
ARTICLE

Carbon and health implications of trade restrictions
Jintai Lin 1,14*, Mingxi Du1,14, Lulu Chen1,14, Kuishuang Feng 2,3*, Yu Liu4,5*, Randall V. Martin 6,7,8,

Jingxu Wang1, Ruijing Ni1, Yu Zhao9, Hao Kong1, Hongjian Weng1, Mengyao Liu1, Aaron van Donkelaar6,7,

Qiuyu Liu10 & Klaus Hubacek 11,12,13

In a globalized economy, production of goods can be disrupted by trade disputes. Yet the

resulting impacts on carbon dioxide emissions and ambient particulate matter (PM2.5) related

premature mortality are unclear. Here we show that in contrast to a free trade world, with the

emission intensity in each sector unchanged, an extremely anti-trade scenario with current

tariffs plus an additional 25% tariff on each traded product would reduce the global export

volume by 32.5%, gross domestic product by 9.0%, carbon dioxide by 6.3%, and PM2.5-

related mortality by 4.1%. The respective impacts would be substantial for the United States,

Western Europe and China. A freer trade scenario would increase global carbon dioxide

emission and air pollution due to higher levels of production, especially in developing regions

with relatively high emission intensities. Global collaborative actions to reduce emission

intensities in developing regions could help achieve an economic-environmental win-win

state through globalization.
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Economies worldwide are tightly connected through trade.
Goods and services are consumed and produced in different
parts of the world often with different resource availability,

economic and energy structures, environmental regulations, and
meteorological and chemical conditions1. Recent work based on
empirical trade data has shown that, with given amounts of global
total burdens, large quantities of carbon dioxide (CO2), particu-
late matter (PM2.5) pollution, and related premature deaths are
embedded in traded products2–6; in other words, these environ-
mental burdens are associated with production for export.
However, whether trade improves or worsens environmental
quality depends on the level of progress in the economy, reg-
ulation, and technological development7–9, which varies along
global supply chains. In part as a reaction to perceived dis-
advantages caused by trade of certain goods and services, the
past years have seen a number of attempts to restrict trade
activities10–13. Yet, the grand question of whether trade liberal-
ization or restriction leads to a better global environment remains
unclear.

Here, we assess the potential impacts of trade restrictions on
CO2 emissions and PM2.5-related premature mortality at both
global and regional scales. The assessment is done based on both
economic and emission data in 2014, the latest year for which all
necessary data are available. Based on five trade scenarios dif-
ferentiated by the extent of trade restrictions, we take an inter-
disciplinary approach to integrating the latest standard Global
Trade Analysis Project (GTAP, version 10 data base for 2014),
a computable general equilibrium (CGE) model14–16 for
global trade and economic analysis, a customized emission
inventory derived from the Community Emission Database Sys-
tem (CEDS)17 and Xia et al.18, the GEOS-Chem atmospheric
chemical transport model19, a satellite-based dataset for near-
surface PM2.5 mass concentrations20, and the Global Exposure
Mortality Model (GEMM)21 for pollution exposure (see Methods
for details). Emissions and premature deaths analyzed here are
only those which are linked to changes in economic output of 20
industrial sectors and 13 aggregated regions associated with each
trade scenario. Scenario-dependent PM2.5 considered here
include secondary inorganic aerosols (SIOA, including sulfate,
nitrate, and ammonium), black carbon (BC), and POA. We find
substantial impacts of trade restrictions on the global magnitude
and regional distribution of emissions and health burdens.

Results and Discussion
Global free trade (GFT) scenario. This scenario assumes zero
border tax for all traded products. It leads to the highest global
export volume, GDP, CO2 emissions, and premature deaths
(Fig. 1a–d). As simulated by the CGE model16, the global export
volume reaches 22.1 trillion and GDP reaches $79.3 trillion in US
Dollar in 2014. Western Europe, the US and China contribute,
respectively 33.7%, 8.7%, and 15.0% of the global export volume
and 24.4%, 22.1%, and 14.4% of global GDP (Fig. 1a, b). Global
CO2 emission amounts to 25.6 Petagram (Pg), of which 57.8% are
contributed by China (29.6%), the US (16.4%), and Western
Europe (11.8%) (Fig. 1c). Note that global emissions do not
include scenario-independent sources, which together are about
9.9 Pg (see Methods for details).

The regional distribution of pollutant emissions reveals a
different picture (Supplementary Fig. 1). China, South Asia, and
Middle East and North Africa are the top three emitters, and they
together contribute 47.5–60.2% of the global emissions of sulfur
dioxide, nitrogen oxides, ammonia, carbon monoxide, BC, and
POA. A major driver of the large amount of emissions in these
regions is their high-emission intensities (i.e., emissions per
monetary output). Supplementary Fig. 2 shows that emission

intensities in these regions are about 7–23 times of those in
Western Europe and the USA (pollutant dependent). In general,
emission intensities in developing regions are much larger than
those in developed regions, and regions with higher per capita
GDP tend to have lower emission intensities (Supplementary
Fig. 2).

High emissions in many developing regions contribute to their
heavy PM2.5 pollution (Supplementary Fig. 3), in addition to the
influences of meteorological and chemical conditions, as
simulated by GEOS-Chem19. China and South Asia experience
the highest anthropogenic, population-weighted PM2.5 concen-
trations (22.6–23.9 μg/m3, for scenario-dependent SIOA, BC, and
POA together). For China and South Asia, their atmospheric
conditions are also favorable for local pollution accumulation, i.e.,
the chemical efficiency of their emissions to form and accumulate
PM2.5 locally are high (Supplementary Fig. 4). By comparison,
favorable atmospheric conditions for South-East Asia and Pacific
allow their pollution to be more quickly deposited to the ground
or transported out of their territories, contributing to their
relatively low PM2.5 concentrations. Nonetheless, atmospheric
transport allows regionally emitted/formed pollution to be
transferred to vast downwind areas (Supplementary Fig. 4).

In Scenario GFT, anthropogenic PM2.5 pollution (SIOA, BC, and
POA together) leads to a large number of premature deaths
worldwide (Fig. 1d, Supplementary Fig. 3). Based on the GEMM
NCD+LRI pollution-health response model21, the number of
deaths reaches 2.94 million [95% CI: 1.72–4.14] globally, 1.02
million [95% CI: 0.61–1.43] in China, 0.89 million [95% CI:
0.49–1.29] in South Asia, 0.29 million [95% CI: 0.17–0.41] in
Western Europe, and 0.11 million [95% CI: 0.07–0.15] in the USA.
The high values in China and South Asia are also due to their large
baseline mortality (8.5 and 6.8 million, respectively).

