D 2022

Parameterised Partially-Predrawn Crossing Number

HAMM, Thekla and Petr HLINĚNÝ

Basic information

Original name

Parameterised Partially-Predrawn Crossing Number

Authors

HAMM, Thekla (276 Germany) and Petr HLINĚNÝ (203 Czech Republic, guarantor, belonging to the institution)

Edition

LIPIcs Vol. 224. Dagstuhl, Germany, 38th International Symposium on Computational Geometry (SoCG 2022), p. "46:1"-"46:15", 15 pp. 2022

Publisher

Schloss Dagstuhl

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

References:

RIV identification code

RIV/00216224:14330/22:00129306

Organization unit

Faculty of Informatics

ISBN

978-3-95977-227-3

ISSN

Keywords in English

Crossing Number; Drawing Extension; Parameterised Complexity; Partial Planarity

Tags

International impact, Reviewed
Změněno: 6/1/2023 11:16, prof. RNDr. Petr Hliněný, Ph.D.

Abstract

V originále

Inspired by the increasingly popular research on extending partial graph drawings, we propose a new perspective on the traditional and arguably most important geometric graph parameter, the crossing number. Specifically, we define the partially predrawn crossing number to be the smallest number of crossings in any drawing of a graph, part of which is prescribed on the input (not counting the prescribed crossings). Our main result - an FPT-algorithm to compute the partially predrawn crossing number - combines advanced ideas from research on the classical crossing number and so called partial planarity in a very natural but intricate way. Not only do our techniques generalise the known FPT-algorithm by Grohe for computing the standard crossing number, they also allow us to substantially improve a number of recent parameterised results for various drawing extension problems.

Links

GA20-04567S, research and development project
Name: Struktura efektivně řešitelných případů těžkých algoritmických problémů na grafech
Investor: Czech Science Foundation