J 2022

The Correlation of Plasma Characteristics to the Deposition Rate of Plasma Polymerized Methyl Methacrylate Thin Films in an Inductively Coupled Plasma System

HSIEH, Stephen T, Himanshu MISHRA, Nima BOLOUKI, Weite WU, Chuan LI et. al.

Basic information

Original name

The Correlation of Plasma Characteristics to the Deposition Rate of Plasma Polymerized Methyl Methacrylate Thin Films in an Inductively Coupled Plasma System

Authors

HSIEH, Stephen T, Himanshu MISHRA, Nima BOLOUKI (364 Islamic Republic of Iran, belonging to the institution), Weite WU, Chuan LI and Jang-Hsing HSIEH (guarantor)

Edition

Coatings, MDPI, 2022, 2079-6412

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10305 Fluids and plasma physics

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 3.400

RIV identification code

RIV/00216224:14310/22:00127714

Organization unit

Faculty of Science

UT WoS

000833768500001

Keywords in English

inductively coupled plasma; plasma polymerization; PMMA; optical emission spectrometer

Tags

Tags

International impact, Reviewed
Změněno: 5/1/2023 12:14, Mgr. Marie Novosadová Šípková, DiS.

Abstract

V originále

A plasma system attached with one internal coil (for generating inductively coupled plasma) and two sputtering carbon targets was set up to deposit PP-MMA (plasma polymerized methyl methacrylate) thin films. PP-MMA was used as a model material in the present study. In the experiment, the working pressure and Ar/MMA flow ratio were varied, which resulted in the change in plasma conditions as well as the deposition rates. The optical emission spectroscopy (OES) method was applied to identify the presence of the excited species related to the fragmented monomer. In addition, the electron temperature and electron density were determined using the modified Boltzmann plot and line-ratio method, according to the measured OES spectra. The deposition rate of the PMMA film was then correlated with the determined plasma characteristics. To determine the vibrational modes of the deposited PP-MMA films, Fourier transformed infrared spectrometry (FTIR) was used. The highest deposition rate of PP-MMA could be obtained with the optimized working pressure and Ar/MMA volume ratio. This could be related to the plasma characteristics that contribute to the fragmentation of the monomer in the plasma.