Actual trade restriction scenario (ATR). This scenario repre-
sents the actual tariff situation in 2014. Compared to GFT, it has a
global average border tax of about 5% (see Supplementary Data 1
for regional details). This leads to reductions by about 5.4% in the
global export volume ($1.19 trillion), 1.3% in GDP ($1.05 tril-
lion), 1.2% in emissions (317.5 Tg for CO2), and 1.1% in PM2.5-
related premature mortality (32.7 thousand) (Fig. 1e–h). The
most affected region is Japan and Korea, whose export volume is
reduced by 9.7%, GDP by 3.1%, CO2 emission by 3.7%, and
premature mortality by 2.1%. This is because of the region’s large
dependence on trade. The impacts for China and South Asia are
larger than the global average: by 10.7–17.4% for the export
volume, 2.1–2.6% for GDP, 1.3–2.0% for CO2, and 1.0–1.3% for
mortality. By comparison, the impacts on the US and Western
Europe are smaller (by 1.2–4.0% for export volume, 0.7–0.9% for
GDP, 0.75–0.84% for CO2, and 0.7–0.9% for mortality).

Sino-US trade war scenarios (TW1 and TW2). These two sce-
narios represent the increasing levels of bilateral trade wars
between the US and China. Scenario TW1 represents the stage of
the Sino-US trade war by the end of 2018 where, on top of ATR,
the United States imposes additional border taxes for $250 billion
worth of products imported from China, while China imposes
extra tariffs for $110 billion worth of imported US products.
Scenario TW2 represents a hypothetical full-blown stage of the
Sino-US trade war where, on top of ATR, the two countries
impose an additional 25% tariff on any product imported from
the other country. As expected, the Sino-US trade war scenarios
(TW1 and TW2) have lower amounts of carbon emissions and
premature deaths than the GFT scenario for all regions
(Fig. 1i–p). Compared to Scenario GFT, the global export volume
is reduced by 5.8% in TW1 and 6.1% in TW2, GDP by 1.46% and
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1.67%, CO2 emission by 1.39% and 1.50%, and premature mor-
tality by 1.18% and 1.20%, respectively.

Compared to ATR (Supplementary Fig. 5), the two trade war
scenarios reduce GDP, CO2 emission, and mortality in both the
USA (by 0.33–0.39% for TW1, 0.76–1.26% for TW2) and China
(by 0.18–0.64% for TW1, 0.24–1.22% for TW2), but with
increases in other regions. The most significant GDP increases
are in the rest of North America, Japan and Korea, South-East
Asia and rest of East Asia, because of their strong competitiveness
in producing products targeted in the Sino-US trade war.
Globally, the GDP, CO2 emission, and mortality are also reduced
by 0.07–0.15% for TW1 and 0.09–0.36% for TW2. The changes in
global and regional GDP are consistent with other studies
(Supplementary Table 1).

Global trade barrier (GTB) scenario. The GTB scenario repre-
sents a world in which every region has significant trade barriers.
Compared to the GFT scenario, it leads to a substantial reduction
by 32.5% in global export volume and 9.0% in GDP. The regional
impacts are even more significant (Fig. 1q, r). Of the 13 aggre-
gated regions, the US has the greatest reduction in export volume
(57.2%), and South-East Asia has the greatest reduction in GDP
(16.0%). The export volume of Western Europe, the US, South
Asia, and China would decrease by 11.7–57.2% and GDP by
6.7–10.9%.

When moving from the GFT scenario to the most restrictive
GTB scenario, global emissions are reduced by 6.3% for CO2 and
4.7–6.3% for the six air pollutants. The regional impacts are broadly
consistent with the impacts on GDP (Fig. 1s, t, Supplementary

Fig. 6), although there are substantial differences due to regional
and sectoral disparities in emission intensity. For Western Europe,
the US, and China, CO2 emissions are reduced by 4.9%, 8.2%, and
5.4%, respectively, and emissions of air pollutants are reduced by up
to 3.3%, 8.4–10.0%, and 2.6–4.7%, respectively (Supplementary
Fig. 6).

From GFT to GTB, PM2.5-related premature mortality
decreases by 119 thousand (or 4.1%). This value is larger than
the number of total premature deaths in the US, rest of North
America, and Oceania due to exposure to ambient PM2.5 in GFT.
South Asia (35.5 thousand) and China (33.3 thousand) have the
large absolute reductions in premature mortality. The rest of
North America (10.3%), Japan, and Korea (9.1%), Oceania
(9.0%), and the USA (7.7%) have the greatest relative reductions,
that is, more than twice the global average reduction.

Synergy of all scenarios. Figure 2 presents the relative changes in
regional CO2 emission and mortality as a function of GDP
change across the individual scenarios relative to the GFT. In
general, as the trade restrictions tighten from GFT to the actual
trade in 2014 (ATR), to the Sino-US trade war scenarios (TW1
and TW2), and finally to the GTB scenario, regional GDP, CO2

emission, and mortality also decrease. However, there exist sub-
stantial regional differences in this relationship, as apparent from
the scatter plot in Fig. 2. Overall, about 52–64% of global CO2

emission reduction and 78–83% of global mortality reduction
from GFT to ATR, TW1, TW2, and GTB occur in developing
regions (China, rest of East Asia, Economies in Transition, Latin
America and Caribbean, Middle East and North Africa, South
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Asia, South-East Asia and Pacific, and Sub-Saharan Africa), with
the rest in developed regions (Fig. 3).

At the global level and for most regions, the relative reductions
from GFT to GTB in terms of CO2 emissions and mortalities are
less significant than the reduction in GDP. This means that
restricting trade is not an effective approach for reducing
emissions. This result also indicates enhanced (sectorally
averaged) emission intensities of CO2 and pollutants in an
antitrade world represented by Scenario GTB, compared to GFT.
This is because individual economic sectors have different

emission intensities22,23 and different responses to economic
shocks from trade restrictions. Sectors with high emission
intensities such as Electricity and Road Transport are often not
directly affected by trade restrictions, since they do not produce
goods for trade. By comparison, sectors with low emission
intensities, such as Wearing Apparel and Textiles are often
directly affected by trade restrictions. As shown in Supplementary
Fig. 7, the relative reduction in economic output from GFT to
GTB is smaller in more emission-intensive sectors, resulting in
increased relative contributions of emission-intensive sectors to
global output.

For a given amount of relative reduction in GDP from GFT to
GTB, developed regions tend to have greater relative reductions
in mortality than developing regions do (Fig. 2). This is because
in the more protected environments of developed regions, a given
amount of pollution concentration change is more conducive to
change in mortality risk21.

