Detailed Information on Publication Record
2023
Hilbert spaces and C*-algebras are not finitely concrete
LIEBERMAN, Michael Joseph, Jiří ROSICKÝ and Sébastien Bernard VASEYBasic information
Original name
Hilbert spaces and C*-algebras are not finitely concrete
Authors
LIEBERMAN, Michael Joseph (840 United States of America), Jiří ROSICKÝ (203 Czech Republic, guarantor, belonging to the institution) and Sébastien Bernard VASEY (756 Switzerland, belonging to the institution)
Edition
Journal of Pure and Applied Algebra, Elsevier, 2023, 0022-4049
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Netherlands
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 0.800 in 2022
RIV identification code
RIV/00216224:14310/23:00134041
Organization unit
Faculty of Science
UT WoS
000892539300014
Keywords in English
Hilbert space; C*-algebra; Faithful functor preserving directed; colimits
Tags
Tags
International impact, Reviewed
Změněno: 9/1/2023 10:16, Mgr. Marie Šípková, DiS.
Abstract
V originále
We show that no faithful functor from the category of Hilbert spaces with injective linear contractions into the category of sets preserves directed colimits. Thus Hilbert spaces cannot form an abstract elementary class, even up to change of language. We deduce an analogous result for the category of commutative unital C*- algebras with *-homomorphisms. This implies, in particular, that this category is not axiomatizable by a first-order theory, a strengthening of a conjecture of Bankston.
Links
GA19-00902S, research and development project |
|