were selected by positive staining for Ruby Stain on the SH800
sorter (633 nm laser, 665/30 nm emission filter). Doublets were excluded in the Ruby Stain area versus Ruby Stain height
setting. Singlet nuclei were sorted into 96-well plates containing TCL buffer and 1% beta-mercaptoethanol, briefly spun
down, snap frozen on dry ice and stored at -80 °C.

SH800 (SONY) fluorescence-activated cell sorter with a 100 um nozzle
SONY SH800 software

Overall, we observed 10-60% viable cells (Calcein +, TO-PRO-3 -) following fresh tumor dissociation. For nuclei dissociated
from frozen tumors, the Vybrant Ruby Stain positive event rate ranged from 10-90%.

Live, single cells were identified by size (forward scatter), granularity (back scatter), singlet gating (back scatter area vs. back
scatter width), positive staining for calcein and negative staining for TO-PRO-3.

Single nuclei were identified by positive staining for Vybrant Ruby Stain and singlet gating (Ruby Stain laser light area vs. Ruby
Stain laser light height).

|Z| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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