When moving from a GFT to a restricted trade scenario (GTB),
the global export volume would decrease by 32.5%. This means
that there are still significant amounts of interregional trade
activities in GTB. We do not simulate a situation in which all
trade activities are banned, which would be highly unlikely to
occur. Nonetheless, assuming a linear relationship between the
change in global export volume and changes in CO2 emission and
mortality, we estimate that fully banning trade would lead to
reductions in global GDP, CO2 emission, and mortality by 27.0%,
18.9%, and 12.3%, respectively, compared to a world with a larger
extent of free trade.

Decoupling environmental impacts from trade liberalization.
The above results imply that with fixed sectoral emission inten-
sities, trade liberalization scenarios may lead to an improved
global economy but at a larger environmental cost. These envir-
onmental side effects come with a higher amount of production,
the influence of which is partially compensated by a reduction in
sectorally averaged, global mean emission intensity due to
changes in trade pattern and economic structure (Supplementary
Fig. 7). Changes in CO2, pollutant emissions, and mortality are
dominated by those in developing regions with higher emission
intensities (Fig. 3). Thus, reducing emission intensities in devel-
oping regions is key to alleviating adverse environmental con-
sequences of trade liberalization.

High emission intensities in developing regions are caused by
multiple factors. Developing economies tend to rely on fossil fuel,
especially coal, much more than developed economies, because of
more limited access to cleaner or renewable energy sources which
are usually more expensive and/or technologically challenging24,25.
Meanwhile, developing economies are shifting toward producing
emission-intensive goods whereas developed economies are shifting
away26,27. Developing regions also have looser environment
regulations and enforcement and lower energy and product
use efficiencies, due in part to lack of advanced technology and
know-how28,29.

Global collaborative efforts can be made to reduce emission
intensities in developing regions. This is of global value given the
global climate impact of CO2 and the transboundary atmospheric
transport of air pollutants3,6. The Paris Agreement has already
included technological and financial support to developing
regions30,31. Implementing and enhancing these aids would be
valuable to alleviate the reliance of developing regions on fossil
fuels, improve their energy and production efficiencies, and
enhance their emission control capabilities. These actions might
be accompanied by negotiations on moving toward more
consistent environmental standards and policies (e.g., carbon
pricing) across the globe32.
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In order to estimate how trade liberalization can be
accompanied by an improved global environment, we contrast
GFT against an additional scenario (GFTT) which assumes global
free trade plus sufficient global technological/financial support
and more globally consistent environmental policies to further
reduce emission intensities in developing regions. Enhancing
environmental regulations in developing regions means an
economic burden (at least in the beginning) to industries that
may affect their competitiveness and subsequently alter

interregional trade, which is not fully accounted for in GFTT.
Nonetheless, enhancing the financial and technological support
may reduce the initial shock to developing economies. Under the
GFTT scenario, the emission intensity of a sector in any region
that is higher than the global sectoral average is reduced to the
average value. As a result, global CO2 emission would be reduced
by 24.2%, pollutant emissions by 27.3–53.6%, and PM2.5-related
premature deaths by 36.0%. The respective regional reductions
are substantial (Fig. 4). For example, CO2 emission would be
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reduced by 46.0% in China and 30.4% in South Asia, and PM2.5-
related mortality would be reduced by 61.1% in South Asia and
60.8% in sub-Saharan Africa.

Several sources of uncertainty and limitation exist in our
study, as detailed in Methods. The standard GTAP model is an
equilibrium model that does not simulate the temporal
evolution of the economies. Emission data are subject to large
errors especially for air pollutants. We do not account for the
change in emission intensity of a given sector from one trade
scenario to another, although the overall sectorally averaged
emission intensity (i.e., total emission divided by total output
from all sectors) is allowed to change because of the change in
sectoral output structure. GEOS-Chem simulations are subject
to errors in emissions and model representations of atmospheric

chemical and physical processes. In particular, secondary
organic aerosols (SOA)33–35 are not simulated here, considering
the relative small contribution of anthropogenic SOA to the
total PM2.5

36–39. Using chemical efficiencies to calculate
pollution levels for each trade scenario further introduces a
minor source of error. For each scenario, a major source of error
arises from the pollution-health exposure models used here.
Quantitative estimates of these errors are given in Methods. The
overall error results are expressed as 95% CI in the main text.
Although errors in emissions and pollution-health models are
dominant, they are derived from causes that do not depend on
trade scenarios, and are thus not relevant when discussing the
relative change in premature mortality from one trade scenario
to another.
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Over the past few decades, trade has been associated with
movement of pollution-prone economic production from devel-
oped to developing regions26. This movement is continuing as
production is being relocated from wealthier to poorer, develop-
ing regions40. Given the substantial gap in emission intensity
between developed and developing regions, this movement might
have meant a less environmentally friendly global economy,
causing an unnecessary dilemma between trade-associated
economic development and environmental sustainability41.
Eliminating this dilemma will require substantial reductions in
emission intensities in developing regions, crucially through local
effort, global collaboration, and other collective action against
environmental degradation. To this end, our study offers insight
for policymakers who might consider to better address in trade
negotiations the potential environmental implications of trade to
ensure sustainable growth on regional and global scales.

Methods
An interdisciplinary framework. Our interdisciplinary approach to calculating the
carbon and pollution health impacts of trade restrictions consists of a few steps.
Supplementary Fig. 8 shows the overall framework.

First, we design five scenarios ranked by the extent of trade restrictions between
31 regions across 20 industrial sectors worldwide. Second, we use the GTAP
computable general equilibrium (CGE) model14,16 to simulate sector-specific
interregional trade flows as well as other economic indicators and CO2 emissions.

Third, we calculate anthropogenic emissions of air pollutants specific to each
trade scenario, by combining GTAP-modeled scenario-specific economic output
and a prescribed, scenario-invariant dataset of emission intensities (i.e., emissions
per monetary unit of economic output). The prescribed emission intensity data are
specific to each pollutant in each of the 20 sectors in 31 regions, and are calculated
based on economic output data in Scenario ATR (that represents the actual global
economy in 2014) and a customized anthropogenic emission inventory. The
inventory is from the CEDS17, with some improvements for China18,42–44.

Fourth, we use simulations of the GEOS-Chem model19 to derive near-surface
PM2.5 mass concentrations for individual trade scenarios. The 31 emission source
regions above are further aggregated into 13 regions (Supplementary Fig. 9) to
reduce computational costs.

Finally, we apply the PM2.5 concentrations derived above to the GEMM21 to
evaluate the health impacts in each trade scenario. Mortality results based on the
integrated exposure-response model (IER)45 are also presented in Supplementary
Data 2 for comparison. Results for the 13 aggregated regions are discussed in the
main text.

Trade scenarios. Scenario GFT represents a world with no trade restrictions. In
this scenario, the tariffs on all commodities in all regions are set to zero.

Scenario ATR represents the Actual Trade Restriction in 2014, according to the
tariff and other economic data in the GTAP v10 database15,46. Supplementary
Table 1 shows the tariff setting.

Scenario TW1 represents the stage of the Sino-US trade war as of 2018. At this
stage, the US imposes a 25% additional tariff on 728 specific products imported
from China that are worth $50 billion in total47, and a 10% additional tariff on
5745 items imported from China that are worth $250 billion together48.
Meanwhile, China imposes a 25% additional tariff on 659 specific products
imported from the USA that together are worth $50 billion10,49, and a 10%
additional tariff on 2493+ 1078 items and a 5% additional tariff on 974+ 662
items imported from the USA that together are worth $60 billion11.

Thus, Scenario TW1 assumes that on top of Scenario ATR, the USA imposes
additional tariffs on about $274 billion worth of products imported from China,
and China imposes additional tariffs on about $116 billion worth of products from
the USA. Supplementary Table 2 shows the tariff setting.

Eq. (1) shows how the sector-specific tax rates are converted from product-
based rates. In reality, all products are classified based on the eight-digit
subheadings of the Harmonized Tariff Schedule of the USAs and China. In our
study, products are classified based on the 6-digit subheadings from UN Comtrade
Database50 and then mapped to the 20 industrial sectors. Because of this product-
to-sector conversion, the monetary volumes of imported products with imposed
tariffs in this scenario ($274 billion and $116 billion) are slightly different from the
actual volumes ($250 billion and $110 billion). Another likely cause of such
differences is that we use the actual trade data in 2014 rather than those in 2018,
with slightly different trade and tariff information. The imposed tariff on each
industrial sector in GTAP is calculated by

T ¼ V 0=V ´T 0; ð1Þ
Here, T’ and V’ denote the imposed tax rate and associated trade volume for each
product belonging to a particular sector studied here. T and V denote the imposed
tariff and associated trade volume in each of the 20 sectors studied here. Data of T’

(25%, 10%, or 5%) are taken from reports by the USA Trade Representative and the
Ministry of Finance of the People’s Republic of China10,11,47–49. Data of V’ and V
are from the UN Comtrade Database50.

Scenario TW2 represents the potential full-blown stage of the Sino-US trade
war. This scenario, which is built upon scenario ATR, assumes that the Sino-US
trade war intensifies to the extent that both the US and China impose an additional
25% tariff on all goods imported from each other. Supplementary Table 2 shows
the tariff setting.

Scenario GTB represents a world in which every region moves strongly against
trade such that on top of Scenario ATR, each region imposes an additional 25%
tariff on all products imported from all other regions. Supplementary Table 2
shows the tariff setting. This scenario is highly unlikely to happen in the near
future. Nonetheless, the on-going anti-globalization movement in many
countries51,52 suggests that intensive trade wars might also occur between countries
other than the USA and China, providing some rationale for this extreme scenario.

The GTAP model. The GTAP CGE model is a multiregional, multi-sector eco-
nomic equilibrium model. With a long history of systematic improvements, GTAP
provides an effective tool for a variety of studies related to trade, the environment,
population, energy, and climate change53–60. The model is a comparative static
analysis model, assuming that the market is completely competitive and the returns
to scale of production remain unchanged14. Taking these theoretical assumptions,
producers are assumed to maximize profits, while consumers maximize their uti-
lity. The total supply and total demand are in equilibrium, and they together
determine the values of endogenous variables, such as price, wages, and land rents.
All economies (countries and regions) connect with each other through
commodity trade.

Each production activity is a combination of intermediate goods and factors to
produce output. Similar to many CGE models, the production structure inside
GTAP is based on a sequence of nested constant elasticity of substitution (CES)
functions that aims to reproduce the substitution possibilities across the full set of
inputs. The top-level nest is composed of two aggregate composite bundles, i.e.,
intermediate demand and value added. The second level nest decomposes each of
the two aggregate composite bundles into their components, such that one is
demand for individual intermediate goods and the other is demand for primary
factors. The final nest accepts the Armington assumption to allow an incomplete
substitution between domestically produced goods and imported goods.

For private households, the particular functional form chosen here to represent
preferences is based on the constant differences of elasticities implicit additive
expenditure function by Hanoch61. The Cobb–Douglas function is adopted for
depiction of government consumption. The sub-utility function for investment
expenditure, i.e., gross investment, is based on a Leontief utility function. The
aggregate volume of investment comes from the nominal investment equals saving
identity, where saving is the sum of domestic saving and net capital inflows from
foreign economies. Investment expenditures on the composite goods are
subsequently decomposed into demand for domestic and imported goods using a
CES sub-utility preference function.

In addition, GTAP includes five types of primary factors including land, capital,
skilled labor, unskilled labor, and natural resources, and three representative agents
including private households, governments, and companies. Within each country
or region, the GTAP model allows capital and labor to move between production
sectors, and partially allows land to move between crop producing sectors based on
the CET assumptions.

The GTAP CGE model used here is built based on the latest version (v10) of the
GTAP database15, which is constructed from the input–output tables of 141
countries and regions across the world with a base year of 2014. The GTAP
database contains 57 sectors and 5 primary production factors. For this study, the
141 countries and regions have been aggregated to 31 regions, which specify major
producers, consumers, and importers/exporters (see the mapping in
Supplementary Data 3). The 57 production sectors are aggregated to a total of
20 sectors (see the mapping in Supplementary Data 3). The five types of original
primary factors have been aggregated to three categories (land, capital, and labor).

Anthropogenic emissions of CO2. For each scenario, anthropogenic emissions of
CO2 are computed from the GTAP model. These emissions are calculated based on
sector-specific emission factors (embedded in the GTAP database and unchanged
across the trade scenarios) and scenario- and sector-specific energy consumption
data computed from the GTAP model.

Anthropogenic emissions considered here are due to fuel combustion associated
with economic production (i.e., those which directly produce GDP), except
international shipping and aircraft emissions. These emissions vary from one trade
scenario to another. Although different trade scenarios may affect emissions from
international shipping and aircraft, these emissions are not accounted for here, due
to lack of robust methods to allocate these emissions to specific regions. Emissions
from residential activities (such as heating and cooking at home) and private
transport are not included here. The process-related emissions (such as cement
production) are not included here. Together, the sources not analyzed here
contribute 9.9 Pg of global CO2 emission15,62.
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Anthropogenic emissions of air pollutants. The GTAP model does not provide
emissions of air pollutants. Thus, we calculate anthropogenic air pollutant emis-
sions for each trade scenario based on prescribed sector-, region-, and pollutant-
specific emission intensity data (that remain unchanged across the trade scenarios)
and scenario-specific economic output from GTAP.

We derive the sector-, region-, and species-specific emission intensities by
combining a customized emission inventory (CEDS+Xia, see below) in 2014 and
economic output data in the GTAP database in 2014.

We use the monthly gridded (0.5° longitude × 0.5° latitude) CEDS inventory17

for global anthropogenic emissions of gaseous (SO2, NOx, NH3, NMVOC, and CO)
and primary aerosol (BC and OC) pollutants worldwide in 2014, with 54 sectors in
152 regions. The CEDS inventory has a globally consistent and reproducible
methodology applied to all pollutants and includes updated emission factors17. It
provides very detailed sectoral emission information, which is essential for this
study. The inventory is being used by the Coupled Model Intercomparison Project
Phase 6 (CMIP6, a main model support for the Inter-governmental Panel on
Climate Change Sixth Assessment Report) and many other studies63–67.

The CEDS inventory uses regional emission data over the US (1990–2014),
Canada (1990–2013), Europe (1980–2013), China (2008, 2010, and 2012), and
other regions to revise its initial global methodology. Over the past decade, the
amount of emissions in China varied significantly from 1 year to another due to
implementation of stringent emission control measures as well as the changing
economy and fossil fuel consumption. Thus, we replace the seasonal and spatial
patterns of Chinese SO2, NOx, CO, BC, and POA emissions in CEDS by those in
the MEIC inventory in 201468. We further scale Chinese annual SO2, NOx, CO, BC,
and POA emissions in CEDS to match those developed by Xia et al.18,42–44, which
account for the pollution control measures more comprehensively and may better
represent the actual emissions in China in 2014. Since the CEDS and Xia et al.
inventories contain different sectors, we conduct a sector mapping procedure
(Supplementary Data 4). Hereafter, we refer to this hybrid inventory as CEDS+Xia.

The CEDS+Xia inventory contains 54 sectors in 152 countries/regions. Of these
sectors, 8 belong to energy production, 23 belong to industry, 8 belong to
transportation, 4 belong to residential, 5 belong to agriculture, 4 belong to waste
treatment, and the remaining 2 represent other unspecified processes that are
associated with very few emissions. The inventory is a global monthly gridded
dataset at a 0.5° longitude × 0.5° latitude resolution, beneficial for subsequent
GEOS-Chem simulations.

The CEDS+Xia inventory contains activities that produce significant amounts
of emissions but do not directly produce economic output, i.e., these activities do
not produce GDP directly and are not included in the GTAP model. In linking the
emission inventory and GTAP, we exclude these activities to better quantify the
sector-specific emission intensities. Nonetheless, these emissions are included in
GEOS-Chem simulations to derive the total (anthropogenic+ natural) PM2.5.

First, emissions from the four sectors related to residential activities in CEDS
+Xia are excluded, because these activities do not produce economic output
accounted for in GTAP. This procedure was done also in previous studies2,3,6.

The transportation sector in the CEDS+Xia inventory does not separate
emissions associated with commercial vehicles from emissions associated with
private vehicles. Private transport does not produce economic output accountable
in GTAP, as opposed to commercial transport. Thus, we exclude emissions from
private vehicles from the trade scenario analysis. This procedure improves upon
previous studies that did not differentiate private and commercial transport2,3,6.

To differentiate emissions associated with private and commercial transport, we
use the vehicle emission data from the greenhouse gas and air pollution
interactions and synergies (GAINS) model. The GAINS model provides
transportation related emissions from four vehicle types, including passenger cars,
light duty vehicles, heavy duty vehicles and buses, mopeds, and motorcycles
(Supplementary Table 3).

We derive the contribution of private transport to the total transportation-
related emissions as follows:

FCr;p ¼
P

Epr
r;sP

Epr
r;p þ

P
Eco
r;p

: ð2Þ

Here, FCr;p represents the fractional contribution of private vehicle driving for a
given pollutant species p in a given region r. Epr

r;p and Eco
r;p represent emissions of

species p in region r from private and commercial vehicle driving, respectively, in
the GAINS model.

The GAINS model only covers 74 regions. For a region with no GAINS data,
FCr;p from its neighbor regions are employed. Supplementary Data 5 shows the
fractional contribution of private vehicle driving FCr;p in each region.

Based on the CEDS+Xia inventory, we derive a prescribed dataset for emission
intensity that varies across the sectors, regions and pollutant species, by dividing
the CEDS+Xia emissions by the economic output data in the GTAP database for
2014. This emission intensity dataset is used and remains unchanged in all trade
scenarios.

We convert the CEDS+Xia emissions for 152 regions and 54 sectors to 141
regions and 57 sectors according to the original GTAP setup, and then to 31
regions and 20 sectors to match those in our trade scenario analyses. The mapping
details are shown in Supplementary Data 6.

Subsequently, we calculate emission intensity for each pollutant in each of the
20 sectors and 31 regions

Fb
s;r;p ¼ Eb

s;r;p=X
b
s;r: ð3Þ

Here, the subscripts s, r, and p denote the sector, region, and pollutant species,
respectively. The superscript b denotes the base year (2014) that has CEDS+Xia
emissions (Eb

s;r;p) and economic output in the GTAP database for 2014 (Xb
s;r).

For each trade scenario, trade scenario-dependent anthropogenic emissions
(Ec;t

s;r;p) are derived from the prescribed, scenario-invariant emission intensity

(Fb
s;r;p) and scenario-specific economic outputs (Xc

s;r)

Ec;t
s;r;p ¼ Xc

s;r ´ F
b
s;r;p: ð4Þ

Ec;t
r;p ¼

X

s
Ec;t
s;r;p: ð5Þ

Here, the subscripts s, r, and p denote the sector, region, and pollutant, respectively.
The superscript c denotes the trade scenario, and t indicates that the emission is
scenario-dependent. Ec

r;p denotes the emission summed over all of the 20 sectors.
Ec;t
r;p does not include emissions from residential activities and private vehicles.
Emissions from international shipping and aircraft are taken from other

sources. Although different trade scenarios may affect these emissions, they are
kept constant here, due to lack of robust methods to allocate these emissions to
specific regions. As such, emission and pollution changes from one trade scenario
to another discussed in this study do not include the changes in international
shipping and aircraft. These emissions are not discussed in the main text.
Nonetheless, these emissions are used in GEOS-Chem simulations to derive the
total (anthropogenic+ natural) PM2.5 discussed in next section.

GEOS-Chem simulations. Through a series of simulations of GEOS-Chem version
11-0119, we quantify the contributions of individual emission source regions on
near-surface PM2.5 mass concentrations worldwide in each trade scenario. Given
the expensive computational costs of GEOS-Chem, we aggregate the 31 GTAP
regions into 13 emission source regions (see the mapping in Supplementary
Table 4). Largely following previous studies3,6, the 13 regions are designed based on
their economic status and geographical proximity.

PM2.5 species simulated by the model include SIOA (including sulfate, nitrate,
and ammonium), BC, primary organic aerosol (POA), SOA, anthropogenic dust,
natural dust, and sea salt. SIOA, BC, POA, and SOA are derived from both
anthropogenic and natural processes. Anthropogenic dust represents dusty
particles emitted from industrial and transportation activities (i.e., chimneys of
factories and pipes of vehicles). Natural dust and sea salt are emitted from natural
processes.

In this study, we only analyze the changes in trade-related (and scenario-
dependent) anthropogenic SIOA, BC, and POA concentrations from one trade
scenario to another. Emissions from residential activities and private transport
remain unchanged across the trade scenarios, so do their impacts on ambient
pollutant concentrations. Due to lack of data, anthropogenic dust is also kept
constant across the trade scenarios. We do not include the trade scenario-related
change in SOA concentrations, which are simulated poorly by current-generation
models69. Natural SIOA, BC, POA, dust, and sea salt remain unchanged across the
trade scenarios.

The all-emission simulation of GEOS-Chem accounts for the impacts of all
anthropogenic and natural emissions on PM2.5 worldwide in 2014. The simulation
is run from June 2013 through December 2014, with the first seven months in 2013
used for model spin-up.

GEOS-Chem is driven by the year-specific GEOS-FP assimilated meteorology
from the NASA Global Modeling and Assimilation Office (GMAO). The model is
run with the full Ox-NOx-VOC-CO-HOx gaseous chemistry and online aerosol
calculations on a 2.5° longitude × 2° latitude grid with 47 vertical layers, and each of
the 10 lowest layers are about 130 m thick. Model convection follows the relaxed
Arakawa–Schubert scheme70. Vertical mixing in the planetary boundary layer
employs a non-local scheme implemented by Lin et al.71. Dry deposition follows
Wesely72, with a number of modifications73, for gases and Zhang et al.74 for
aerosols. Wet scavenging of soluble gases and aerosols follows Liu et al.75, with
updates for BC.

Online calculation of SIOA employs the ISOROPIA-II thermodynamic equilibrium
model76, with updates by Zhang et al.77 on catalytic heterogeneous sulfate formation
and Heald et al.78 on nitrate formation. Uptake of the hydroperoxyl radical on aerosols
follows Lin et al. and Ni et al.79–81. Anthropogenic aromatics are represented by an
increase in propene emissions79–81. The mass of POA is assumed to be 1.8 times that
of primary organic carbon to account for oxygen atoms contained3. Calculation of
SOA is parameterized by Pye and Seinfeld82.

The all-emission simulation uses the CEDS+Xia inventory for global
anthropogenic emissions of NOx, SO2, NH3, NMVOC, CO, BC, and POA.
Emissions of anthropogenic dust are taken from the MEIC inventory over China,
and are assumed to be zero in other countries. Aircraft emissions are taken from
AEIC83 for 2005. International shipping emissions are taken from ICOADS84 for
CO and NOx, from ARCTAS85,86 for SO2 globally, and from EMEP87 for SO2 over
European waters. Biomass burning emissions follow the GFED4 inventory88. Soil
NOx emissions follow Hudman et al.89. For lightning NOx emissions, flash rates are
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calculated based on the cloud-top height and constrained by climatological satellite
observations90, and the vertical profile of emitted NOx follows Ott et al.91. Biogenic
emissions of NMVOC follow the MEGAN v2.1 model92. Natural dust particles are
emitted with the DEAD scheme93–95. The parameterization of sea salt emissions
follows Jaégle et al.96.

Based on the CEDS+Xia inventory, we further conduct multiple sensitivity
simulations based on the zero-out method2,3,6,65, to estimate the impacts of each
region’s anthropogenic pollutant emissions on PM2.5 concentrations worldwide.
We conduct 13 sensitivity simulations (one for each source region), in which
anthropogenic emissions of NOx, SO2, NH3, CO, NMVOC, BC, and POA in each
region are removed. All other model setups are the same as in the all-emission
simulation. The difference between the all-emission simulation and each sensitivity
simulation represents the contribution of that region to PM2.5 worldwide. In
addition, we conduct another sensitivity simulation, in which global anthropogenic
emissions of air pollutants are excluded, to represent the natural contribution to
the total PM2.5. Because we have no robust method to allocate emissions form
international shipping and aviation into specific regions, emissions from these
sectors are kept unchanged in all sensitivity simulations. Similar to the all-emission
simulation, these sensitivity simulations are run from June 2013 through December
2014, with the first seven months in 2013 used for model spin-up.

GEOS-Chem simulations of PM2.5 have been validated by Zhang et al.3, Wang
et al.97, and many other studies, by comparisons with ground, satellite and airborne
measurements worldwide. Here we briefly compare the all-emission simulation to the
satellite-derived surface PM2.5 data from Van Donkelaar et al.20. The satellite-derived
PM2.5 data are estimated by combining satellite retrieved aerosol optical depth and
GEOS-Chem, with further calibration based on global ground-based PM2.5

observations and geographically weighted regression. The satellite-derived data are re-
gridded from its original resolution (0.1° longitude × 0.1° latitude) to match the model
resolution. Modeled PM2.5 concentration is the sum of SIOA, BC, POA, SOA, dust
(2 ×DST1+ 0.38 × DST2), and sea salt (SALA). DST1, DST2, and SALA are the
names of respective aerosol species in the model contributing to PM2.5, and only 38%
of DST2 particle mass belong to PM2.5. Considering the large underestimate of natural
dust by GEOS-Chem97,98, the simulated concentrations of fine natural dust particles
(DST1) are scaled by a factor of 2 prior to the comparison.

Supplementary Fig. 10 compares the simulated, population-weight PM2.5

concentrations with the satellite-derived data for individual regions. Each data
point represents a model grid cell. For each grid cell of a region (e.g., China),
population weighting is done by multiplying the PM2.5 concentration of that grid
cell by its fractional contribution to the averaged (over the grid cells) population of
that region. Supplementary Fig. 10 shows that the simulated results are consistent
with the observations, with R2 of 0.82–0.99 and relative mean biases of 2.5–13.0%
across the regions.

We use the sum of anthropogenic PM2.5 contributed by each region and by
global natural emissions (Eq. (6)) as the reference “total PM2.5”, which is used later
as a basis to evaluate the changes in PM2.5 and associated premature mortality from
one trade scenario to another. This method, instead of using the PM2.5

concentrations in the all-emission simulation as the reference, removes the slight
effect of chemical nonlinearity in source attribution3,65

Cb
p;i ¼ Cb

n;p;i þ
X13

r¼1
Cb
r;p;i: ð6Þ

Cb
i ¼

X

p
Cb
p;i: ð7Þ

Here, the superscript b denotes the base case for 2014. The subscript p denotes the
PM2.5 species; r denotes the anthropogenic source region; n denotes the natural
contribution; and i denotes the location (i.e., a model grid cell). Cb

r;p;i represents the
derived near-surface mass concentration of each PM2.5 species at each location
contributed by anthropogenic emissions (from all sectors) in region r. Cb

r;p;i is
derived by subtracting the all-emission simulation by each sensitivity simulation
with anthropogenic emissions in the respective source region excluded. Cb

n;p;i ,
which is produced from the sensitivity simulation with global anthropogenic
emissions excluded, represents the natural PM2.5 concentration.

We also use model simulation results to establish the chemical efficiency
(CEb

r;p;i) of the atmosphere in converting emissions in each region to ambient PM2.5

concentrations worldwide

Eb
r;p0 ¼

X

s
Eb
s;r;p0: ð8Þ

CEb
r;p;i ¼

Cb
r;p;i

Eb
r;p0

: ð9Þ

Here, the subscript p’ denotes the emitted species (NOx+SO2+NH3, BC, or POA),
and p denotes the respective PM2.5 species (SIOA, BC, or POA). The subscript i
denotes the location (i.e., a model grid cell). The superscript b denotes the base case
for 2014. Eb

r;p0 represents the total anthropogenic emission of species p’ in region r.

CEb
r;p;i represents the chemical efficiency specific to each source region and PM2.5

species, and it remains the same from one trade scenario to another. Following
Wang et al.97, for SIOA, the chemical efficiency is calculated by dividing the
concentration of SIOA by the sum of emissions of NOx (expressed in terms of

nitrate), SO2 (expressed in terms of sulfate) and NH3 (expressed in terms of
ammonium), considering the thermodynamic equilibrium of these species. See
Supplementary Fig. 4 for more details.

For each scenario, the total PM2.5 is contributed by four components: (1)
natural aerosols, (2) anthropogenic dust and anthropogenic SOA, (3)
anthropogenic but trade scenario-independent SIOA, BC, and POA (i.e., from
residential and private vehicle emissions), and (4) trade scenario-dependent SIOA,
BC, and POA. Only the last component varies from one trade to another.

To calculate the trade scenario-dependent SIOA, BC, and POA for each trade
scenario and source region, we use the prescribed chemical efficiency CEbr;p;i to
convert the scenario- and source region-specific anthropogenic pollutant emissions to
respective gridded concentrations worldwide (Cc;t

r;p;i and Cc;t
r;i in Eqs. (10) and (11)).

Cc;t
r;p;i ¼ CEbr;p;i ´E

c;t
r;p0: ð10Þ

Cc;t
r;i ¼

X

p
Cc;t
r;p;i: ð11Þ

Here, Cc;t
r;p;i only accounts for trade scenario-dependent anthropogenic SIOA, BC, and

POA that vary across the individual trade scenarios. The subscript r denotes the
source region, p the PM2.5 species (SIOA, BC, or POA), and i the grid cell. The
superscript c denotes the trade scenario, and t indicates that this concentration is trade
scenario-dependent and is accounted for here.

For the other three PM2.5 components that do not vary with trade scenarios,
their sum is calculated as follows

Cc;o
i ¼ Cb

i �
X

r
Cb;t
r;i : ð12Þ

Here, the superscript b represents the base case in 2014 (i.e., Scenario ATR), and o
indicates the sum of the other three components. Thus, for the total PM2.5 in each
trade scenario

Cc
i ¼

X

r
Cc;t
r;i þ Cc;o

i : ð13Þ
Prior to calculating the health impacts of PM2.5, we eliminate the systematic bias in
modeled PM2.5 concentrations related to errors in model physics and chemistry
and errors in emission inputs. Simultaneously, we reproject the PM2.5

concentrations from a 2.5° longitude × 2° latitude grid to a 0.1° longitude × 0.1°
latitude grid. We first calculate the ratio of the satellite-derived PM2.5

concentrations to the modeled PM2.5 in the all-emission simulation (Eq. (14)), and
then apply the ratio to all trade scenarios (Eqs. (15) and (16)). This procedure
ensures that the scenario-specific results are corrected to allow a more accurate
health impact estimate.

Rb
j ¼ Cm

j =C
b
i : ð14Þ

C0c
j ¼ Rb

j ´C
c
i : ð15Þ

C0c;t
r;j ¼ Rb

j ´C
c;t
r;i : ð16Þ

Here, Cm
j represents the satellite-based PM2.5 concentration at a 0.1° × 0.1° grid cell

j. C0c
j represents the adjusted total PM2.5 concentration at a 0.1° × 0.1° grid cell j,

with respect to the pre-adjusted total PM2.5 (Cc
i ) at a 2.5° × 2° grid cell i, in each

trade scenario. The center of the finer grid cell j is within the coarser grid cell i. C0c;t
r;j

represents the adjusted, trade scenario-dependent PM2.5 concentration (summed
over SIOA, BC, and POA) at each 0.1° × 0.1° grid cell contributed by each source
region in each trade scenario.

Premature deaths due to ambient PM2.5 exposure. We use the GEMM devel-
oped by Burnett et al.21 to estimate PM2.5-induced premature deaths in each trade
scenario. The GEMM model represents an update upon the IER model used in
GBD studies99. Both GEMM and IER account for five causes of mortality: ischemic
heart disease, stroke, chronic obstructive pulmonary disease, lung cancer, and
lower respiratory infections (LRIs). The accounting method in GEMM based on
five individual causes is referred to as GEMM 5COD. The GEMM also offers an
alternative accounting method (GEMM NCD+LRI) that combines all non-
communicable diseases and LRIs21.

The main text presents our estimated PM2.5 induced mortality results based on
the GEMM NCD+LRI method. Results based on GEMM 5COD and IER are also
presented in Supplementary Data 2 for comparison.

We first apply the above pollution-health models to the adjusted total PM2.5

concentrations in each scenario (C0c
j ) to derive PM2.5-related premature deaths

worldwide on a 0.1° longitude × 0.1° latitude grid (Dc
j ). Detailed models and

parameters to calculate Dc
j are presented in Supplementary Data 2. The country-

based baseline mortality data for each disease are from the GBD 2016 health data.
The gridded population data on a 0.1° × 0.1° spatial resolution are also taken from
GBD 2016 health data. To estimate the age-specific health impacts, we employ the
country-based age structure from the Unite Nations population data, with the
assumption that the age-structure remains unchanged within each region. Based on
the country-based baseline mortality, the population data and the age-structure
data, we calculate, grid cell by grid cell, the age-specific baseline mortality rate
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which equals to the baseline mortality divided by the total population in specific
age. When applying the gridded baseline mortality rate data to our health impacts
calculation, we assume that the baseline mortality rates remain unchanged across
the trade scenarios.

We then use the widely-used direct proportion approach3,100–102 to assign the
fraction of mortality caused by trade scenario-dependent PM2.5 (summed over
SIOA, BC, and POA) contributed by each source region in each trade scenario (Dc;t

r;j

in Eq. (17)). The direct proportion approach assumes that the contribution of one
source to the disease burden of air pollution is directly proportional to its share of
the total PM2.5 concentration3,100–102.

Dc;t
r;j ¼ Dc

j ´
C0c;t
r;j

C0c
j
: ð17Þ

Supplementary Data 2 compares our global mortality results in Scenario ATR
(which represent the actual situation in 2014) with those by Burnett et al.21. There
is a slight difference (20%) in global mortality. This is in part because we use an
updated version of baseline mortality data upon Burnett et al. In addition, we
calculate the mortality for individual grid cells based on their PM2.5 concentrations,
instead of applying the national average PM2.5 concentration to the pollution-
health response model, as done by Burnett et al.21.

Uncertainty estimates. Our study is subject to uncertainties from a few sources.
First, the GTAP model calculates the changes in global and regional economies
from one equilibrium state to another, without considering the temporal (dynamic)
evolution of the economies. This means that the model results cannot be compared
directly to the economic changes shown in the real economic statistical data.
Nonetheless, our model results are consistent with independent economic esti-
mates for various stages of the Sino-US trade war (Supplementary Table 1), which
provides confidence in using GTAP for trade scenario analyses.

Second, estimates of emissions are subject to errors in the amount of activity
data (e.g., the amount of coal burnt) and emission factors (e.g., the amount of
emission per unit of coal burnt)103. The overall uncertainty in CO2 emissions is
relatively small (within 5% for industrialized countries and within 5–15% for
developing regions)62,104, compared to the uncertainty in air pollutant emissions.
We assign the same errors to CO2 emissions in all scenarios.

Third, estimates of air pollutant emissions are affected by errors in emission
factors, which rely on the estimate of the level of end-of-pipe emission control, and
errors in activity data. The uncertainties in CEDS17 and Xia et al.18,42–44 inventories
are discussed in detail elsewhere. We adopt the error estimates from previous work for
the 13 regions studied here3,6. These errors approximately range from 10 to 170%
depending on the pollutant and region (Supplementary Fig. 1). For health impact
calculations, these errors are implicit in the derivation of the σ2 error below.

Fourth, implementation of the different levels of trade restrictions may affect
the energy efficiency and energy source (e.g., coal and solar) in each region and
sector. This means that the emission intensity for a given sector may change from
one trade scenario to another. This information is partly lost due to our sectoral
aggregation. For example, we only have one sector for “Electricity” and thus the
fuel mix change cannot be accounted for. A higher level of disaggregation would
have the fuel mix changes endogenously included. Although one could exogenously
include some sort of efficiency improvement based on extrapolation of previous
trends, the approach is subject to the availability of historical data and the
appropriateness of extrapolation. Thus we assume that for each region and species,
emission intensity of a given sector does not change across the trade scenarios.
Nonetheless, the overall emission intensity (i.e., total emission divided by total
output from all sectors) is allowed to change because of the change in sectoral
output structure (Supplementary Fig. 7). This simplified approach may lead to an
additional uncertainty in the calculated emissions. For each scenario other than
ATR, the uncertainty is tentatively assigned as σ1= 5% (one standard deviation),
given the amount of fractional change in the global GDP from one scenario to
another. σ1= 0 for Scenario ATR which uses the actual economic data in 2014.

Fifth, as discussed in previous studies3,6, GEOS-Chem simulations are subject to
errors in emissions and model representations of atmospheric chemical and
physical processes such as dry deposition, wet scavenging, transport, and formation
of secondary aerosols. A full evaluation of model uncertainties is computationally
prohibitive3,6. However, GEOS-Chem simulations of PM2.5 have been validated by
comparisons with a comprehensive set of observations3, and have been adjusted in
this study to match the satellite-based PM2.5 data. Thus, following Zhang et al.3, we
use the normalized root-mean-square deviation (NRMSD) between the modeled
(in the all-emission simulation) and the satellite-based population-weighted PM2.5

concentrations to represent the overall model errors for each region (See
Supplementary Fig. 10). The error is referred to as σ2 (one standard deviation),
which accounts for the combined effects of random errors in emissions and errors
in model representations of atmospheric processes.

Sixth, for each trade scenario, we use prescribed region- and species-specific
chemical efficiency data to convert from pollutant emissions to ambient
concentrations. The chemical efficiency data are calculated based on model
sensitivity simulations, and are assumed to be unchanged across the individual
trade scenarios. This assumption may lead to slight errors for SIOA due to the
thermodynamic interdependence between sulfate, nitrate and ammonium.
Nonetheless, the magnitudes of chemical efficiency calculated by GEOS-Chem are

comparable to results from other models105,106. An additional uncertainty related
to the use of chemical efficiency arises from the fact that within each of the 13
emission source regions in GEOS-Chem simulations, there may be multiple GTAP
regions, due to the mapping from 31 GTAP regions to 13 GEOS-Chem regions.
This mean that the spatial pattern of emissions within each of the 13 regions may
slightly change from one trade scenario. For each scenario other than ATR, we
tentatively assign a σ3= 15% error (one standard deviation) due to use of chemical
efficiency. σ3= 0 for Scenario ATR, whose model results are the same as the base
case of GEOS-Chem driven by the emissions in 2014.

Seventh, the pollution-health models used here (GEMM NCD+LRI, GEMM
5COD, and IER) are subject to large errors in linking pollution exposure, specific
diseases, and premature death. In particular, the two GEMM models do not
consider the potential differences in toxicity between the individual PM2.5

components. The accuracy of pollution-health models is also limited by the
amount of cohort studies used to build the models21. To build the IER model,
cohort studies related to not just ambient pollution but also indoor pollution and
smoking are used101. To evaluate the uncertainty from pollution-health models, we
calculate the mortality based on each of GEMM NCD+LRI, GEMM 5COD, and
IER. Furthermore, for each model we calculate the 95% CI for the estimated
mortality data, through a bootstrap method which incorporates both sampling and
model shape uncertainty. The corresponding error (one standard deviation) is
referred to as σ4 (one standard deviation).

The overall uncertainty in the mortality data for each trade scenario is estimated
as the sum in quadrature of σ1–σ4. Error results are expressed as 95% CI in the
main text. Although σ2 and σ4 are dominant sources of error, they are derived
from causes that do not depend on trade scenarios. Thus, σ2 and σ4 are not
relevant when discussing the relative change in premature mortality from one trade
scenario to another.

Data availability
All data used here are cited in the text. The datasets generated during this study are
available from the corresponding authors.

Code availability
All computer codes generated during this study are available from the corresponding
authors upon reasonable request.
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